Newer
Older
from __future__ import (absolute_import, division, print_function)
import mantid.simpleapi as mantid
from isis_powder.abstract_inst import AbstractInst
from isis_powder.polaris_routines import polaris_calib_parser
import isis_powder.common as common
from isis_powder.RunDetails import RunDetails
class Polaris(AbstractInst):
_lower_lambda_range = 0.25
_upper_lambda_range = 2.50
_focus_crop_start = 2 # These are used when calculating binning range
_focus_crop_end = 0.95
_focus_bin_widths = [-0.0050, -0.0010, -0.0010, -0.0010, -0.00050]
_calibration_grouping_names = None
_number_of_banks = 5
def __init__(self, user_name, chopper_on, calibration_dir=None, output_dir=None,
input_file_ext=".raw"):
super(Polaris, self).__init__(user_name=user_name, calibration_dir=calibration_dir,
output_dir=output_dir, default_input_ext=input_file_ext)
self._chopper_on = chopper_on
self._masking_file_name = "VanaPeaks.dat"
# Caches the last dictionary to avoid us having to keep parsing the YAML
self._run_details_last_run_number = None
self._run_details_cached_obj = None
# Abstract implementation
def _get_lambda_range(self):
return self._lower_lambda_range, self._upper_lambda_range
def _get_create_van_tof_binning(self):
return self._create_van_calib_tof_binning
def _get_default_group_names(self):
return self._calibration_grouping_names
def _get_run_details(self, run_number):
if self._run_details_last_run_number == run_number:
return self._run_details_cached_obj
input_run_number_list = common.generate_run_numbers(run_number_string=run_number)
configuration = polaris_calib_parser.get_calibration_dict(run_number=input_run_number_list[0])
cycle = configuration["label"]
calibration_dir = os.path.join(self.calibration_dir, cycle)
calibration_full_path = os.path.join(calibration_dir, configuration["offset_file_name"])
grouping_full_path = os.path.join(calibration_dir, configuration["offset_file_name"])
if self._chopper_on:
chopper_config = configuration["chopper_on"]
else:
chopper_config = configuration["chopper_off"]
vanadium_runs = chopper_config["vanadium_run_numbers"]
solid_angle_file_name = "SAC_" + vanadium_runs
solid_angle_file_path = os.path.join(calibration_dir, solid_angle_file_name)
splined_vanadium_name = "SplinedVan_" + vanadium_runs
splined_vanadium = os.path.join(calibration_dir, splined_vanadium_name)
calibration_details = RunDetails(calibration_path=calibration_full_path, grouping_path=grouping_full_path,
vanadium_runs=vanadium_runs, run_number=run_number)
calibration_details.label = cycle
calibration_details.splined_vanadium = splined_vanadium
calibration_details.solid_angle_corr = solid_angle_file_path
# Hold obj in case same run range is requested
self._run_details_last_run_number = run_number
self._run_details_cached_obj = calibration_details
return calibration_details
@staticmethod
def _generate_inst_file_name(run_number):
if isinstance(run_number, list):
for val in run_number:
val = "POL" + str(val)
return run_number
else:
return "POL" + str(run_number)
@staticmethod
def _get_instrument_alg_save_ranges(instrument=''):
alg_range = 5
def _normalise_ws(self, ws_to_correct, run_details=None):
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
normalised_ws = mantid.NormaliseByCurrent(InputWorkspace=ws_to_correct)
return normalised_ws
def _mask_noisy_detectors(self, vanadium_ws):
summed_van_ws = mantid.Integration(InputWorkspace=vanadium_ws)
