Skip to content
Snippets Groups Projects
LoadDNSSCD.cpp 22.2 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
#include <regex>
#include <map>
#include <iterator>
#include <iomanip>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/regex.hpp>
#include <Poco/DateTimeFormat.h>
#include <Poco/DateTimeFormatter.h>
#include <Poco/DirectoryIterator.h>
#include <Poco/Path.h>
#include <Poco/File.h>
#include "MantidMDAlgorithms/LoadDNSSCD.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/MultipleFileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/ArrayLengthValidator.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/VectorHelper.h"
#include "MantidDataObjects/MDEventFactory.h"
#include "MantidAPI/ExperimentInfo.h"
#include "MantidAPI/Run.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidGeometry/Crystal/IndexingUtils.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidGeometry/MDGeometry/HKL.h"
#include "MantidKernel/UnitLabelTypes.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidAPI/WorkspaceFactory.h"

#include "MantidMDAlgorithms/MDWSDescription.h"
#include "MantidMDAlgorithms/MDWSTransform.h"
#include "MantidDataObjects/MDBoxBase.h"
#include "MantidDataObjects/MDEventInserter.h"


//========================
// helper functions
namespace {
void eraseSubStr(std::string & str, const std::string & toErase) {
        // Search for the substring in string
        size_t pos = str.find(toErase);
        if (pos != std::string::npos) {
                // If found then erase it from string
                str.erase(pos, toErase.length());
        }
}

std::string parseTime(std::string &str){
    // remove unnecessary symbols
    eraseSubStr(str, "#");
    eraseSubStr(str, "start");
    eraseSubStr(str, "stopped");
    eraseSubStr(str, "at");
    auto it =  std::find_if(str.begin() , str.end() ,
                            [](char ch){ return !std::isspace<char>(ch , std::locale::classic()) ; } );
    str.erase(str.begin(), it);
    using namespace boost::posix_time;
    // try to parse as a posix time
    try{
        auto time = time_from_string(str);
        return to_iso_extended_string(time);
    } catch (std::exception &) {
        // if time is not in posix format
        // change all sindle-digit days to 0d (otherwise get_time does not parse)
        boost::regex expr("\\s+([0-9]\\s+)");
        std::string fmt{" 0\\1"};
        str = boost::regex_replace(str, expr, fmt);
        std::istringstream ss(str);
        std::tm t = {};
        ss >> std::get_time(&t, "%a %b %d %H:%M:%S %Y");
        std::string result("");
        if (!ss.fail()) {
            auto time = ptime_from_tm(t);
            return to_iso_extended_string(time);
        }

        return result;
    }
}


} // anonymous namespace
//============================

using namespace Mantid::Kernel;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Geometry;

namespace Mantid {
namespace MDAlgorithms {

DECLARE_FILELOADER_ALGORITHM(LoadDNSSCD)

//----------------------------------------------------------------------------------------------
/** Constructor
*/
LoadDNSSCD::LoadDNSSCD() : m_nDims(3){}

/**
* Return the confidence with with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadDNSSCD::confidence(Kernel::FileDescriptor &descriptor) const {
  // DNS data acquisition writes ascii files with .d_dat extension
  int confidence(0);
  if ((descriptor.extension() == ".d_dat") && descriptor.isAscii()) {
    confidence = 80;
  }
  return confidence;
}

//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
 */
void LoadDNSSCD::init() {
  std::vector<std::string> exts(1, ".d_dat");
  declareProperty(Kernel::make_unique<MultipleFileProperty>("Filenames", exts),
                  "Select one or more DNS SCD .d_dat files to load."
                  "Files must be measured at the same conditions.");

  declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
                      "OutputWorkspace", "", Direction::Output),
                  "An output MDEventWorkspace.");

  declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
                        "NormalizationWorkspace", "", Direction::Output),
                    "An output normalization MDEventWorkspace.");

  const std::vector<std::string> normOptions = {"monitor", "time"};
  declareProperty("Normalization", "monitor",
                   boost::make_shared<StringListValidator>(normOptions),
                   "Algorithm will create a separate normalization workspace. "
                   "Choose whether it should contain monitor counts or time.");

  auto mustBePositive = boost::make_shared<BoundedValidator<double>>();
  mustBePositive->setLower(0.0);
  auto reasonableAngle = boost::make_shared<BoundedValidator<double>>();
  reasonableAngle->setLower(5.0);
  reasonableAngle->setUpper(175.0);
  // clang-format off
  auto mustBe3D = boost::make_shared<ArrayLengthValidator<double> >(3);
  auto mustBe2D = boost::make_shared<ArrayLengthValidator<double> >(2);
  // clang-format on
  std::vector<double> u0(3, 0), v0(3, 0);
  u0[0] = 1.;
  u0[1] = 1.;
  v0[2] = 1.;

