Newer
Older
#include <map>
#include <iterator>
#include <iomanip>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/regex.hpp>
#include <boost/exception/diagnostic_information.hpp>
#include <boost/exception_ptr.hpp>
#include <Poco/DateTime.h>
#include <Poco/DateTimeFormat.h>
#include <Poco/DateTimeFormatter.h>
#include <Poco/DirectoryIterator.h>
#include <Poco/DateTimeParser.h>
#include <Poco/Path.h>
#include <Poco/File.h>
#include "MantidMDAlgorithms/LoadDNSSCD.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/MultipleFileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/ArrayLengthValidator.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/VectorHelper.h"
#include "MantidDataObjects/MDEventFactory.h"
#include "MantidAPI/ExperimentInfo.h"
#include "MantidAPI/Run.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidGeometry/Crystal/IndexingUtils.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidGeometry/MDGeometry/HKL.h"
#include "MantidKernel/UnitLabelTypes.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/PhysicalConstants.h"
#include "MantidMDAlgorithms/MDWSDescription.h"
#include "MantidMDAlgorithms/MDWSTransform.h"
#include "MantidDataObjects/MDBoxBase.h"
#include "MantidDataObjects/MDEventInserter.h"
//========================
// helper functions
namespace {
void eraseSubStr(std::string &str, const std::string &toErase) {
// Search for the substring in string
size_t pos = str.find(toErase);
if (pos != std::string::npos) {
// If found then erase it from string
str.erase(pos, toErase.length());
}
std::string parseTime(std::string &str) {
// remove unnecessary symbols
eraseSubStr(str, "#");
eraseSubStr(str, "start");
eraseSubStr(str, "stopped");
eraseSubStr(str, "at");
auto it = std::find_if(str.begin(), str.end(), [](char ch) {
return !std::isspace<char>(ch, std::locale::classic());
});
str.erase(str.begin(), it);
using namespace boost::posix_time;
// try to parse as a posix time
try {
auto time = time_from_string(str);
return to_iso_extended_string(time);
} catch (std::exception &) {
int tzd;
Poco::DateTime dt;
bool ok = Poco::DateTimeParser::tryParse(str, dt, tzd);
if (ok) {
auto time = Poco::DateTimeFormatter::format(dt, "%Y-%m-%dT%H:%M:%S");
return time;
std::string result("");
} // anonymous namespace
//============================
using namespace Mantid::Kernel;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Geometry;
namespace Mantid {
namespace MDAlgorithms {
DECLARE_FILELOADER_ALGORITHM(LoadDNSSCD)
//----------------------------------------------------------------------------------------------
/** Constructor
*/
LoadDNSSCD::LoadDNSSCD() : m_columnSep("\t, ;"), m_nDims(4) {}
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/**
* Return the confidence with with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadDNSSCD::confidence(Kernel::FileDescriptor &descriptor) const {
// DNS data acquisition writes ascii files with .d_dat extension
int confidence(0);
if ((descriptor.extension() == ".d_dat") && descriptor.isAscii()) {
confidence = 80;
}
return confidence;
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void LoadDNSSCD::init() {
std::vector<std::string> exts(1, ".d_dat");
declareProperty(Kernel::make_unique<MultipleFileProperty>("Filenames", exts),
"Select one or more DNS SCD .d_dat files to load."
