Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include <regex>
#include <map>
#include <iterator>
#include <iomanip>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/regex.hpp>
#include <Poco/DateTimeFormat.h>
#include <Poco/DateTimeFormatter.h>
#include <Poco/DirectoryIterator.h>
#include <Poco/Path.h>
#include <Poco/File.h>
#include "MantidMDAlgorithms/LoadDNSSCD.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/MultipleFileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/ArrayLengthValidator.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidKernel/VectorHelper.h"
#include "MantidDataObjects/MDEventFactory.h"
#include "MantidAPI/ExperimentInfo.h"
#include "MantidAPI/Run.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidGeometry/Crystal/IndexingUtils.h"
#include "MantidGeometry/Crystal/OrientedLattice.h"
#include "MantidGeometry/MDGeometry/HKL.h"
#include "MantidKernel/UnitLabelTypes.h"
#include "MantidAPI/ITableWorkspace.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidMDAlgorithms/MDWSDescription.h"
#include "MantidMDAlgorithms/MDWSTransform.h"
#include "MantidDataObjects/MDBoxBase.h"
#include "MantidDataObjects/MDEventInserter.h"
//========================
// helper functions
namespace {
void eraseSubStr(std::string &str, const std::string &toErase) {
// Search for the substring in string
size_t pos = str.find(toErase);
if (pos != std::string::npos) {
// If found then erase it from string
str.erase(pos, toErase.length());
}
std::string parseTime(std::string &str) {
// remove unnecessary symbols
eraseSubStr(str, "#");
eraseSubStr(str, "start");
eraseSubStr(str, "stopped");
eraseSubStr(str, "at");
auto it = std::find_if(str.begin(), str.end(), [](char ch) {
return !std::isspace<char>(ch, std::locale::classic());
});
str.erase(str.begin(), it);
using namespace boost::posix_time;
// try to parse as a posix time
try {
auto time = time_from_string(str);
return to_iso_extended_string(time);
} catch (std::exception &) {
// if time is not in posix format
// change all sindle-digit days to 0d (otherwise get_time does not parse)
boost::regex expr("\\s+([0-9]\\s+)");
std::string fmt{" 0\\1"};
str = boost::regex_replace(str, expr, fmt);
std::istringstream ss(str);
std::tm t = {};
ss >> std::get_time(&t, "%a %b %d %H:%M:%S %Y");
std::string result("");
if (!ss.fail()) {
auto time = ptime_from_tm(t);
return to_iso_extended_string(time);
} // anonymous namespace
//============================
using namespace Mantid::Kernel;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Geometry;
namespace Mantid {
namespace MDAlgorithms {
DECLARE_FILELOADER_ALGORITHM(LoadDNSSCD)
//----------------------------------------------------------------------------------------------
/** Constructor
*/
LoadDNSSCD::LoadDNSSCD() : m_nDims(3) {}
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/**
* Return the confidence with with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadDNSSCD::confidence(Kernel::FileDescriptor &descriptor) const {
// DNS data acquisition writes ascii files with .d_dat extension
int confidence(0);
if ((descriptor.extension() == ".d_dat") && descriptor.isAscii()) {
confidence = 80;
}
return confidence;
}
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm's properties.
*/
void LoadDNSSCD::init() {
std::vector<std::string> exts(1, ".d_dat");
declareProperty(Kernel::make_unique<MultipleFileProperty>("Filenames", exts),
"Select one or more DNS SCD .d_dat files to load."