  declareProperty(make_unique<PropertyWithValue<double>>(
                             "a", 1.0, mustBePositive, Direction::Input),
                         "Lattice parameter a in Angstrom");
  declareProperty(make_unique<PropertyWithValue<double>>(
                             "b", 1.0, mustBePositive, Direction::Input),
                         "Lattice parameter b in Angstrom");
  declareProperty(make_unique<PropertyWithValue<double>>(
                             "c", 1.0, mustBePositive, Direction::Input),
                         "Lattice parameter c in Angstrom");
  declareProperty(make_unique<PropertyWithValue<double>>(
                             "alpha", 90.0, reasonableAngle, Direction::Input),
                         "Angle between b and c in degrees");
  declareProperty(make_unique<PropertyWithValue<double>>(
                             "beta", 90.0, reasonableAngle, Direction::Input),
                         "Angle between a and c in degrees");
  declareProperty(make_unique<PropertyWithValue<double>>(
                             "gamma", 90.0, reasonableAngle, Direction::Input),
                         "Angle between a and b in degrees");

  declareProperty(make_unique<PropertyWithValue<double>>(
                               "OmegaOffset", 0.0, boost::make_shared<BoundedValidator<double>>(),
                      Direction::Input),
                  "Angle in degrees between (hkl1) and the beam axis"
                  "if the goniometer is at zero.");
  declareProperty(
       Kernel::make_unique<ArrayProperty<double>>("hkl1", u0, mustBe3D),
       "Indices of the vector in reciprocal space in the horizontal plane at angle Omegaoffset,"
       "if the goniometer is at zero (considered absolute true in UB calculation)");

  declareProperty(
       Kernel::make_unique<ArrayProperty<double>>("hkl2", v0, mustBe3D),
       "Indices of a second vector in reciprocal space in the horizontal plane not parallel to hkl1");

  std::vector<double> ttl(2, 0);
  ttl[1] = 180.0;
  declareProperty(
       Kernel::make_unique<ArrayProperty<double>>("2ThetaLimits", ttl, mustBe2D),
       "Range (min, max) of scattering angles (2theta, degrees) to consider."
       "Everything out of this range will be cut.");

  declareProperty(
        Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
            "LoadHuberFrom", "", Direction::Input, PropertyMode::Optional),
        "A table workspace to load a list of raw sample rotation angles."
        "Huber angles given in the data files will be ignored.");

  declareProperty(
         Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
             "SaveHuberTo", "", Direction::Output, PropertyMode::Optional),
         "A workspace name to save a list of raw sample rotation angles.");
}

//----------------------------------------------------------------------------------------------
/** Read Huber angles from a given table workspace.
 */

void LoadDNSSCD::loadHuber(ITableWorkspace_sptr tws) {
    ColumnVector<double> huber = tws->getVector("Huber(degrees)");
    // set huber[0] for each run in m_data
    for(auto &ds : m_data) {
        ds.huber = huber[0];
    }
    // dublicate runs for each huber in the table
    std::vector<ExpData> old(m_data);
    for (size_t i = 1; i < huber.size(); ++i){
        for(auto &ds : old) {
            ds.huber = huber[i];
            m_data.push_back(ds);
        }
    }
}

//----------------------------------------------------------------------------------------------
/** Save Huber angles to a given table workspace.
 */
Mantid::API::ITableWorkspace_sptr LoadDNSSCD::saveHuber() {
    std::vector<double> huber;
    for(auto ds : m_data)
        huber.push_back(ds.huber);
    // remove dublicates
    std::sort(huber.begin(), huber.end());
    huber.erase(unique(huber.begin(), huber.end()), huber.end());

    Mantid::API::ITableWorkspace_sptr huberWS = WorkspaceFactory::Instance().createTable("TableWorkspace");
    huberWS->addColumn("double", "Huber(degrees)");
    for(size_t i=0; i< huber.size(); i++) {
        huberWS->appendRow();
        huberWS->cell<double>(i, 0) = huber[i];
    }
    return huberWS;
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
 */
void LoadDNSSCD::exec() {
    MultipleFileProperty *multiFileProp =
            dynamic_cast<MultipleFileProperty *>(getPointerToProperty("Filenames"));
    if (!multiFileProp) {
        throw std::logic_error(
                    "Filenames property must have MultipleFileProperty type.");
    }
    std::vector<std::string> filenames = VectorHelper::flattenVector(multiFileProp->operator()());
    if (filenames.empty())
        throw std::invalid_argument("Must specify at least one filename.");

