Newer
Older
#include "MantidAPI/DetectorInfo.h"
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/Instrument/ComponentHelper.h"
#include "MantidGeometry/Instrument/Detector.h"
#include "MantidGeometry/Instrument/ReferenceFrame.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/MultiThreaded.h"
namespace Mantid {
namespace API {
/** Construct DetectorInfo based on an Instrument.
*
* The Instrument reference `instrument` must be the parameterized instrument
* obtained from a workspace. The pointer to the ParameterMap `pmap` can be
* null. If it is not null, it must refer to the same map as wrapped in
* `instrument`. Non-const methods of DetectorInfo may only be called if `pmap`
* is not null. */
DetectorInfo::DetectorInfo(
boost::shared_ptr<const Geometry::Instrument> instrument,
Geometry::ParameterMap *pmap)
: m_pmap(pmap), m_instrument(instrument),
m_lastDetector(PARALLEL_GET_MAX_THREADS),
m_lastIndex(PARALLEL_GET_MAX_THREADS, -1) {
// Note: This does not seem possible currently (the instrument objects is
// always allocated, even if it is empty), so this will not fail.
if (!m_instrument)
throw std::runtime_error("Workspace does not contain an instrument!");
m_detectorIDs = instrument->getDetectorIDs(false /* do not skip monitors */);
for (size_t i = 0; i < m_detectorIDs.size(); ++i)
m_detIDToIndex[m_detectorIDs[i]] = i;
}
/// Returns the size of the DetectorInfo, i.e., the number of detectors in the
/// instrument.
size_t DetectorInfo::size() const { return m_detectorIDs.size(); }
/// Returns true if the detector is a monitor.
bool DetectorInfo::isMonitor(const size_t index) const {
return getDetector(index).isMonitor();
}
/// Returns true if the detector is a masked.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
bool DetectorInfo::isMasked(const size_t index) const {
return getDetector(index).isMasked();
}
/** Returns L2 (distance from sample to spectrum).
*
* For monitors this is defined such that L1+L2 = source-detector distance,
* i.e., for a monitor in the beamline between source and sample L2 is negative.
*/
double DetectorInfo::l2(const size_t index) const {
if (!isMonitor(index))
return getDetector(index).getDistance(getSample());
else
return getDetector(index).getDistance(getSource()) - l1();
}
/// Returns 2 theta (scattering angle w.r.t. to beam direction).
double DetectorInfo::twoTheta(const size_t index) const {
const Kernel::V3D samplePos = samplePosition();
const Kernel::V3D beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
return getDetector(index).getTwoTheta(samplePos, beamLine);
}
/// Returns signed 2 theta (signed scattering angle w.r.t. to beam direction).
double DetectorInfo::signedTwoTheta(const size_t index) const {
const Kernel::V3D samplePos = samplePosition();
const Kernel::V3D beamLine = samplePos - sourcePosition();
if (beamLine.nullVector()) {
throw Kernel::Exception::InstrumentDefinitionError(
"Source and sample are at same position!");
}
// Get the instrument up axis.
const Kernel::V3D &instrumentUpAxis =
m_instrument->getReferenceFrame()->vecPointingUp();
return getDetector(index)
.getSignedTwoTheta(samplePos, beamLine, instrumentUpAxis);
}
/// Returns the position of the detector with given index.
Kernel::V3D DetectorInfo::position(const size_t index) const {
return getDetector(index).getPos();
}
/// Returns the rotation of the detector with given index.
Kernel::Quat DetectorInfo::rotation(const size_t index) const {
return getDetector(index).getRotation();
}
/// Set the mask flag of the detector with given index.
void DetectorInfo::setMasked(const size_t index, bool masked) {
m_pmap->addBool(&getDetector(index), "masked", masked);
}
/** Sets all mask flags to false (unmasked).
*
* This method was introduced to help with refactoring and may be removed in the
*future. */
void DetectorInfo::clearMaskFlags() { m_pmap->clearParametersByName("masked"); }
/// Set the absolute position of the detector with given index.
void DetectorInfo::setPosition(const size_t index,
const Kernel::V3D &position) {
const auto &det = getDetector(index);
using namespace Geometry::ComponentHelper;
TransformType positionType = Absolute;
moveComponent(det, *m_pmap, position, positionType);
}
/// Set the absolute rotation of the detector with given index.
void DetectorInfo::setRotation(const size_t index,
const Kernel::Quat &rotation) {
const auto &det = getDetector(index);
using namespace Geometry::ComponentHelper;
TransformType rotationType = Absolute;
rotateComponent(det, *m_pmap, rotation, rotationType);
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/** Set the absolute position of the component `comp`.