"Files must be measured at the same conditions.");
declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"An output MDEventWorkspace.");
declareProperty(make_unique<WorkspaceProperty<IMDEventWorkspace>>(
"NormalizationWorkspace", "", Direction::Output),
"An output normalization MDEventWorkspace.");
const std::vector<std::string> normOptions = {"monitor", "time"};
declareProperty("Normalization", "monitor",
boost::make_shared<StringListValidator>(normOptions),
"Algorithm will create a separate normalization workspace. "
"Choose whether it should contain monitor counts or time.");
auto mustBePositive = boost::make_shared<BoundedValidator<double>>();
mustBePositive->setLower(0.0);
auto reasonableAngle = boost::make_shared<BoundedValidator<double>>();
reasonableAngle->setLower(5.0);
reasonableAngle->setUpper(175.0);
// clang-format off
auto mustBe3D = boost::make_shared<ArrayLengthValidator<double> >(3);
auto mustBe2D = boost::make_shared<ArrayLengthValidator<double> >(2);
// clang-format on
std::vector<double> u0(3, 0), v0(3, 0);
u0[0] = 1.;
u0[1] = 1.;
v0[2] = 1.;
declareProperty(make_unique<PropertyWithValue<double>>(
"a", 1.0, mustBePositive, Direction::Input),
"Lattice parameter a in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"b", 1.0, mustBePositive, Direction::Input),
"Lattice parameter b in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"c", 1.0, mustBePositive, Direction::Input),
"Lattice parameter c in Angstrom");
declareProperty(make_unique<PropertyWithValue<double>>(
"alpha", 90.0, reasonableAngle, Direction::Input),
"Angle between b and c in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"beta", 90.0, reasonableAngle, Direction::Input),
"Angle between a and c in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"gamma", 90.0, reasonableAngle, Direction::Input),
"Angle between a and b in degrees");
declareProperty(make_unique<PropertyWithValue<double>>(
"OmegaOffset", 0.0,
boost::make_shared<BoundedValidator<double>>(),
Direction::Input),
"Angle in degrees between (hkl1) and the beam axis"
"if the goniometer is at zero.");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("hkl1", u0, mustBe3D),
"Indices of the vector in reciprocal space in the horizontal plane at "
"angle Omegaoffset, "
"if the goniometer is at zero.");
Kernel::make_unique<ArrayProperty<double>>("hkl2", v0, mustBe3D),
"Indices of a second vector in reciprocal space in the horizontal plane "
"not parallel to hkl1");
std::vector<double> ttl(2, 0);
ttl[1] = 180.0;
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("TwoThetaLimits", ttl,
mustBe2D),
"Range (min, max) of scattering angles (2theta, in degrees) to consider. "
"Everything out of this range will be cut.");
Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"LoadHuberFrom", "", Direction::Input, PropertyMode::Optional),
"A table workspace to load a list of raw sample rotation angles. "
"Huber angles given in the data files will be ignored.");
Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"SaveHuberTo", "", Direction::Output, PropertyMode::Optional),
"A workspace name to save a list of raw sample rotation angles.");
}
//----------------------------------------------------------------------------------------------
/** Read Huber angles from a given table workspace.
*/
void LoadDNSSCD::loadHuber(ITableWorkspace_sptr tws) {
ColumnVector<double> huber = tws->getVector("Huber(degrees)");
// set huber[0] for each run in m_data
for (auto &ds : m_data) {
ds.huber = huber[0];
}
// dublicate runs for each huber in the table
std::vector<ExpData> old(m_data);
for (size_t i = 1; i < huber.size(); ++i) {
for (auto &ds : old) {
ds.huber = huber[i];
m_data.push_back(ds);
}
//----------------------------------------------------------------------------------------------
/** Save Huber angles to a given table workspace.
*/
Mantid::API::ITableWorkspace_sptr LoadDNSSCD::saveHuber() {
std::vector<double> huber;
for (auto ds : m_data)
huber.push_back(ds.huber);
// remove dublicates
std::sort(huber.begin(), huber.end());
huber.erase(unique(huber.begin(), huber.end()), huber.end());
Mantid::API::ITableWorkspace_sptr huberWS =
WorkspaceFactory::Instance().createTable("TableWorkspace");
huberWS->addColumn("double", "Huber(degrees)");
for (size_t i = 0; i < huber.size(); i++) {
huberWS->appendRow();
huberWS->cell<double>(i, 0) = huber[i];
}
return huberWS;
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void LoadDNSSCD::exec() {
MultipleFileProperty *multiFileProp =
dynamic_cast<MultipleFileProperty *>(getPointerToProperty("Filenames"));
if (!multiFileProp) {
throw std::logic_error(
"Filenames property must have MultipleFileProperty type.");
}
std::vector<std::string> filenames =
VectorHelper::flattenVector(multiFileProp->operator()());
if (filenames.empty())
throw std::invalid_argument("Must specify at least one filename.");
// set type of normalization
std::string normtype = getProperty("Normalization");
if (normtype == "monitor") {
m_normtype = "Monitor";
m_normfactor = 1.0;
} else {
m_normtype = "Timer";
m_normfactor = 0.0; // error for time should be 0
}
g_log.notice() << "The normalization workspace will contain " << m_normtype
<< ".\n";
ExperimentInfo_sptr expinfo = boost::make_shared<ExperimentInfo>();
API::Run &run = expinfo->mutableRun();
for (auto fname : filenames) {
std::map<std::string, std::string> str_metadata;
std::map<std::string, double> num_metadata;
try {
read_data(fname, str_metadata, num_metadata);
// if no stop_time, take file_save_time
std::string time(str_metadata["stop_time"]);
if (time.empty()) {
g_log.warning()
<< "stop_time is empty! File save time will be used instead."