    // set type of normalization
    std::string normtype = getProperty("Normalization");
    if (normtype=="monitor") {
        m_normtype = "Monitor";
        m_normfactor = 1.0;
    } else {
        m_normtype = "Timer";
        m_normfactor = 0.0;    // error for time should be 0
    }

    g_log.notice() << "The normalization workspace will contain " << m_normtype << ".\n";

    ExperimentInfo_sptr expinfo = boost::make_shared<ExperimentInfo>();
    API::Run &run = expinfo->mutableRun();
    for (auto fname : filenames) {
        std::map<std::string, std::string> str_metadata;
        std::map<std::string, double> num_metadata;
        try {
          read_data(fname, str_metadata, num_metadata);
          //if no stop_time, take file_save_time
          std::string time(str_metadata["stop_time"]);
          if (time.empty()) {
              g_log.warning() << "stop_time is empty! File save time will be used instead." << std::endl;
              time = str_metadata["file_save_time"];
          }
          updateProperties<std::string>(run, str_metadata, time);
          updateProperties<double>(run, num_metadata, time);
        } catch(...) {
            g_log.warning() << "Failed to read file " << fname;
            g_log.warning() << ". This file will be ignored. " << std::endl;
        }
    }

    if (m_data.empty())
        throw std::runtime_error("No valid DNS files have been provided. Nothing to load.");

    m_OutWS = MDEventFactory::CreateMDWorkspace(m_nDims, "MDEvent");

    m_OutWS->addExperimentInfo(expinfo);

    // load huber angles from a table workspace if given
    ITableWorkspace_sptr huberWS = getProperty("LoadHuberFrom");
    if(huberWS){
        g_log.notice() << "Huber angles will be loaded from " << huberWS->getName() << std::endl;
        loadHuber(huberWS);
    }

    // get wavelength
    TimeSeriesProperty<double> *wlprop = dynamic_cast<TimeSeriesProperty<double> *>(expinfo->run().getProperty("Lambda"));
    // assume, that lambda is in nm
    double wavelength = wlprop->minValue()*10.0;        // needed to estimate extents => minValue
    run.addProperty("wavelength", wavelength);
    run.getProperty("wavelength")->setUnits("Angstrom");

    fillOutputWorkspace(wavelength);

    std::string saveHuberTableWS = getProperty("SaveHuberTo");
    if (!saveHuberTableWS.empty()) {
        Mantid::API::ITableWorkspace_sptr huber_table = saveHuber();
        setProperty("SaveHuberTo", huber_table);
    }
    setProperty("OutputWorkspace", m_OutWS);
}

//----------------------------------------------------------------------------------------------

template <class T> void LoadDNSSCD::updateProperties(API::Run &run, std::map<std::string, T> &metadata, std::string time) {
    typename std::map<std::string, T>::iterator it = metadata.begin();
    while(it != metadata.end()) {
        TimeSeriesProperty<T> *timeSeries(nullptr);
        std::string name(it->first);
        std::string units;
        std::regex reg ("([a-zA-Z-_]+)\\[(.*)]");
        std::smatch match;
        if (std::regex_search(name, match, reg) && match.size() > 2) {
            std::string new_name(match.str(1));
            units.assign(match.str(2));
            name = new_name;
        }
        if (run.hasProperty(name)) {
            timeSeries =
                    dynamic_cast<TimeSeriesProperty<T> *>(run.getLogData(name));
            if (!timeSeries)
                throw std::invalid_argument(
                        "Log '" + name +
                        "' already exists but the values are a different type.");
        } else {
            timeSeries = new TimeSeriesProperty<T>(name);
            if (!units.empty())
                timeSeries->setUnits(units);
            run.addProperty(timeSeries);
        }
        timeSeries->addValue(time, it->second);
        it++;
    }
}
//----------------------------------------------------------------------------------------------
/// Create output workspace
void LoadDNSSCD::fillOutputWorkspace(double wavelength) {

  // dimensions
  std::vector<std::string> vec_ID(3);
  vec_ID[0] = "H";
  vec_ID[1] = "K";
  vec_ID[2] = "L";

  std::vector<std::string> dimensionNames(3);
  dimensionNames[0] = "H";
  dimensionNames[1] = "K";
  dimensionNames[2] = "L";