# TODO do they want this masking detectors with too high a contribution?
mantid.MaskDetectorsIf(InputWorkspace=summed_van_ws, InputCalFile=self._grouping_file_path,
OutputCalFile=self._cal_file_path, Mode="DeselectIf", Operator="LessEqual", Value=10)
def _calculate_solid_angle_efficiency_corrections(self, vanadium_ws):
solid_angle_ws = mantid.SolidAngle(InputWorkspace=vanadium_ws)
solid_angle_multiplicand = mantid.CreateSingleValuedWorkspace(DataValue=str(100))
solid_angle_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=solid_angle_multiplicand)
common.remove_intermediate_workspace(solid_angle_multiplicand)
efficiency_ws = mantid.Divide(LHSWorkspace=vanadium_ws, RHSWorkspace=solid_angle_ws)
efficiency_ws = mantid.ConvertUnits(InputWorkspace=efficiency_ws, Target="Wavelength")
efficiency_ws = mantid.Integration(InputWorkspace=efficiency_ws,
RangeLower=self._lower_lambda_range, RangeUpper=self._upper_lambda_range)
corrections_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=efficiency_ws)
corrections_divisor_ws = mantid.CreateSingleValuedWorkspace(DataValue=str(100000))
corrections_ws = mantid.Divide(LHSWorkspace=corrections_ws, RHSWorkspace=corrections_divisor_ws)
common.remove_intermediate_workspace(corrections_divisor_ws)
common.remove_intermediate_workspace(solid_angle_ws)
common.remove_intermediate_workspace(efficiency_ws)
return corrections_ws
def _subtract_sample_empty(self, input_sample):
# TODO when calibration mapping has sample.empty enable this
return input_sample
if self._sample_empty is not None:
empty_sample_path = os.path.join(self.calibration_dir, self._sample_empty)
empty_sample = mantid.Load(Filename=empty_sample_path)
empty_sample = self._normalise_ws(empty_sample)
input_sample = mantid.Minus(LHSWorkspace=input_sample, RHSWorkspace=empty_sample)
common.remove_intermediate_workspace(empty_sample)
return input_sample
def _apply_solid_angle_efficiency_corr(self, ws_to_correct, vanadium_number=None, run_details=None):
assert(vanadium_number or run_details)
if not run_details or not os.path.isfile(run_details.solid_angle_corr):
corrections = self.generate_solid_angle_corrections(run_details, vanadium_number)
corrections = mantid.Load(Filename=run_details.solid_angle_corr)
corrected_ws = mantid.Divide(LHSWorkspace=ws_to_correct, RHSWorkspace=corrections)
common.remove_intermediate_workspace(corrections)
common.remove_intermediate_workspace(ws_to_correct)
ws_to_correct = corrected_ws
return ws_to_correct
def generate_solid_angle_corrections(self, run_details, vanadium_number):
if vanadium_number:
solid_angle_vanadium_ws = common.load_current_normalised_ws(run_number_string=vanadium_number,
instrument=self)
elif run_details:
solid_angle_vanadium_ws = common.load_current_normalised_ws(run_number_string=run_details.vanadium,
instrument=self)
raise RuntimeError("Got no run_details or vanadium_number in gen solid angle corrections")
corrections = self._calculate_solid_angle_efficiency_corrections(solid_angle_vanadium_ws)
if run_details:
mantid.SaveNexusProcessed(InputWorkspace=corrections, Filename=run_details.solid_angle_corr)
common.remove_intermediate_workspace(solid_angle_vanadium_ws)
return corrections
def correct_sample_vanadium(self, focused_ws, index, vanadium_ws=None):
spectra_name = "sample_ws-" + str(index + 1)
sample = mantid.CropWorkspace(InputWorkspace=focused_ws, OutputWorkspace=spectra_name,
StartWorkspaceIndex=index, EndWorkspaceIndex=index)
if vanadium_ws:
van_rebinned = mantid.RebinToWorkspace(WorkspaceToRebin=vanadium_ws, WorkspaceToMatch=spectra_name)
mantid.Divide(LHSWorkspace=spectra_name, RHSWorkspace=van_rebinned, OutputWorkspace=spectra_name)
common.remove_intermediate_workspace(van_rebinned)
return spectra_name
def _spline_background(self, focused_vanadium_ws, spline_number, instrument_version=''):
if spline_number is None:
spline_number = 100
mode = "spline" # TODO support spline modes for all instruments
extracted_spectra = _extract_bank_spectra(focused_vanadium_ws, self._number_of_banks)
if mode == "spline":
output = self._mask_spline_vanadium_ws(vanadium_spectra_list=extracted_spectra,
spline_coefficient=spline_number)
else:
raise NotImplementedError("Other vanadium processing methods not yet implemented")
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
for ws in extracted_spectra:
common.remove_intermediate_workspace(ws)
return output
def _generate_vanadium_absorb_corrections(self, calibration_full_paths, ws_to_match):
absorb_ws = mantid.CloneWorkspace(InputWorkspace=ws_to_match)
# TODO move all of this into defaults
cylinder_sample_height = str(4)
cylinder_sample_radius = str(0.4)
attenuation_cross_section = str(4.88350)
scattering_cross_section = str(5.15775)
sample_number_density = str(0.0718956)
number_of_slices = str(10)
number_of_annuli = str(10)
number_of_wavelength_points = str(100)
exp_method = "Normal"
# TODO move all of the above into defaults
absorb_ws = mantid.CylinderAbsorption(InputWorkspace=absorb_ws,