"Files must be measured at the same conditions.");
declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"An output MDEventWorkspace.");
declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
"NormalizationWorkspace", "", Direction::Output),
"An output normalization MDEventWorkspace.");
const std::vector<std::string> normOptions = {"monitor", "time"};
declareProperty("Normalization", "monitor",
boost::make_shared<StringListValidator>(normOptions),
"Algorithm will create a separate normalization workspace. "
"Choose whether it should contain monitor counts or time.");
auto mustBePositive = boost::make_shared<BoundedValidator<double>>();
mustBePositive->setLower(0.0);
auto reasonableAngle = boost::make_shared<BoundedValidator<double>>();
reasonableAngle->setLower(5.0);
reasonableAngle->setUpper(175.0);
// clang-format off
auto mustBe3D = boost::make_shared<ArrayLengthValidator<double> >(3);
auto mustBe2D = boost::make_shared<ArrayLengthValidator<double> >(2);
// clang-format on
std::vector<double> u0(3, 0), v0(3, 0);
u0[0] = 1.;
u0[1] = 1.;
v0[2] = 1.;
declareProperty(make_unique<PropertyWithValue<double>>(
"a", 1.0, mustBePositive, Direction::Input),
"Lattice parameter a in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"b", 1.0, mustBePositive, Direction::Input),
"Lattice parameter b in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"c", 1.0, mustBePositive, Direction::Input),
"Lattice parameter c in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"alpha", 90.0, reasonableAngle, Direction::Input),
"Angle between b and c in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"beta", 90.0, reasonableAngle, Direction::Input),
"Angle between a and c in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"gamma", 90.0, reasonableAngle, Direction::Input),
"Angle between a and b in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"OmegaOffset", 0.0,
boost::make_shared<BoundedValidator<double>>(),
"Angle in degrees between (HKL1) and the beam axis"
"if the goniometer is at zero.");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("HKL1", u0, mustBe3D),
"Indices of the vector in reciprocal space in the horizontal plane at "
"angle Omegaoffset, "
"if the goniometer is at zero.");
Kernel::make_unique<ArrayProperty<double>>("HKL2", v0, mustBe3D),
"Indices of a second vector in reciprocal space in the horizontal plane "
"not parallel to HKL1");
std::vector<double> ttl(2, 0);
ttl[1] = 180.0;
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("TwoThetaLimits", ttl,
mustBe2D),
"Range (min, max) of scattering angles (2theta, in degrees) to consider. "
"Everything out of this range will be cut.");
Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"LoadHuberFrom", "", Direction::Input, PropertyMode::Optional),
"A table workspace to load a list of raw sample rotation angles. "
"Huber angles given in the data files will be ignored.");
Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"SaveHuberTo", "", Direction::Output, PropertyMode::Optional),
"A workspace name to save a list of raw sample rotation angles.");
auto mustBeIntPositive = boost::make_shared<BoundedValidator<int>>();
mustBeIntPositive->setLower(0);
declareProperty(make_unique<PropertyWithValue<int>>(
"ElasticChannel", 0, mustBeIntPositive, Direction::Input),
"Elastic channel number. Only for TOF data.");
auto mustBeNegative = boost::make_shared<BoundedValidator<double>>();
mustBeNegative->setUpper(0.0);
declareProperty(
make_unique<PropertyWithValue<double>>("DeltaEmin", -10.0, mustBeNegative,
Direction::Input),
"Minimal energy transfer to consider. Should be <=0. Only for TOF data.");
}
//----------------------------------------------------------------------------------------------
/** Read Huber angles from a given table workspace.
*/
void LoadDNSSCD::loadHuber(ITableWorkspace_sptr tws) {
ColumnVector<double> huber = tws->getVector("Huber(degrees)");
// set huber[0] for each run in m_data
for (auto &ds : m_data) {
ds.huber = huber[0];
}
// dublicate runs for each huber in the table
std::vector<ExpData> old(m_data);
for (size_t i = 1; i < huber.size(); ++i) {
for (auto &ds : old) {
ds.huber = huber[i];
m_data.push_back(ds);
}
//----------------------------------------------------------------------------------------------
/** Save Huber angles to a given table workspace.
*/
Mantid::API::ITableWorkspace_sptr LoadDNSSCD::saveHuber() {
std::vector<double> huber;
for (auto ds : m_data)
huber.push_back(ds.huber);
// remove dublicates
std::sort(huber.begin(), huber.end());
huber.erase(unique(huber.begin(), huber.end()), huber.end());
Mantid::API::ITableWorkspace_sptr huberWS =
WorkspaceFactory::Instance().createTable("TableWorkspace");
huberWS->addColumn("double", "Huber(degrees)");
for (size_t i = 0; i < huber.size(); i++) {
huberWS->appendRow();
huberWS->cell<double>(i, 0) = huber[i];
}
return huberWS;
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void LoadDNSSCD::exec() {
MultipleFileProperty *multiFileProp =
dynamic_cast<MultipleFileProperty *>(getPointerToProperty("Filenames"));
if (!multiFileProp) {
throw std::logic_error(
"Filenames property must have MultipleFileProperty type.");
}
std::vector<std::string> filenames =
VectorHelper::flattenVector(multiFileProp->operator()());
if (filenames.empty())
throw std::invalid_argument("Must specify at least one filename.");
// set type of normalization
std::string normtype = getProperty("Normalization");
if (normtype == "monitor") {
m_normtype = "Monitor";
m_normfactor = 1.0;
} else {
m_normtype = "Timer";
m_normfactor = 0.0; // error for time should be 0
}
g_log.notice() << "The normalization workspace will contain " << m_normtype
<< ".\n";
ExperimentInfo_sptr expinfo = boost::make_shared<ExperimentInfo>();
API::Run &run = expinfo->mutableRun();
for (auto fname : filenames) {
std::map<std::string, std::string> str_metadata;
std::map<std::string, double> num_metadata;
try {
read_data(fname, str_metadata, num_metadata);
// if no stop_time, take file_save_time
std::string time(str_metadata["stop_time"]);
if (time.empty()) {
g_log.warning()
<< "stop_time is empty! File save time will be used instead."