<< std::endl;
time = str_metadata["file_save_time"];
}
updateProperties<std::string>(run, str_metadata, time);
updateProperties<double>(run, num_metadata, time);
} catch (...) {
g_log.warning() << "Failed to read file " << fname;
g_log.warning() << ". This file will be ignored. " << std::endl;
if (m_data.empty())
throw std::runtime_error(
"No valid DNS files have been provided. Nothing to load.");
m_OutWS = MDEventFactory::CreateMDWorkspace(m_nDims, "MDEvent");
m_OutWS->addExperimentInfo(expinfo);
// load huber angles from a table workspace if given
ITableWorkspace_sptr huberWS = getProperty("LoadHuberFrom");
if (huberWS) {
g_log.notice() << "Huber angles will be loaded from " << huberWS->getName()
<< std::endl;
loadHuber(huberWS);
}
// get wavelength
TimeSeriesProperty<double> *wlprop =
dynamic_cast<TimeSeriesProperty<double> *>(
expinfo->run().getProperty("Lambda"));
// assume, that lambda is in nm
double wavelength =
wlprop->minValue() * 10.0; // needed to estimate extents => minValue
run.addProperty("wavelength", wavelength);
run.getProperty("wavelength")->setUnits("Angstrom");
fillOutputWorkspace(wavelength);
std::string saveHuberTableWS = getProperty("SaveHuberTo");
if (!saveHuberTableWS.empty()) {
Mantid::API::ITableWorkspace_sptr huber_table = saveHuber();
setProperty("SaveHuberTo", huber_table);
}
setProperty("OutputWorkspace", m_OutWS);
}
//----------------------------------------------------------------------------------------------
template <class T>
void LoadDNSSCD::updateProperties(API::Run &run,
std::map<std::string, T> &metadata,
std::string time) {
typename std::map<std::string, T>::iterator it = metadata.begin();
while (it != metadata.end()) {
TimeSeriesProperty<T> *timeSeries(nullptr);
std::string name(it->first);
std::string units;
std::regex reg("([a-zA-Z-_]+)\\[(.*)]");
std::smatch match;
if (std::regex_search(name, match, reg) && match.size() > 2) {
std::string new_name(match.str(1));
units.assign(match.str(2));
name = new_name;
if (run.hasProperty(name)) {
timeSeries = dynamic_cast<TimeSeriesProperty<T> *>(run.getLogData(name));
if (!timeSeries)
throw std::invalid_argument(
"Log '" + name +
"' already exists but the values are a different type.");
} else {
timeSeries = new TimeSeriesProperty<T>(name);
if (!units.empty())
timeSeries->setUnits(units);
run.addProperty(timeSeries);
}
timeSeries->addValue(time, it->second);
it++;
}
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
}
//----------------------------------------------------------------------------------------------
/// Create output workspace
void LoadDNSSCD::fillOutputWorkspace(double wavelength) {
// dimensions
std::vector<std::string> vec_ID(3);
vec_ID[0] = "H";
vec_ID[1] = "K";
vec_ID[2] = "L";
std::vector<std::string> dimensionNames(3);
dimensionNames[0] = "H";
dimensionNames[1] = "K";
dimensionNames[2] = "L";
Mantid::Kernel::SpecialCoordinateSystem coordinateSystem =
Mantid::Kernel::HKL;
double a, b, c, alpha, beta, gamma;
a = getProperty("a");
b = getProperty("b");
c = getProperty("c");
alpha = getProperty("alpha");
beta = getProperty("beta");
gamma = getProperty("gamma");
std::vector<double> u = getProperty("hkl1");
std::vector<double> v = getProperty("hkl2");
// estimate extents
double qmax = 4.0 * M_PI / wavelength;