  Mantid::Kernel::SpecialCoordinateSystem coordinateSystem =
      Mantid::Kernel::HKL;

  double a, b, c, alpha, beta, gamma;
  a = getProperty("a");
  b = getProperty("b");
  c = getProperty("c");
  alpha = getProperty("alpha");
  beta = getProperty("beta");
  gamma = getProperty("gamma");
  std::vector<double> u = getProperty("hkl1");
  std::vector<double> v = getProperty("hkl2");

  // estimate extents
  double qmax = 4.0*M_PI/wavelength;
  std::vector<double> extentMins = {-qmax*a, -qmax*b, -qmax*c};
  std::vector<double> extentMaxs = {qmax*a, qmax*b, qmax*c};

  // Get MDFrame of HKL type with RLU
  auto unitFactory = makeMDUnitFactoryChain();
  auto unit = unitFactory->create(Units::Symbol::RLU.ascii());
  Mantid::Geometry::HKL frame(unit);

  // add dimensions
  for (size_t i = 0; i < m_nDims; ++i) {
    std::string id = vec_ID[i];
    std::string name = dimensionNames[i];
    m_OutWS->addDimension(
        Geometry::MDHistoDimension_sptr(new Geometry::MDHistoDimension(
            id, name, frame, static_cast<coord_t>(extentMins[i]),
            static_cast<coord_t>(extentMaxs[i]), 5)));
  }

  // Set coordinate system
  m_OutWS->setCoordinateSystem(coordinateSystem);

  // calculate RUB matrix
  Mantid::Geometry::OrientedLattice o;
  o = Mantid::Geometry::OrientedLattice(a, b, c, alpha, beta, gamma);
  o.setUFromVectors(Mantid::Kernel::V3D(u[0], u[1], u[2]),
          Mantid::Kernel::V3D(v[0], v[1], v[2]));

  double omega_offset = getProperty("OmegaOffset");
  omega_offset *= -1.0*deg2rad;
  DblMatrix rotm(3,3);
  rotm[0][0] = std::cos(omega_offset);
  rotm[0][1] = 0.0;
  rotm[0][2] = std::sin(omega_offset);
  rotm[1][0] = 0.0;
  rotm[1][1] = 1.0;
  rotm[1][2] = 0.0;
  rotm[2][0] = -std::sin(omega_offset);
  rotm[2][1] = 0.0;
  rotm[2][2] = std::cos(omega_offset);

  DblMatrix ub(o.getUB());
  ub = rotm * ub;
  o.setUB(ub);
  DblMatrix ub_inv(ub);
  // invert the UB matrix
  ub_inv.Invert();

  // Creates a new instance of the MDEventInserter to output workspace
  MDEventWorkspace<MDEvent<3>, 3>::sptr mdws_mdevt_3 =
      boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<3>, 3>>(m_OutWS);
  MDEventInserter<MDEventWorkspace<MDEvent<3>, 3>::sptr> inserter(mdws_mdevt_3);

  // create a normalization workspace
  IMDEventWorkspace_sptr normWS = m_OutWS->clone();

  // Creates a new instance of the MDEventInserter to norm workspace
  MDEventWorkspace<MDEvent<3>, 3>::sptr normws_mdevt_3 =
          boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<3>, 3>>(normWS);
  MDEventInserter<MDEventWorkspace<MDEvent<3>, 3>::sptr> norm_inserter(normws_mdevt_3);

  // scattering angle limits
  std::vector<double> tth_limits = getProperty("2ThetaLimits");
  double theta_min = tth_limits[0]*deg2rad/2.0;
  double theta_max = tth_limits[1]*deg2rad/2.0;

  // Go though each element of m_data to convert to MDEvent
  for (ExpData ds: m_data) {
      uint16_t runnumber = 1;
      signal_t norm_signal(ds.norm);
      signal_t norm_error = std::sqrt(m_normfactor*norm_signal);
      double k = 2.0/ds.wavelength;
      for (size_t i=0; i< ds.detID.size(); i++){
          signal_t signal(ds.signal[i]);
          signal_t error = std::sqrt(signal);
          detid_t detid(ds.detID[i]);
          double theta = 0.5*(ds.detID[i]*5.0 - ds.deterota)*deg2rad;
          if ((theta > theta_min) && (theta < theta_max)) {
            double omega = (ds.huber - ds.deterota)*deg2rad - theta;
            V3D uphi (-cos(omega), 0, -sin(omega));
            V3D hphi = uphi*k*sin(theta);
            V3D hkl = ub_inv*hphi;
            std::vector<Mantid::coord_t> millerindex(3);
            millerindex[0] = static_cast<float>(hkl.X());
            millerindex[1] = static_cast<float>(hkl.Y());
            millerindex[2] = static_cast<float>(hkl.Z());
            inserter.insertMDEvent(
                      static_cast<float>(signal), static_cast<float>(error * error),
                      static_cast<uint16_t>(runnumber), detid, millerindex.data());

            norm_inserter.insertMDEvent(
                      static_cast<float>(norm_signal), static_cast<float>(norm_error * norm_error),
                      static_cast<uint16_t>(runnumber), detid, millerindex.data());
          }
          