<< std::endl;
time = str_metadata["file_save_time"];
}
updateProperties<std::string>(run, str_metadata, time);
updateProperties<double>(run, num_metadata, time);
} catch (...) {
g_log.warning() << "Failed to read file " << fname;
g_log.warning() << ". This file will be ignored. " << std::endl;
g_log.debug() << boost::current_exception_diagnostic_information()
<< std::endl;
if (m_data.empty())
throw std::runtime_error(
"No valid DNS files have been provided. Nothing to load.");
// merge data with different time channel number is not allowed
auto ch_n = m_data.front().nchannels;
bool same_channel_number =
std::all_of(m_data.begin(), m_data.end(),
[ch_n](ExpData &d) { return (d.nchannels == ch_n); });
if (!same_channel_number)
throw std::runtime_error(
"Error: cannot merge data with different TOF channel numbers.");
m_OutWS = MDEventFactory::CreateMDWorkspace(m_nDims, "MDEvent");
m_OutWS->addExperimentInfo(expinfo);
// load huber angles from a table workspace if given
ITableWorkspace_sptr huberWS = getProperty("LoadHuberFrom");
if (huberWS) {
g_log.notice() << "Huber angles will be loaded from " << huberWS->getName()
<< std::endl;
loadHuber(huberWS);
}
// get wavelength
TimeSeriesProperty<double> *wlprop =
dynamic_cast<TimeSeriesProperty<double> *>(
expinfo->run().getProperty("Lambda"));
// assume, that lambda is in nm
double wavelength =
wlprop->minValue() * 10.0; // needed to estimate extents => minValue
run.addProperty("wavelength", wavelength);
run.getProperty("wavelength")->setUnits("Angstrom");
fillOutputWorkspace(wavelength);
std::string saveHuberTableWS = getProperty("SaveHuberTo");
if (!saveHuberTableWS.empty()) {
Mantid::API::ITableWorkspace_sptr huber_table = saveHuber();
setProperty("SaveHuberTo", huber_table);
}
setProperty("OutputWorkspace", m_OutWS);
int LoadDNSSCD::splitIntoColumns(std::list<std::string> &columns,
std::string &str) {
boost::split(columns, str, boost::is_any_of(m_columnSep),
boost::token_compress_on);
return static_cast<int>(columns.size());
//----------------------------------------------------------------------------------------------
template <class T>
void LoadDNSSCD::updateProperties(API::Run &run,
std::map<std::string, T> &metadata,
std::string time) {
typename std::map<std::string, T>::iterator it = metadata.begin();
while (it != metadata.end()) {
TimeSeriesProperty<T> *timeSeries(nullptr);
std::string name(it->first);
std::string units;
// std::regex does not work for rhel7, thus boost
boost::regex reg("([-_a-zA-Z]+)\\[(.*)]");
boost::smatch match;
if (boost::regex_search(name, match, reg) && match.size() > 2) {
std::string new_name(match.str(1));
units.assign(match.str(2));
name = new_name;
if (run.hasProperty(name)) {
timeSeries = dynamic_cast<TimeSeriesProperty<T> *>(run.getLogData(name));
if (!timeSeries)
throw std::invalid_argument(
"Log '" + name +
"' already exists but the values are a different type.");
} else {
timeSeries = new TimeSeriesProperty<T>(name);
if (!units.empty())
timeSeries->setUnits(units);
run.addProperty(timeSeries);
}
timeSeries->addValue(time, it->second);
}
//----------------------------------------------------------------------------------------------
/// Create output workspace
void LoadDNSSCD::fillOutputWorkspace(double wavelength) {
// dimensions
std::vector<std::string> vec_ID(4);
vec_ID[0] = "H";
vec_ID[1] = "K";
vec_ID[2] = "L";
vec_ID[3] = "DeltaE";
