Newer
Older
from __future__ import (absolute_import, division, print_function)
import mantid.simpleapi as mantid
from isis_powder.abstract_inst import AbstractInst
from isis_powder.polaris_routines import polaris_calib_factory
from isis_powder.polaris_routines import polaris_calib_parser
import isis_powder.common as common
class Polaris(AbstractInst):
_lower_lambda_range = 0.25
_upper_lambda_range = 2.50
_focus_crop_start = 2 # These are used when calculating binning range
_focus_crop_end = 0.95
_focus_bin_widths = [-0.0050, -0.0010, -0.0010, -0.0010, -0.00050]
_calibration_grouping_names = None
_number_of_banks = 5
def __init__(self, user_name=None, calibration_dir=None, raw_data_dir=None, output_dir=None,
input_file_ext=".raw", sample_empty_name=None):
super(Polaris, self).__init__(user_name=user_name, calibration_dir=calibration_dir, raw_data_dir=raw_data_dir,
output_dir=output_dir, default_input_ext=input_file_ext)
self._masking_file_name = "VanaPeaks.dat"
self._sample_empty = sample_empty_name
# Abstract implementation
def _get_lambda_range(self):
return self._lower_lambda_range, self._upper_lambda_range
def _get_create_van_tof_binning(self):
return self._create_van_calib_tof_binning
def _get_default_group_names(self):
return self._calibration_grouping_names
def _get_calibration_full_paths(self, run_number):
# offset_file_name, grouping_file_name, vanadium_file_name = polaris_calib_factory.get_calibration_file(cycle)
cycle_dict = self._get_cycle_information(run_number=run_number)
configuration = polaris_calib_parser.get_calibration_dict(cycle_dict["cycle"])
calibration_dir = self.calibration_dir
# Assume the raw vanadium is with other raw files
vanadium_full_path = os.path.join(self.raw_data_dir, configuration["vanadium_file_name"])
calibration_full_path = os.path.join(calibration_dir, configuration["offset_file_name"])
grouping_full_path = os.path.join(calibration_dir, configuration["grouping_file_name"])
calibrated_full_path = os.path.join(calibration_dir, configuration["calibrated_vanadium_file_name"])
solid_angle_file_path = os.path.join(calibration_dir, configuration["solid_angle_file_name"])
calibration_details = {"calibration": calibration_full_path,
"grouping": grouping_full_path,
"vanadium": vanadium_full_path,
"calibrated_vanadium": calibrated_full_path,
"solid_angle_corr": solid_angle_file_path}
return calibration_details
@staticmethod
def _generate_inst_file_name(run_number):
return "POL" + str(run_number) # TODO check this is correct
@staticmethod
def _get_instrument_alg_save_ranges(instrument=''):
alg_range = 5
@staticmethod
def _get_cycle_information(run_number):
return {"cycle": "test", # TODO implement properly
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"instrument_version": ""}
def _normalise_ws(self, ws_to_correct, monitor_ws=None, spline_terms=20):
normalised_ws = mantid.NormaliseByCurrent(InputWorkspace=ws_to_correct)
return normalised_ws
def _mask_noisy_detectors(self, vanadium_ws):
summed_van_ws = mantid.Integration(InputWorkspace=vanadium_ws)
# TODO do they want this masking detectors with too high a contribution?
mantid.MaskDetectorsIf(InputWorkspace=summed_van_ws, InputCalFile=self._grouping_file_path,
OutputCalFile=self._cal_file_path, Mode="DeselectIf", Operator="LessEqual", Value=10)
def _calculate_solid_angle_efficiency_corrections(self, vanadium_ws):
solid_angle_ws = mantid.SolidAngle(InputWorkspace=vanadium_ws)
solid_angle_multiplicand = mantid.CreateSingleValuedWorkspace(DataValue=str(100))
solid_angle_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=solid_angle_multiplicand)
common.remove_intermediate_workspace(solid_angle_multiplicand)
efficiency_ws = mantid.Divide(LHSWorkspace=vanadium_ws, RHSWorkspace=solid_angle_ws)
efficiency_ws = mantid.ConvertUnits(InputWorkspace=efficiency_ws, Target="Wavelength")
efficiency_ws = mantid.Integration(InputWorkspace=efficiency_ws,
RangeLower=self._lower_lambda_range, RangeUpper=self._upper_lambda_range)
corrections_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=efficiency_ws)
corrections_divisor_ws = mantid.CreateSingleValuedWorkspace(DataValue=str(100000))
corrections_ws = mantid.Divide(LHSWorkspace=corrections_ws, RHSWorkspace=corrections_divisor_ws)
common.remove_intermediate_workspace(corrections_divisor_ws)
