Newer
Older
#include "MantidAPI/DetectorInfo.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/ComponentHelper.h"
#include "MantidGeometry/Instrument/Detector.h"
#include "MantidGeometry/Instrument/ReferenceFrame.h"
#include "MantidBeamline/DetectorInfo.h"
#include "MantidKernel/EigenConversionHelpers.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/MultiThreaded.h"
namespace Mantid {
namespace API {
/** Construct DetectorInfo based on an Instrument.
*
* The Instrument reference `instrument` must be the parameterized instrument
* obtained from a workspace. The pointer to the ParameterMap `pmap` can be
* null. If it is not null, it must refer to the same map as wrapped in
* `instrument`. Non-const methods of DetectorInfo may only be called if `pmap`
* is not null. Detector ID -> index map provided as constructor argument.
*
* */
DetectorInfo::DetectorInfo(
Beamline::DetectorInfo &detectorInfo,
boost::shared_ptr<const Geometry::Instrument> instrument,
boost::shared_ptr<std::vector<detid_t>> detectorIds,
Geometry::ParameterMap *pmap,
boost::shared_ptr<const std::unordered_map<detid_t, size_t>>
detIdToIndexMap)
: m_detectorInfo(detectorInfo), m_pmap(pmap), m_instrument(instrument),
m_detectorIDs(detectorIds), m_detIDToIndex(detIdToIndexMap),
m_lastDetector(PARALLEL_GET_MAX_THREADS),
m_lastIndex(PARALLEL_GET_MAX_THREADS, -1) {
// Note: This does not seem possible currently (the instrument objects is
// always allocated, even if it is empty), so this will not fail.
if (!m_instrument)
throw std::invalid_argument(
"DetectorInfo::DetectorInfo Workspace does not contain an instrument!");
if (m_detectorIDs->size() != m_detIDToIndex->size()) {
throw std::invalid_argument(
"DetectorInfo::DetectorInfo: ID and ID->index map do not match");
}
/// Assigns the contents of the non-wrapping part of `rhs` to this.
DetectorInfo &DetectorInfo::operator=(const DetectorInfo &rhs) {
if (detectorIDs() != rhs.detectorIDs())
throw std::runtime_error("DetectorInfo::operator=: Detector IDs in "
"assignment do not match. Assignment not "
"possible");
// Do NOT assign anything in the "wrapping" part of DetectorInfo. We simply
// assign the underlying Beamline::DetectorInfo.
m_detectorInfo = rhs.m_detectorInfo;
return *this;
}
/** Returns true if the content of this is equivalent to the content of other.
*
* Here "equivalent" implies equality of all member, except for positions and
* rotations, which are treated specially:
* - Positions that differ by less than 1 nm = 1e-9 m are considered equivalent.
* - Rotations that imply relative position changes of less than 1 nm = 1e-9 m
* with a rotation center that is 1000 m away are considered equivalent.
* Note that in both cases the actual limit may be lower, but it is guarenteed
* that any LARGER differences are NOT considered equivalent. */
bool DetectorInfo::isEquivalent(const DetectorInfo &other) const {
return m_detectorInfo.isEquivalent(other.m_detectorInfo);
/// Returns the size of the DetectorInfo, i.e., the number of detectors in the
/// instrument.
size_t DetectorInfo::size() const { return m_detectorIDs->size(); }
/// Returns true if the beamline has scanning detectors.
bool DetectorInfo::isScanning() const { return m_detectorInfo.isScanning(); }
/// Returns true if the detector is a monitor.
bool DetectorInfo::isMonitor(const size_t index) const {
return m_detectorInfo.isMonitor(index);
}
/// Returns true if the detector is a monitor.
bool DetectorInfo::isMonitor(const std::pair<size_t, size_t> &index) const {
return m_detectorInfo.isMonitor(index);
}
/// Returns true if the detector is masked.
bool DetectorInfo::isMasked(const size_t index) const {
return m_detectorInfo.isMasked(index);
}
/// Returns true if the detector is masked.
bool DetectorInfo::isMasked(const std::pair<size_t, size_t> &index) const {
return m_detectorInfo.isMasked(index);
}
/** Returns L2 (distance from sample to spectrum).