std::vector<std::string> dimensionNames(4);
dimensionNames[0] = "H";
dimensionNames[1] = "K";
dimensionNames[2] = "L";
dimensionNames[3] = "DeltaE";
Mantid::Kernel::SpecialCoordinateSystem coordinateSystem =
Mantid::Kernel::HKL;
double a, b, c, alpha, beta, gamma;
a = getProperty("a");
b = getProperty("b");
c = getProperty("c");
alpha = getProperty("alpha");
beta = getProperty("beta");
gamma = getProperty("gamma");
std::vector<double> u = getProperty("HKL1");
std::vector<double> v = getProperty("HKL2");
// load empty DNS instrument to access L1 and L2
IAlgorithm_sptr loadAlg =
AlgorithmManager::Instance().create("LoadEmptyInstrument");
loadAlg->setChild(true);
loadAlg->setLogging(false);
loadAlg->initialize();
loadAlg->setProperty("InstrumentName", "DNS");
loadAlg->setProperty("OutputWorkspace", "__DNS_Inst");
loadAlg->execute();
MatrixWorkspace_sptr instWS = loadAlg->getProperty("OutputWorkspace");
const auto &instrument = instWS->getInstrument();
const auto &samplePosition = instrument->getSample()->getPos();
const auto &sourcePosition = instrument->getSource()->getPos();
const auto beamVector = samplePosition - sourcePosition;
const auto l1 = beamVector.norm();
// calculate tof1
auto velocity = PhysicalConstants::h /
(PhysicalConstants::NeutronMass * wavelength * 1e-10); // m/s
auto tof1 = 1e+06 * l1 / velocity; // microseconds
g_log.debug() << "TOF1 = " << tof1 << std::endl;
// calculate incident energy
auto Ei = 0.5 * PhysicalConstants::NeutronMass * velocity * velocity /
PhysicalConstants::meV;
g_log.debug() << "Ei = " << Ei << std::endl;
double dEmin = getProperty("DeltaEmin");
double qmax = 4.0 * M_PI / wavelength;
std::vector<double> extentMins = {-qmax * a, -qmax * b, -qmax * c, dEmin};
std::vector<double> extentMaxs = {qmax * a, qmax * b, qmax * c, Ei};
// Get MDFrame of HKL type with RLU
auto unitFactory = makeMDUnitFactoryChain();
auto unit = unitFactory->create(Units::Symbol::RLU.ascii());
Mantid::Geometry::HKL frame(unit);
// add dimensions
for (size_t i = 0; i < m_nDims; ++i) {
std::string id = vec_ID[i];
std::string name = dimensionNames[i];
m_OutWS->addDimension(
Geometry::MDHistoDimension_sptr(new Geometry::MDHistoDimension(
id, name, frame, static_cast<coord_t>(extentMins[i]),
static_cast<coord_t>(extentMaxs[i]), 5)));
}
// Set coordinate system
m_OutWS->setCoordinateSystem(coordinateSystem);
// calculate RUB matrix
Mantid::Geometry::OrientedLattice o;
o = Mantid::Geometry::OrientedLattice(a, b, c, alpha, beta, gamma);
o.setUFromVectors(Mantid::Kernel::V3D(u[0], u[1], u[2]),
Mantid::Kernel::V3D(v[0], v[1], v[2]));
double omega_offset = getProperty("OmegaOffset");
omega_offset *= -1.0 * deg2rad;
DblMatrix rotm(3, 3);
rotm[0][0] = std::cos(omega_offset);
rotm[0][1] = 0.0;
rotm[0][2] = std::sin(omega_offset);
rotm[1][0] = 0.0;
rotm[1][1] = 1.0;
rotm[1][2] = 0.0;
rotm[2][0] = -std::sin(omega_offset);
rotm[2][1] = 0.0;
rotm[2][2] = std::cos(omega_offset);
DblMatrix ub(o.getUB());
ub = rotm * ub;
o.setUB(ub);
DblMatrix ub_inv(ub);
// invert the UB matrix
ub_inv.Invert();
// Creates a new instance of the MDEventInserter to output workspace
MDEventWorkspace<MDEvent<4>, 4>::sptr mdws_mdevt_4 =
boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<4>, 4>>(m_OutWS);
MDEventInserter<MDEventWorkspace<MDEvent<4>, 4>::sptr> inserter(mdws_mdevt_4);
// create a normalization workspace