common.remove_intermediate_workspace(solid_angle_ws)
common.remove_intermediate_workspace(efficiency_ws)
return corrections_ws
def _subtract_sample_empty(self, input_sample):
if self._sample_empty is not None:
empty_sample_path = os.path.join(self.calibration_dir, self._sample_empty)
empty_sample = mantid.Load(Filename=empty_sample_path)
empty_sample = self._normalise_ws(empty_sample)
input_sample = mantid.Minus(LHSWorkspace=input_sample, RHSWorkspace=empty_sample)
common.remove_intermediate_workspace(empty_sample)
return input_sample
def _apply_solid_angle_efficiency_corr(self, ws_to_correct, vanadium_number=None, vanadium_path=None):
assert(vanadium_number or vanadium_path)
if vanadium_number:
solid_angle_vanadium_ws = common._load_raw_files(run_number=vanadium_number, instrument=self)
else:
solid_angle_vanadium_ws = mantid.Load(Filename=vanadium_path)
normalised_vanadium_ws = self._normalise_ws(solid_angle_vanadium_ws)
corrections = self._calculate_solid_angle_efficiency_corrections(normalised_vanadium_ws)
corrected_ws = mantid.Divide(LHSWorkspace=ws_to_correct, RHSWorkspace=corrections)
common.remove_intermediate_workspace(solid_angle_vanadium_ws)
common.remove_intermediate_workspace(normalised_vanadium_ws)
common.remove_intermediate_workspace(corrections)
common.remove_intermediate_workspace(ws_to_correct)
ws_to_correct = corrected_ws
return ws_to_correct
def correct_sample_vanadium(self, focused_ws, index, vanadium_ws=None):
spectra_name = "sample_ws-" + str(index + 1)
sample = mantid.CropWorkspace(InputWorkspace=focused_ws, OutputWorkspace=spectra_name,
StartWorkspaceIndex=index, EndWorkspaceIndex=index)
if vanadium_ws:
van_rebinned = mantid.RebinToWorkspace(WorkspaceToRebin=vanadium_ws, WorkspaceToMatch=spectra_name)
mantid.Divide(LHSWorkspace=spectra_name, RHSWorkspace=van_rebinned, OutputWorkspace=spectra_name)
common.remove_intermediate_workspace(van_rebinned)
return spectra_name
def _spline_background(self, focused_vanadium_ws, spline_number, instrument_version=''):
if spline_number is None:
spline_number = 100
mode = "spline" # TODO support spline modes for all instruments
extracted_spectra = _extract_bank_spectra(focused_vanadium_ws, self._number_of_banks)
if mode == "spline":
output = self._mask_spline_vanadium_ws(vanadium_spectra_list=extracted_spectra,
spline_coefficient=spline_number)
else:
raise NotImplementedError("Other vanadium processing methods not yet implemented")
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
for ws in extracted_spectra:
common.remove_intermediate_workspace(ws)
return output
def _generate_vanadium_absorb_corrections(self, calibration_full_paths, ws_to_match):
absorb_ws = mantid.CloneWorkspace(InputWorkspace=ws_to_match)
# TODO move all of this into defaults
cylinder_sample_height = str(4)
cylinder_sample_radius = str(0.4)
attenuation_cross_section = str(4.88350)
scattering_cross_section = str(5.15775)
sample_number_density = str(0.0718956)
number_of_slices = str(10)
number_of_annuli = str(10)
number_of_wavelength_points = str(100)
exp_method = "Normal"
# TODO move all of the above into defaults
absorb_ws = mantid.CylinderAbsorption(InputWorkspace=absorb_ws,
CylinderSampleHeight=cylinder_sample_height,
CylinderSampleRadius=cylinder_sample_radius,
AttenuationXSection=attenuation_cross_section,
ScatteringXSection=scattering_cross_section,
SampleNumberDensity=sample_number_density,
NumberOfSlices=number_of_slices,
NumberOfAnnuli=number_of_annuli,
NumberOfWavelengthPoints=number_of_wavelength_points,
ExpMethod=exp_method)
return absorb_ws
def calculate_focus_binning_params(self, sample):
calculated_binning_params = []
for i in range(0, self._number_of_banks):
sample_data = sample.readX(i)
starting_bin = _calculate_focus_bin_first_edge(bin_value=sample_data[0], crop_value=self._focus_crop_start)
ending_bin = _calculate_focus_bin_last_edge(bin_value=sample_data[-1], crop_value=self._focus_crop_end)
bin_width = _calculate_focus_bin_width(sample_data)
if bin_width > self._focus_bin_widths[i]:
bin_width = self._focus_bin_widths[i]
bank_binning_params = [str(starting_bin), str(bin_width), str(ending_bin)]
calculated_binning_params.append(bank_binning_params)
return calculated_binning_params
def _process_focus_output(self, processed_spectra, run_number, attenuate=False):