*
* For monitors this is defined such that L1+L2 = source-detector distance,
* i.e., for a monitor in the beamline between source and sample L2 is negative.
*/
double DetectorInfo::l2(const size_t index) const {
if (!isMonitor(index))
return position(index).distance(samplePosition());
else
return position(index).distance(sourcePosition()) - l1();
}
/** Returns L2 (distance from sample to spectrum).
*
* For monitors this is defined such that L1+L2 = source-detector distance,
* i.e., for a monitor in the beamline between source and sample L2 is negative.
*/
double DetectorInfo::l2(const std::pair<size_t, size_t> &index) const {
if (!isMonitor(index))
return position(index).distance(samplePosition());
else
return position(index).distance(sourcePosition()) - l1();
}
/// Returns 2 theta (scattering angle w.r.t. to beam direction).
double DetectorInfo::twoTheta(const size_t index) const {
if (isMonitor(index))
throw std::logic_error(
"Two theta (scattering angle) is not defined for monitors.");
const auto samplePos = samplePosition();
const auto beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
const auto sampleDetVec = position(index) - samplePos;
return sampleDetVec.angle(beamLine);
}
/// Returns 2 theta (scattering angle w.r.t. to beam direction).
double DetectorInfo::twoTheta(const std::pair<size_t, size_t> &index) const {
if (isMonitor(index))
throw std::logic_error(
"Two theta (scattering angle) is not defined for monitors.");
const auto samplePos = samplePosition();
const auto beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
const auto sampleDetVec = position(index) - samplePos;
return sampleDetVec.angle(beamLine);
}
/// Returns signed 2 theta (signed scattering angle w.r.t. to beam direction).
double DetectorInfo::signedTwoTheta(const size_t index) const {
if (isMonitor(index))
throw std::logic_error(
"Two theta (scattering angle) is not defined for monitors.");
const auto samplePos = samplePosition();
const auto beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
// Get the axis defining the sign
const auto &instrumentUpAxis =
m_instrument->getReferenceFrame()->vecThetaSign();
const auto sampleDetVec = position(index) - samplePos;
double angle = sampleDetVec.angle(beamLine);
const auto cross = beamLine.cross_prod(sampleDetVec);
const auto normToSurface = beamLine.cross_prod(instrumentUpAxis);
if (normToSurface.scalar_prod(cross) < 0) {
angle *= -1;
}
return angle;
}
/// Returns signed 2 theta (signed scattering angle w.r.t. to beam direction).
double
DetectorInfo::signedTwoTheta(const std::pair<size_t, size_t> &index) const {
if (isMonitor(index))
throw std::logic_error(
"Two theta (scattering angle) is not defined for monitors.");
const auto samplePos = samplePosition();
const auto beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
// Get the axis defining the sign
const auto &instrumentUpAxis =
m_instrument->getReferenceFrame()->vecThetaSign();
const auto sampleDetVec = position(index) - samplePos;
double angle = sampleDetVec.angle(beamLine);
const auto cross = beamLine.cross_prod(sampleDetVec);
const auto normToSurface = beamLine.cross_prod(instrumentUpAxis);
if (normToSurface.scalar_prod(cross) < 0) {
angle *= -1;
}
return angle;
}
/// Returns the position of the detector with given index.
Kernel::V3D DetectorInfo::position(const size_t index) const {
return Kernel::toV3D(m_detectorInfo.position(index));
/// Returns the position of the detector with given index.
Kernel::V3D
DetectorInfo::position(const std::pair<size_t, size_t> &index) const {
return Kernel::toV3D(m_detectorInfo.position(index));
}
/// Returns the rotation of the detector with given index.
Kernel::Quat DetectorInfo::rotation(const size_t index) const {
return Kernel::toQuat(m_detectorInfo.rotation(index));
/// Returns the rotation of the detector with given index.
Kernel::Quat
DetectorInfo::rotation(const std::pair<size_t, size_t> &index) const {
return Kernel::toQuat(m_detectorInfo.rotation(index));
}
/// Set the mask flag of the detector with given index. Not thread safe.
void DetectorInfo::setMasked(const size_t index, bool masked) {
m_detectorInfo.setMasked(index, masked);
/// Set the mask flag of the detector with given index. Not thread safe.
void DetectorInfo::setMasked(const std::pair<size_t, size_t> &index,
bool masked) {
m_detectorInfo.setMasked(index, masked);
}
/** Sets all mask flags to false (unmasked). Not thread safe.