      }

  }
  setProperty("NormalizationWorkspace", normWS);

}


void LoadDNSSCD::read_data(const std::string fname,
                           std::map<std::string, std::string> &str_metadata,
                           std::map<std::string, double> &num_metadata) {
    std::ifstream file (fname);
    std::string line;
    std::string::size_type n;
    std::string s;
    std::regex reg1("^#\\s+(\\w+):(.*)");
    std::regex reg2("^#\\s+((\\w+\\s)+)\\s+(-?\\d+(,\\d+)*(\\.\\d+(e\\d+)?)?)");
    std::smatch match;
    getline(file, line);
    n = line.find("DNS");
    if (n == std::string::npos) {
        throw std::invalid_argument("Not a DNS file");
    }
    // get file save time
    Poco::File pfile(fname);
    Poco::DateTime lastModified = pfile.getLastModified();
    std::string wtime(Poco::DateTimeFormatter::format(lastModified, "%Y-%m-%dT%H:%M:%S"));
    str_metadata.insert(std::make_pair("file_save_time", wtime));

    // get file basename
    Poco::Path p(fname);
    str_metadata.insert(std::make_pair("run_number", p.getBaseName()));

    // parse metadata
    while(getline(file, line)){
        n = line.find("Lambda");
        if (n != std::string::npos) {
            std::regex re("[\\s]+");
            s = line.substr(5);
            std::sregex_token_iterator it(s.begin(), s.end(), re, -1);
            std::sregex_token_iterator reg_end;
            getline(file, line);
            std::string s2 = line.substr(2);
            std::sregex_token_iterator it2(s2.begin(), s2.end(), re, -1);
            for (; (it != reg_end) && (it2 != reg_end); ++it) {
                std::string token (it->str());
                if (token.find_first_not_of(' ') == std::string::npos) {
                    ++it2;
                    continue;
                }
                if (token == "Mono") {
                    str_metadata.insert(std::make_pair(token, it2->str()));
                } else {
                    num_metadata.insert(std::make_pair(token, std::stod(it2->str())));
                }
                ++it2;
            }
        }
        // parse start and stop time
        n = line.find("start");
        if (n != std::string::npos) {
            str_metadata.insert(std::make_pair("start_time", parseTime(line)));
            getline(file, line);
            str_metadata.insert(std::make_pair("stop_time", parseTime(line)));
            getline(file, line);
        }
        if (std::regex_search(line, match, reg1) && match.size() > 2) {
            str_metadata.insert(std::make_pair(match.str(1), match.str(2)));
        }
        if (std::regex_search(line, match, reg2) && match.size() > 2) {
            s = match.str(1);
            s.erase(std::find_if_not(s.rbegin(), s.rend(), ::isspace).base(), s.end());
            num_metadata.insert(std::make_pair(s, std::stod(match.str(3))));
        }
        n = line.find("DATA");
        if (n != std::string::npos) {
            break;
        }
    }

    // the algorithm does not work with TOF data for the moment
    std::map<std::string,double>::const_iterator m = num_metadata.lower_bound("TOF");
    g_log.debug() << "TOF Channels number: " << m->second << std::endl;
    if (m->second != 1)
        throw std::runtime_error("Algorithm does not support TOF data. TOF Channels number must be 1.");

    ExpData ds;
    ds.deterota = num_metadata["DeteRota"];
    ds.huber = num_metadata["Huber"];
    ds.wavelength = 10.0*num_metadata["Lambda[nm]"];
    ds.norm = num_metadata[m_normtype];

    // read data array
    getline(file, line);
    int d;
    double x;
    while(file){
        file >> d >> x;
        ds.detID.push_back(d);
        ds.signal.push_back(x);
    }
    // DNS PA detector bank has only 24 detectors
    ds.detID.resize(24);
    ds.signal.resize(24);
    m_data.push_back(ds);
}

} // namespace MDAlgorithms
} // namespace Mantid