d_spacing_group, tof_group = _create_d_spacing_tof_output(processed_spectra)
output_paths = self._generate_out_file_paths(run_number=run_number)
mantid.SaveGSS(InputWorkspace=tof_group, Filename=output_paths["gss_filename"], SplitFiles=False, Append=False)
mantid.SaveNexusProcessed(InputWorkspace=tof_group, Filename=output_paths["nxs_filename"], Append=False)
self._save_xye(ws_group=d_spacing_group, ws_units="d_spacing", run_number=run_number)
self._save_xye(ws_group=tof_group, ws_units="TOF", run_number=run_number)
return d_spacing_group, tof_group
def _read_masking_file(self):
all_banks_masking_list = []
bank_masking_list = []
mask_path = os.path.join(self.raw_data_dir, self._masking_file_name)
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
ignore_line_prefixes = (' ', '\n', '\t', '#') # Matches whitespace or # symbol
with open(mask_path) as mask_file:
for line in mask_file:
if line.startswith(ignore_line_prefixes):
# Push back onto new bank
all_banks_masking_list.append(bank_masking_list)
bank_masking_list = []
else:
line.rstrip()
bank_masking_list.append(line.split())
return all_banks_masking_list
def _mask_spline_vanadium_ws(self, vanadium_spectra_list, spline_coefficient):
masked_workspace = _apply_masking(workspaces_to_mask=vanadium_spectra_list, mask_list=self._read_masking_file())
index = 0
output_list = []
for ws in masked_workspace:
index += 1
output_ws_name = "splined_vanadium_ws-" + str(index)
splined_ws = mantid.SplineBackground(InputWorkspace=ws, OutputWorkspace=output_ws_name,
WorkspaceIndex=0, NCoeff=spline_coefficient)
output_list.append(splined_ws)
return output_list
def _save_xye(self, ws_group, ws_units, run_number):
bank_index = 1
for ws in ws_group:
outfile_name = str(run_number) + "-b_" + str(bank_index) + "-" + ws_units + ".dat"
bank_index += 1
full_file_path = os.path.join(self._output_dir, outfile_name)
mantid.SaveFocusedXYE(InputWorkspace=ws, Filename=full_file_path, SplitFiles=False, IncludeHeader=False)
# Class private implementation
def _extract_bank_spectra(ws_to_split, num_banks):
spectra_bank_list = []
for i in range(0, num_banks):
output_name = "bank-" + str(i + 1)
# Have to use crop workspace as extract single spectrum struggles with the variable bin widths
spectra_bank_list.append(mantid.CropWorkspace(InputWorkspace=ws_to_split, OutputWorkspace=output_name,
StartWorkspaceIndex=i, EndWorkspaceIndex=i))
return spectra_bank_list
def _apply_masking(workspaces_to_mask, mask_list):
index = 0
output_workspaces = []
for ws in workspaces_to_mask:
output_workspaces.append(ws)
for bank_mask_list in mask_list:
if not bank_mask_list:
continue
output_name = "masked_vanadium-" + str(index + 1)
for mask_params in bank_mask_list:
out_workspace = mantid.MaskBins(InputWorkspace=output_workspaces[index], OutputWorkspace=output_name,
XMin=mask_params[0], XMax=mask_params[1])
output_workspaces[index] = out_workspace
index += 1
return output_workspaces
def _calculate_focus_bin_first_edge(bin_value, crop_value):
return bin_value * (1 + crop_value)
def _calculate_focus_bin_last_edge(bin_value, crop_value):
return bin_value * crop_value
def _calculate_focus_bin_width(bin_data):
first_val = bin_data[0]
last_val = bin_data[-1]
number_of_bins = len(bin_data) - 1
bin_delta = last_val / first_val
delta_logarithm = math.log(bin_delta)
avg_delta = delta_logarithm / number_of_bins
rebin_width = math.exp(avg_delta) - 1
rebin_width = -1 * math.fabs(rebin_width)
return rebin_width
def _create_d_spacing_tof_output(processed_spectra):
name_index = 1
d_spacing_output = []
tof_output = []
for ws in processed_spectra:
d_spacing_out_name = "ResultD-" + str(name_index)
tof_out_name = "ResultTOF-" + str(name_index)
name_index += 1
# Rename d-spacing workspaces
d_spacing_output.append(mantid.CloneWorkspace(InputWorkspace=ws, OutputWorkspace=d_spacing_out_name))
# Convert to TOF
tof_output.append(mantid.ConvertUnits(InputWorkspace=ws, OutputWorkspace=tof_out_name, Target="TOF"))
# Group the outputs
d_spacing_group_name = "Results-D-Grp"
d_spacing_group = mantid.GroupWorkspaces(InputWorkspaces=d_spacing_output, OutputWorkspace=d_spacing_group_name)
tof_group_name = "Results-TOF-Grp"
tof_group = mantid.GroupWorkspaces(InputWorkspaces=tof_output, OutputWorkspace=tof_group_name)
return d_spacing_group, tof_group