std::vector<double> extentMins = {-qmax * a, -qmax * b, -qmax * c};
std::vector<double> extentMaxs = {qmax * a, qmax * b, qmax * c};
// Get MDFrame of HKL type with RLU
auto unitFactory = makeMDUnitFactoryChain();
auto unit = unitFactory->create(Units::Symbol::RLU.ascii());
Mantid::Geometry::HKL frame(unit);
// add dimensions
for (size_t i = 0; i < m_nDims; ++i) {
std::string id = vec_ID[i];
std::string name = dimensionNames[i];
m_OutWS->addDimension(
Geometry::MDHistoDimension_sptr(new Geometry::MDHistoDimension(
id, name, frame, static_cast<coord_t>(extentMins[i]),
static_cast<coord_t>(extentMaxs[i]), 5)));
}
// Set coordinate system
m_OutWS->setCoordinateSystem(coordinateSystem);
// calculate RUB matrix
Mantid::Geometry::OrientedLattice o;
o = Mantid::Geometry::OrientedLattice(a, b, c, alpha, beta, gamma);
o.setUFromVectors(Mantid::Kernel::V3D(u[0], u[1], u[2]),
Mantid::Kernel::V3D(v[0], v[1], v[2]));
double omega_offset = getProperty("OmegaOffset");
omega_offset *= -1.0 * deg2rad;
DblMatrix rotm(3, 3);
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
rotm[0][0] = std::cos(omega_offset);
rotm[0][1] = 0.0;
rotm[0][2] = std::sin(omega_offset);
rotm[1][0] = 0.0;
rotm[1][1] = 1.0;
rotm[1][2] = 0.0;
rotm[2][0] = -std::sin(omega_offset);
rotm[2][1] = 0.0;
rotm[2][2] = std::cos(omega_offset);
DblMatrix ub(o.getUB());
ub = rotm * ub;
o.setUB(ub);
DblMatrix ub_inv(ub);
// invert the UB matrix
ub_inv.Invert();
// Creates a new instance of the MDEventInserter to output workspace
MDEventWorkspace<MDEvent<3>, 3>::sptr mdws_mdevt_3 =
boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<3>, 3>>(m_OutWS);
MDEventInserter<MDEventWorkspace<MDEvent<3>, 3>::sptr> inserter(mdws_mdevt_3);
// create a normalization workspace
IMDEventWorkspace_sptr normWS = m_OutWS->clone();
// Creates a new instance of the MDEventInserter to norm workspace
MDEventWorkspace<MDEvent<3>, 3>::sptr normws_mdevt_3 =
boost::dynamic_pointer_cast<MDEventWorkspace<MDEvent<3>, 3>>(normWS);
MDEventInserter<MDEventWorkspace<MDEvent<3>, 3>::sptr> norm_inserter(
normws_mdevt_3);
// scattering angle limits
std::vector<double> tth_limits = getProperty("TwoThetaLimits");
double theta_min = tth_limits[0] * deg2rad / 2.0;
double theta_max = tth_limits[1] * deg2rad / 2.0;
// Go though each element of m_data to convert to MDEvent
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
for (ExpData ds : m_data) {
uint16_t runnumber = 1;
signal_t norm_signal(ds.norm);
signal_t norm_error = std::sqrt(m_normfactor * norm_signal);
double k = 2.0 / ds.wavelength;
for (size_t i = 0; i < ds.detID.size(); i++) {
signal_t signal(ds.signal[i]);
signal_t error = std::sqrt(signal);
detid_t detid(ds.detID[i]);
double theta = 0.5 * (ds.detID[i] * 5.0 - ds.deterota) * deg2rad;
if ((theta > theta_min) && (theta < theta_max)) {
double omega = (ds.huber - ds.deterota) * deg2rad - theta;
V3D uphi(-cos(omega), 0, -sin(omega));
V3D hphi = uphi * k * sin(theta);
V3D hkl = ub_inv * hphi;
std::vector<Mantid::coord_t> millerindex(3);
millerindex[0] = static_cast<float>(hkl.X());
millerindex[1] = static_cast<float>(hkl.Y());
millerindex[2] = static_cast<float>(hkl.Z());
inserter.insertMDEvent(
static_cast<float>(signal), static_cast<float>(error * error),
static_cast<uint16_t>(runnumber), detid, millerindex.data());
norm_inserter.insertMDEvent(static_cast<float>(norm_signal),
