Newer
Older
#include "MantidAPI/DetectorInfo.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/ComponentHelper.h"
#include "MantidGeometry/Instrument/ReferenceFrame.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/MultiThreaded.h"
namespace Mantid {
namespace API {
/** Construct DetectorInfo based on an Instrument.
*
* The Instrument reference `instrument` must be the parameterized instrument
* obtained from a workspace. The pointer to the ParameterMap `pmap` can be
* null. If it is not null, it must refer to the same map as wrapped in
* `instrument`. Non-const methods of DetectorInfo may only be called if `pmap`
* is not null. */
DetectorInfo::DetectorInfo(const Geometry::Instrument &instrument,
Geometry::ParameterMap *pmap)
: m_pmap(pmap), m_instrument(instrument),
m_detectorIDs(
instrument.getDetectorIDs(false /* do not skip monitors */)),
m_detectors(PARALLEL_GET_MAX_THREADS),
m_lastIndex(PARALLEL_GET_MAX_THREADS, -1) {
for (size_t i = 0; i < m_detectorIDs.size(); ++i)
m_detIDToIndex[m_detectorIDs[i]] = i;
}
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/// Returns true if the detector associated with the detector is a monitor.
bool DetectorInfo::isMonitor(const size_t index) const {
return getDetector(index).isMonitor();
}
/// Returns true if the detector associated with the detector is a masked.
bool DetectorInfo::isMasked(const size_t index) const {
return getDetector(index).isMasked();
}
/** Returns L2 (distance from sample to spectrum).
*
* For monitors this is defined such that L1+L2 = source-detector distance,
* i.e., for a monitor in the beamline between source and sample L2 is negative.
*/
double DetectorInfo::l2(const size_t index) const {
if (!isMonitor(index))
return getDetector(index).getDistance(getSample());
else
return getDetector(index).getDistance(getSource()) - l1();
}
/// Returns 2 theta (scattering angle w.r.t. to beam direction).
double DetectorInfo::twoTheta(const size_t index) const {
const Kernel::V3D samplePos = samplePosition();
const Kernel::V3D beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
return getDetector(index).getTwoTheta(samplePos, beamLine);
}
/// Returns signed 2 theta (signed scattering angle w.r.t. to beam direction).
double DetectorInfo::signedTwoTheta(const size_t index) const {
const Kernel::V3D samplePos = samplePosition();
const Kernel::V3D beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
// Get the instrument up axis.
const Kernel::V3D &instrumentUpAxis =
m_instrument.getReferenceFrame()->vecPointingUp();
return getDetector(index)
.getSignedTwoTheta(samplePos, beamLine, instrumentUpAxis);
}
/// Returns the position of the detector with given index.
Kernel::V3D DetectorInfo::position(const size_t index) const {
return getDetector(index).getPos();
}
/// Set the absolute position of the detector with given index.
void DetectorInfo::setPosition(const size_t index,
const Kernel::V3D &position) {
const auto &det = getDetector(index);
using namespace Geometry::ComponentHelper;
TransformType positionType = Absolute;
moveComponent(det, *m_pmap, position, positionType);
}
/// Returns the source position.
Kernel::V3D DetectorInfo::sourcePosition() const {
std::call_once(m_sourceCached, &DetectorInfo::cacheSource, this);
return m_sourcePos;
}
/// Returns the sample position.
Kernel::V3D DetectorInfo::samplePosition() const {
std::call_once(m_sampleCached, &DetectorInfo::cacheSample, this);
return m_samplePos;
}
/// Returns L1 (distance from source to sample).
double DetectorInfo::l1() const {
std::call_once(m_L1Cached, &DetectorInfo::cacheL1, this);
return m_L1;
}
/// Returns a sorted vector of all detector IDs.
const std::vector<detid_t> DetectorInfo::detectorIDs() const {
return m_detectorIDs;
}
const Geometry::IDetector &DetectorInfo::getDetector(const size_t index) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
if (m_lastIndex[thread] != index) {
m_lastIndex[thread] = index;
m_detectors[thread] = m_instrument.getDetector(m_detectorIDs[index]);
}
return *m_detectors[thread];
}
/// Sets the cached detector. This is an optimiyation used by SpectrumInfo.
void DetectorInfo::setCachedDetector(
size_t index, boost::shared_ptr<const Geometry::IDetector> detector) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
m_lastIndex[thread] = index;
m_detectors[thread] = detector;
}
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/// Returns a reference to the source component. The value is cached, so calling
/// it repeatedly is cheap.
const Geometry::IComponent &DetectorInfo::getSource() const {
std::call_once(m_sourceCached, &DetectorInfo::cacheSource, this);
return *m_source;
}
/// Returns a reference to the sample component. The value is cached, so calling
/// it repeatedly is cheap.
const Geometry::IComponent &DetectorInfo::getSample() const {
std::call_once(m_sampleCached, &DetectorInfo::cacheSample, this);
return *m_sample;
}
void DetectorInfo::cacheSource() const {
m_source = m_instrument.getSource();
if (!m_source)
throw std::runtime_error("Instrument does not contain source!");
m_sourcePos = m_source->getPos();
}
void DetectorInfo::cacheSample() const {
m_sample = m_instrument.getSample();
if (!m_sample)
throw std::runtime_error("Instrument does not contain sample!");
m_samplePos = m_sample->getPos();
}
void DetectorInfo::cacheL1() const {
std::call_once(m_sourceCached, &DetectorInfo::cacheSource, this);
std::call_once(m_sampleCached, &DetectorInfo::cacheSample, this);
m_L1 = m_source->getDistance(*m_sample);
}
} // namespace API
} // namespace Mantid