CylinderSampleHeight=cylinder_sample_height,
CylinderSampleRadius=cylinder_sample_radius,
AttenuationXSection=attenuation_cross_section,
ScatteringXSection=scattering_cross_section,
SampleNumberDensity=sample_number_density,
NumberOfSlices=number_of_slices,
NumberOfAnnuli=number_of_annuli,
NumberOfWavelengthPoints=number_of_wavelength_points,
ExpMethod=exp_method)
return absorb_ws
def calculate_focus_binning_params(self, sample):
calculated_binning_params = []
for i in range(0, self._number_of_banks):
sample_data = sample.readX(i)
starting_bin = _calculate_focus_bin_first_edge(bin_value=sample_data[0], crop_value=self._focus_crop_start)
ending_bin = _calculate_focus_bin_last_edge(bin_value=sample_data[-1], crop_value=self._focus_crop_end)
bin_width = self._focus_bin_widths[i]
bank_binning_params = [str(starting_bin), str(bin_width), str(ending_bin)]
calculated_binning_params.append(bank_binning_params)
return calculated_binning_params
def _process_focus_output(self, processed_spectra, run_details, attenuate=False):
d_spacing_group, tof_group = _create_d_spacing_tof_output(processed_spectra)
output_paths = self._generate_out_file_paths(run_details=run_details)
mantid.SaveGSS(InputWorkspace=tof_group, Filename=output_paths["gss_filename"], SplitFiles=False, Append=False)
mantid.SaveNexusProcessed(InputWorkspace=tof_group, Filename=output_paths["nxs_filename"], Append=False)
self._save_xye(ws_group=d_spacing_group, ws_units="d_spacing", run_number=run_details.run_number)
self._save_xye(ws_group=tof_group, ws_units="TOF", run_number=run_details.run_number)
return d_spacing_group, tof_group
def _read_masking_file(self):
all_banks_masking_list = []
bank_masking_list = []
mask_path = os.path.join(self.calibration_dir, self._masking_file_name)
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
ignore_line_prefixes = (' ', '\n', '\t', '#') # Matches whitespace or # symbol
with open(mask_path) as mask_file:
for line in mask_file:
if line.startswith(ignore_line_prefixes):
# Push back onto new bank
all_banks_masking_list.append(bank_masking_list)
bank_masking_list = []
else:
line.rstrip()
bank_masking_list.append(line.split())
return all_banks_masking_list
def _mask_spline_vanadium_ws(self, vanadium_spectra_list, spline_coefficient):
masked_workspace = _apply_masking(workspaces_to_mask=vanadium_spectra_list, mask_list=self._read_masking_file())
index = 0
output_list = []
for ws in masked_workspace:
index += 1
output_ws_name = "splined_vanadium_ws-" + str(index)
splined_ws = mantid.SplineBackground(InputWorkspace=ws, OutputWorkspace=output_ws_name,
WorkspaceIndex=0, NCoeff=spline_coefficient)
output_list.append(splined_ws)
return output_list
def _save_xye(self, ws_group, ws_units, run_number):
bank_index = 1
for ws in ws_group:
outfile_name = str(run_number) + "-b_" + str(bank_index) + "-" + ws_units + ".dat"
bank_index += 1
full_file_path = os.path.join(self._output_dir, outfile_name)
mantid.SaveFocusedXYE(InputWorkspace=ws, Filename=full_file_path, SplitFiles=False, IncludeHeader=False)
# Class private implementation
def _extract_bank_spectra(ws_to_split, num_banks):
spectra_bank_list = []
for i in range(0, num_banks):
output_name = "bank-" + str(i + 1)
# Have to use crop workspace as extract single spectrum struggles with the variable bin widths
spectra_bank_list.append(mantid.CropWorkspace(InputWorkspace=ws_to_split, OutputWorkspace=output_name,
StartWorkspaceIndex=i, EndWorkspaceIndex=i))
return spectra_bank_list
def _apply_masking(workspaces_to_mask, mask_list):
index = 0
output_workspaces = []
for ws in workspaces_to_mask:
output_workspaces.append(ws)
for bank_mask_list in mask_list:
if not bank_mask_list:
continue
output_name = "masked_vanadium-" + str(index + 1)
for mask_params in bank_mask_list:
out_workspace = mantid.MaskBins(InputWorkspace=output_workspaces[index], OutputWorkspace=output_name,
XMin=mask_params[0], XMax=mask_params[1])
output_workspaces[index] = out_workspace
index += 1
return output_workspaces
def _calculate_focus_bin_first_edge(bin_value, crop_value):
return bin_value * (1 + crop_value)
def _calculate_focus_bin_last_edge(bin_value, crop_value):
return bin_value * crop_value
def _create_d_spacing_tof_output(processed_spectra):
name_index = 1
d_spacing_output = []
tof_output = []
for ws in processed_spectra:
d_spacing_out_name = "ResultD-" + str(name_index)
tof_out_name = "ResultTOF-" + str(name_index)
name_index += 1
# Rename d-spacing workspaces
d_spacing_output.append(mantid.CloneWorkspace(InputWorkspace=ws, OutputWorkspace=d_spacing_out_name))
# Convert to TOF
tof_output.append(mantid.ConvertUnits(InputWorkspace=ws, OutputWorkspace=tof_out_name, Target="TOF"))
# Group the outputs
d_spacing_group_name = "Results-D-Grp"
d_spacing_group = mantid.GroupWorkspaces(InputWorkspaces=d_spacing_output, OutputWorkspace=d_spacing_group_name)
tof_group_name = "Results-TOF-Grp"
tof_group = mantid.GroupWorkspaces(InputWorkspaces=tof_output, OutputWorkspace=tof_group_name)
return d_spacing_group, tof_group