*
* This may or may not be a detector. Even if it is not a detector it will
* typically still influence detector positions. */
void DetectorInfo::setPosition(const Geometry::IComponent &comp,
const Kernel::V3D &pos) {
using namespace Geometry::ComponentHelper;
TransformType positionType = Absolute;
moveComponent(comp, *m_pmap, pos, positionType);
if (!dynamic_cast<const Geometry::Detector *>(&comp)) {
// If comp is a detector cached positions stay valid. In all other cases
// (higher level in instrument tree, or other leaf component such as sample
// or source) we flush all cached positions.
if (m_source)
m_sourcePos = m_source->getPos();
if (m_sample)
m_samplePos = m_sample->getPos();
// Detector positions are currently not cached, the cached pointers to
// detectors stay valid. Once we store positions in DetectorInfo we need to
// update detector positions here.
}
}
/** Set the absolute rotation of the component `comp`.
*
* This may or may not be a detector. Even if it is not a detector it will
* typically still influence detector positions rotations. */
void DetectorInfo::setRotation(const Geometry::IComponent &comp,
const Kernel::Quat &rot) {
using namespace Geometry::ComponentHelper;
TransformType rotationType = Absolute;
rotateComponent(comp, *m_pmap, rot, rotationType);
if (!dynamic_cast<const Geometry::Detector *>(&comp)) {
// If comp is a detector cached positions and rotations stay valid. In all
// other cases/ (higher level in instrument tree, or other leaf component
// such as sample or source) we flush all cached positions and rotations.
if (m_source)
m_sourcePos = m_source->getPos();
if (m_sample)
m_samplePos = m_sample->getPos();
// Detector positions and rotations are currently not cached, the cached
// pointers to detectors stay valid. Once we store positions and rotations
// in DetectorInfo we need to update detector positions and rotations here.
}
}
/// Returns the source position.
Kernel::V3D DetectorInfo::sourcePosition() const {
cacheSource();
return m_sourcePos;
}
/// Returns the sample position.
Kernel::V3D DetectorInfo::samplePosition() const {
cacheSample();
return m_samplePos;
}
/// Returns L1 (distance from source to sample).
double DetectorInfo::l1() const {
cacheSource();
cacheSample();
std::call_once(m_L1Cached, &DetectorInfo::cacheL1, this);
return m_L1;
}
/// Returns a sorted vector of all detector IDs.
const std::vector<detid_t> &DetectorInfo::detectorIDs() const {
const Geometry::IDetector &DetectorInfo::getDetector(const size_t index) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
if (m_lastIndex[thread] != index) {
m_lastIndex[thread] = index;
m_lastDetector[thread] = m_instrument->getDetector(m_detectorIDs[index]);
return *m_lastDetector[thread];
/// Helper used by SpectrumInfo.
boost::shared_ptr<const Geometry::IDetector>
DetectorInfo::getDetectorPtr(const size_t index) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
static_cast<void>(getDetector(index));
return m_lastDetector[thread];
}
/// Sets the cached detector. This is an optimization used by SpectrumInfo.
void DetectorInfo::setCachedDetector(
size_t index, boost::shared_ptr<const Geometry::IDetector> detector) const {
size_t thread = static_cast<size_t>(PARALLEL_THREAD_NUMBER);
m_lastIndex[thread] = index;
m_lastDetector[thread] = detector;
/// Returns a reference to the source component. The value is cached, so calling
/// it repeatedly is cheap.
const Geometry::IComponent &DetectorInfo::getSource() const {
cacheSource();
return *m_source;
}
/// Returns a reference to the sample component. The value is cached, so calling
/// it repeatedly is cheap.
const Geometry::IComponent &DetectorInfo::getSample() const {
cacheSample();
return *m_sample;
}
void DetectorInfo::cacheSource() const {
std::call_once(m_sourceCached, &DetectorInfo::doCacheSource, this);
if (!m_sourceGood)
throw std::runtime_error("Instrument does not contain source!");
}
void DetectorInfo::cacheSample() const {
std::call_once(m_sampleCached, &DetectorInfo::doCacheSample, this);
if (!m_sampleGood)
throw std::runtime_error("Instrument does not contain sample!");
}
void DetectorInfo::doCacheSource() const {
m_source = m_instrument->getSource();
// Workaround: GCC has trouble with exceptions thrown from with std::call_once
// (example from cppreference does not work). Instead we set a flag and throw
// in a wrapper function.
if (!m_source)
return;
m_sourceGood = true;
m_sourcePos = m_source->getPos();
}
void DetectorInfo::doCacheSample() const {
m_sample = m_instrument->getSample();
// Workaround: GCC has trouble with exceptions thrown from with std::call_once
// (example from cppreference does not work). Instead we set a flag and throw
// in a wrapper function.
if (!m_sample)
return;
m_sampleGood = true;
m_samplePos = m_sample->getPos();
}
void DetectorInfo::cacheL1() const { m_L1 = m_source->getDistance(*m_sample); }
} // namespace API
} // namespace Mantid