IMDEventWorkspace_sptr normWS = m_OutWS->clone();
// Creates a new instance of the MDEventInserter to norm workspace
MDEventWorkspace<MDEvent<4>, 4>::sptr normws_mdevt_4 =
boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<4>, 4>>(normWS);
MDEventInserter<MDEventWorkspace<MDEvent<4>, 4>::sptr> norm_inserter(
normws_mdevt_4);
// scattering angle limits
std::vector<double> tth_limits = getProperty("TwoThetaLimits");
double theta_min = tth_limits[0] * deg2rad / 2.0;
double theta_max = tth_limits[1] * deg2rad / 2.0;
// get elastic channel from the user input
int echannel_user = getProperty("ElasticChannel");
// Go though each element of m_data to convert to MDEvent
signal_t norm_signal(ds.norm);
signal_t norm_error = std::sqrt(m_normfactor * norm_signal);
for (size_t i = 0; i < ds.detID.size(); i++) {
const auto &detector = instWS->getDetector(i);
const auto &detectorPosition = detector->getPos();
const auto detectorVector = detectorPosition - samplePosition;
const auto l2 = detectorVector.norm();
// geometric elastic channel
int echannel_geom =
static_cast<int>(std::ceil(tof2_elastic / ds.chwidth));
// rotate the signal array to get elastic peak at right position
int ch_diff = echannel_geom - echannel_user;
if ((echannel_user > 0) && (ch_diff < 0)) {
std::rotate(ds.signal[i].begin(), ds.signal[i].begin() - ch_diff,
ds.signal[i].end());
} else if ((echannel_user > 0) && (ch_diff > 0)) {
std::rotate(ds.signal[i].rbegin(), ds.signal[i].rbegin() + ch_diff,
ds.signal[i].rend());
detid_t detid(ds.detID[i]);
double theta = 0.5 * (ds.detID[i] * 5.0 - ds.deterota) * deg2rad;
size_t nchannels = ds.signal[i].size();
if ((theta > theta_min) && (theta < theta_max)) {
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
PARALLEL_FOR_IF(Kernel::threadSafe(*m_OutWS, *normWS))
for (size_t channel = 0; channel < nchannels; channel++) {
PARALLEL_START_INTERUPT_REGION
double signal = ds.signal[i][channel];
signal_t error = std::sqrt(signal);
double tof2 = static_cast<double>(channel) * ds.chwidth +
0.5 * ds.chwidth; // bin centers
double dE = 0.0;
if (nchannels > 1) {
double v2 = 1e+06 * l2 / tof2;
dE = Ei -
0.5 * PhysicalConstants::NeutronMass * v2 * v2 /
PhysicalConstants::meV;
}
if (dE > dEmin) {
double kf = std::sqrt(
ki * ki -
2.0e-20 * PhysicalConstants::NeutronMass * dE *
PhysicalConstants::meV /
(PhysicalConstants::h_bar * PhysicalConstants::h_bar));
double tlab =
std::atan2(ki - kf * cos(2.0 * theta), kf * sin(2.0 * theta));
double omega = (ds.huber - ds.deterota) * deg2rad - tlab;
V3D uphi(-cos(omega), 0, -sin(omega));
double qabs = 0.5 * std::sqrt(ki * ki + kf * kf -
2.0 * ki * kf * cos(2.0 * theta)) /
M_PI;
V3D hphi = uphi * qabs; // qabs = ki * sin(theta), for elastic case;
V3D hkl = ub_inv * hphi;
std::vector<Mantid::coord_t> millerindex(4);
millerindex[0] = static_cast<float>(hkl.X());
millerindex[1] = static_cast<float>(hkl.Y());
millerindex[2] = static_cast<float>(hkl.Z());
millerindex[3] = static_cast<float>(dE);
PARALLEL_CRITICAL(addValues) {
inserter.insertMDEvent(
static_cast<float>(signal), static_cast<float>(error * error),
static_cast<uint16_t>(runindex), detid, millerindex.data());
norm_inserter.insertMDEvent(
static_cast<float>(norm_signal),
static_cast<float>(norm_error * norm_error),
static_cast<uint16_t>(runindex), detid, millerindex.data());
}
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
setProperty("NormalizationWorkspace", normWS);