*
* This method was introduced to help with refactoring and may be removed in the
*future. */
void DetectorInfo::clearMaskFlags() {
for (size_t i = 0; i < size(); ++i)
m_detectorInfo.setMasked(i, false);
}
/// Set the absolute position of the detector with given index. Not thread safe.
void DetectorInfo::setPosition(const size_t index,
const Kernel::V3D &position) {
m_detectorInfo.setPosition(index, Kernel::toVector3d(position));
/// Set the absolute position of the detector with given index. Not thread safe.
void DetectorInfo::setPosition(const std::pair<size_t, size_t> &index,
const Kernel::V3D &position) {
m_detectorInfo.setPosition(index, Kernel::toVector3d(position));
}
/// Set the absolute rotation of the detector with given index. Not thread safe.
void DetectorInfo::setRotation(const size_t index,
const Kernel::Quat &rotation) {
m_detectorInfo.setRotation(index, Kernel::toQuaterniond(rotation));
/// Set the absolute rotation of the detector with given index. Not thread safe.
void DetectorInfo::setRotation(const std::pair<size_t, size_t> &index,
const Kernel::Quat &rotation) {
m_detectorInfo.setRotation(index, Kernel::toQuaterniond(rotation));
}
/// Return a const reference to the detector with given index.
const Geometry::IDetector &DetectorInfo::detector(const size_t index) const {
return getDetector(index);
}
/// Returns the source position.
Kernel::V3D DetectorInfo::sourcePosition() const {
return Kernel::toV3D(m_detectorInfo.sourcePosition());
}
/// Returns the sample position.
Kernel::V3D DetectorInfo::samplePosition() const {
return Kernel::toV3D(m_detectorInfo.samplePosition());
}
/// Returns L1 (distance from source to sample).
double DetectorInfo::l1() const { return m_detectorInfo.l1(); }
/// Returns a sorted vector of all detector IDs.
const std::vector<detid_t> &DetectorInfo::detectorIDs() const {
return *m_detectorIDs;
/// Returns the scan count of the detector with given detector index.
size_t DetectorInfo::scanCount(const size_t index) const {
return m_detectorInfo.scanCount(index);
}
/** Returns the scan interval of the detector with given index.
*
* The interval start and end values would typically correspond to nanoseconds
* since 1990, as in Kernel::DateAndTime. */
std::pair<Kernel::DateAndTime, Kernel::DateAndTime>
DetectorInfo::scanInterval(const std::pair<size_t, size_t> &index) const {
const auto &interval = m_detectorInfo.scanInterval(index);
return {interval.first, interval.second};
}
/** Set the scan interval of the detector with given detector index.
*
* The interval start and end values would typically correspond to nanoseconds
* since 1990, as in Kernel::DateAndTime. Note that it is currently not possible
* to modify scan intervals for a DetectorInfo with time-dependent detectors,
* i.e., time intervals must be set with this method before merging individual
* scans. */
void DetectorInfo::setScanInterval(
const size_t index,
const std::pair<Kernel::DateAndTime, Kernel::DateAndTime> &interval) {
m_detectorInfo.setScanInterval(index, {interval.first.totalNanoseconds(),
interval.second.totalNanoseconds()});
}
/** Merges the contents of other into this.
*
* Scan intervals in both other and this must be set. Intervals must be
* identical or non-overlapping. If they are identical all other parameters (for
* that index) must match. */
void DetectorInfo::merge(const DetectorInfo &other) {
m_detectorInfo.merge(other.m_detectorInfo);
}
const Geometry::IDetector &DetectorInfo::getDetector(const size_t index) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
if (m_lastIndex[thread] != index) {
m_lastIndex[thread] = index;
m_lastDetector[thread] = m_instrument->getDetector((*m_detectorIDs)[index]);
return *m_lastDetector[thread];
/// Helper used by SpectrumInfo.
boost::shared_ptr<const Geometry::IDetector>
DetectorInfo::getDetectorPtr(const size_t index) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
static_cast<void>(getDetector(index));
return m_lastDetector[thread];
}
} // namespace API
} // namespace Mantid