static_cast<float>(norm_error * norm_error),
static_cast<uint16_t>(runnumber), detid,
millerindex.data());
}
setProperty("NormalizationWorkspace", normWS);
}
void LoadDNSSCD::read_data(const std::string fname,
std::map<std::string, std::string> &str_metadata,
std::map<std::string, double> &num_metadata) {
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
std::ifstream file(fname);
std::string line;
std::string::size_type n;
std::string s;
std::regex reg1("^#\\s+(\\w+):(.*)");
std::regex reg2("^#\\s+((\\w+\\s)+)\\s+(-?\\d+(,\\d+)*(\\.\\d+(e\\d+)?)?)");
std::smatch match;
getline(file, line);
n = line.find("DNS");
if (n == std::string::npos) {
throw std::invalid_argument("Not a DNS file");
}
// get file save time
Poco::File pfile(fname);
Poco::DateTime lastModified = pfile.getLastModified();
std::string wtime(
Poco::DateTimeFormatter::format(lastModified, "%Y-%m-%dT%H:%M:%S"));
str_metadata.insert(std::make_pair("file_save_time", wtime));
// get file basename
Poco::Path p(fname);
str_metadata.insert(std::make_pair("run_number", p.getBaseName()));
// parse metadata
while (getline(file, line)) {
n = line.find("Lambda");
if (n != std::string::npos) {
std::regex re("[\\s]+");
s = line.substr(5);
std::sregex_token_iterator it(s.begin(), s.end(), re, -1);
std::sregex_token_iterator reg_end;
getline(file, line);
std::string s2 = line.substr(2);
std::sregex_token_iterator it2(s2.begin(), s2.end(), re, -1);
for (; (it != reg_end) && (it2 != reg_end); ++it) {
std::string token(it->str());
if (token.find_first_not_of(' ') == std::string::npos) {
++it2;
continue;
if (token == "Mono") {
str_metadata.insert(std::make_pair(token, it2->str()));
} else {
num_metadata.insert(std::make_pair(token, std::stod(it2->str())));
// parse start and stop time
n = line.find("start");
if (n != std::string::npos) {
str_metadata.insert(std::make_pair("start_time", parseTime(line)));
getline(file, line);
str_metadata.insert(std::make_pair("stop_time", parseTime(line)));
getline(file, line);
}
if (std::regex_search(line, match, reg1) && match.size() > 2) {
str_metadata.insert(std::make_pair(match.str(1), match.str(2)));
}
if (std::regex_search(line, match, reg2) && match.size() > 2) {
s = match.str(1);
s.erase(std::find_if_not(s.rbegin(), s.rend(), ::isspace).base(),
s.end());
num_metadata.insert(std::make_pair(s, std::stod(match.str(3))));
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
n = line.find("DATA");
if (n != std::string::npos) {
break;
}
}
// the algorithm does not work with TOF data for the moment
std::map<std::string, double>::const_iterator m =
num_metadata.lower_bound("TOF");
g_log.debug() << "TOF Channels number: " << m->second << std::endl;
if (m->second != 1)
throw std::runtime_error(
"Algorithm does not support TOF data. TOF Channels number must be 1.");
ExpData ds;
ds.deterota = num_metadata["DeteRota"];
ds.huber = num_metadata["Huber"];
ds.wavelength = 10.0 * num_metadata["Lambda[nm]"];
ds.norm = num_metadata[m_normtype];
// read data array
getline(file, line);
int d;
double x;
while (file) {
file >> d >> x;
ds.detID.push_back(d);
ds.signal.push_back(x);
}
// DNS PA detector bank has only 24 detectors
ds.detID.resize(24);
ds.signal.resize(24);
m_data.push_back(ds);
}
} // namespace MDAlgorithms
} // namespace Mantid