}
void LoadDNSSCD::read_data(const std::string fname,
std::map<std::string, std::string> &str_metadata,
std::map<std::string, double> &num_metadata) {
std::ifstream file(fname);
std::string line;
std::string::size_type n;
std::string s;
boost::regex reg1("^#\\s+(\\w+):(.*)");
boost::regex reg2("^#\\s+((\\w+\\s)+)\\s+(-?\\d+(,\\d+)*(\\.\\d+(e\\d+)?)?)");
boost::smatch match;
getline(file, line);
n = line.find("DNS");
if (n == std::string::npos) {
throw std::invalid_argument("Not a DNS file");
}
// get file save time
Poco::File pfile(fname);
Poco::DateTime lastModified = pfile.getLastModified();
std::string wtime(
Poco::DateTimeFormatter::format(lastModified, "%Y-%m-%dT%H:%M:%S"));
str_metadata.insert(std::make_pair("file_save_time", wtime));
// get file basename
Poco::Path p(fname);
str_metadata.insert(std::make_pair("run_number", p.getBaseName()));
// parse metadata
while (getline(file, line)) {
n = line.find("Lambda");
if (n != std::string::npos) {
boost::regex re("[\\s]+");
boost::sregex_token_iterator it(s.begin(), s.end(), re, -1);
boost::sregex_token_iterator reg_end;
getline(file, line);
std::string s2 = line.substr(2);
boost::sregex_token_iterator it2(s2.begin(), s2.end(), re, -1);
for (; (it != reg_end) && (it2 != reg_end); ++it) {
std::string token(it->str());
if (token.find_first_not_of(' ') == std::string::npos) {
++it2;
continue;
if (token == "Mono") {
str_metadata.insert(std::make_pair(token, it2->str()));
} else {
num_metadata.insert(std::make_pair(token, std::stod(it2->str())));
// parse start and stop time
n = line.find("start");
if (n != std::string::npos) {
str_metadata.insert(std::make_pair("start_time", parseTime(line)));
getline(file, line);
str_metadata.insert(std::make_pair("stop_time", parseTime(line)));
getline(file, line);
}
if (boost::regex_search(line, match, reg1) && match.size() > 2) {
str_metadata.insert(std::make_pair(match.str(1), match.str(2)));
}
if (boost::regex_search(line, match, reg2) && match.size() > 2) {
s = match.str(1);
s.erase(std::find_if_not(s.rbegin(), s.rend(), ::isspace).base(),
s.end());
num_metadata.insert(std::make_pair(s, std::stod(match.str(3))));
n = line.find("DATA");
if (n != std::string::npos) {
break;
}
}
std::map<std::string, double>::const_iterator m =
num_metadata.lower_bound("TOF");
g_log.debug() << "TOF Channels number: " << m->second << std::endl;
std::map<std::string, double>::const_iterator w =
num_metadata.lower_bound("Time");
g_log.debug() << "Channel width: " << w->second << std::endl;
ExpData ds;
ds.deterota = num_metadata["DeteRota"];
ds.huber = num_metadata["Huber"];
ds.wavelength = 10.0 * num_metadata["Lambda[nm]"];
ds.norm = num_metadata[m_normtype];
ds.chwidth = w->second;
ds.nchannels = static_cast<size_t>(std::ceil(m->second));
// read data array
getline(file, line);
std::list<std::string> columns;
while (getline(file, line)) {
boost::trim(line);
const int cols = splitIntoColumns(columns, line);
if (cols > 0) {
ds.detID.push_back(std::stoi(columns.front()));
columns.pop_front();
std::vector<double> signal;
std::transform(columns.begin(), columns.end(), std::back_inserter(signal),
[](const std::string &s) { return std::stod(s); });
ds.signal.push_back(signal);
}
}
// DNS PA detector bank has only 24 detectors
ds.detID.resize(24);
ds.signal.resize(24);
m_data.push_back(ds);
}
} // namespace MDAlgorithms
} // namespace Mantid