Newer
Older
from __future__ import (absolute_import, division, print_function)
import mantid.simpleapi as mantid
from isis_powder.abstract_inst import AbstractInst
from isis_powder.polaris_routines import polaris_calib_factory
import isis_powder.common as common
class Polaris(AbstractInst):
_lower_lambda_range = 0.25
_upper_lambda_range = 2.50 # TODO populate this
_focus_tof_binning_params = None # TODO
_calibration_grouping_names = None
_number_of_banks = 5
def __init__(self, user_name=None, calibration_dir=None, raw_data_dir=None, output_dir=None,
input_file_ext=".raw", sample_empty_name=None): # TODO move TT_mode PEARL specific
super(Polaris, self).__init__(user_name=user_name, calibration_dir=calibration_dir, raw_data_dir=raw_data_dir,
output_dir=output_dir, default_input_ext=input_file_ext)
self._masking_file_name = "VanaPeaks.dat"
self._sample_empty = sample_empty_name
# Abstract implementation
def _get_lambda_range(self):
return self._lower_lambda_range, self._upper_lambda_range
def _get_focus_tof_binning(self):
return self._focus_tof_binning_params
def _get_create_van_tof_binning(self):
return self._create_van_calib_tof_binning
def _get_default_group_names(self):
return self._calibration_grouping_names
def _get_calibration_full_paths(self, cycle):
# TODO implement this properly
offset_file_name, grouping_file_name, vanadium_file_name = polaris_calib_factory.get_calibration_file(cycle)
calibration_dir = self.calibration_dir
calibration_full_path = calibration_dir + offset_file_name
grouping_full_path = calibration_dir + grouping_file_name
vanadium_absorb_full_path = None
vanadium_full_path = self.raw_data_dir + vanadium_file_name
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
calibration_details = {"calibration": calibration_full_path,
"grouping": grouping_full_path,
"vanadium_absorption": vanadium_absorb_full_path,
"vanadium": vanadium_full_path}
return calibration_details
@staticmethod
def _generate_inst_file_name(run_number):
return "POL" + str(run_number) # TODO check this is correct
@staticmethod
def _get_instrument_alg_save_ranges(instrument=''):
alg_range = 5
save_range = 0 # TODO set save range
return alg_range, save_range
@staticmethod
def _get_cycle_information(run_number):
return {"cycle": "", # TODO implement properly
"instrument_version": ""}
def _normalise_ws(self, ws_to_correct, monitor_ws=None, spline_terms=20):
normalised_ws = mantid.NormaliseByCurrent(InputWorkspace=ws_to_correct)
return normalised_ws
def _mask_noisy_detectors(self, vanadium_ws):
summed_van_ws = mantid.Integration(InputWorkspace=vanadium_ws)
# TODO do they want this masking detectors with too high a contribution?
mantid.MaskDetectorsIf(InputWorkspace=summed_van_ws, InputCalFile=self._grouping_file_path,
OutputCalFile=self._cal_file_path, Mode="DeselectIf", Operator="LessEqual", Value=10)
def _calculate_solid_angle_efficiency_corrections(self, vanadium_ws):
solid_angle_ws = mantid.SolidAngle(InputWorkspace=vanadium_ws)
solid_angle_multiplicand = mantid.CreateSingleValuedWorkspace(DataValue=str(100))
solid_angle_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=solid_angle_multiplicand)
common.remove_intermediate_workspace(solid_angle_multiplicand)
efficiency_ws = mantid.Divide(LHSWorkspace=vanadium_ws, RHSWorkspace=solid_angle_ws)
efficiency_ws = mantid.ConvertUnits(InputWorkspace=efficiency_ws, Target="Wavelength")
efficiency_ws = mantid.Integration(InputWorkspace=efficiency_ws,
RangeLower=self._lower_lambda_range, RangeUpper=self._upper_lambda_range)
corrections_ws = mantid.Multiply(LHSWorkspace=solid_angle_ws, RHSWorkspace=efficiency_ws)
corrections_divisor_ws = mantid.CreateSingleValuedWorkspace(DataValue=str(100000))
corrections_ws = mantid.Divide(LHSWorkspace=corrections_ws, RHSWorkspace=corrections_divisor_ws)
common.remove_intermediate_workspace(corrections_divisor_ws)
common.remove_intermediate_workspace(solid_angle_ws)
common.remove_intermediate_workspace(efficiency_ws)
return corrections_ws
def _subtract_sample_empty(self, input_sample):
# TODO move this to be generated by calibration factory so we don't have to use the full fname
if self._sample_empty is not None:
empty_sample_path = self.calibration_dir + self._sample_empty
empty_sample = mantid.Load(Filename=empty_sample_path)
empty_sample = self._normalise_ws(empty_sample)
input_sample = mantid.Minus(LHSWorkspace=input_sample, RHSWorkspace=empty_sample)
common.remove_intermediate_workspace(empty_sample)
return input_sample
def _apply_solid_angle_efficiency_corr(self, ws_to_correct, vanadium_number=None, vanadium_path=None):
assert(vanadium_number or vanadium_path)
if vanadium_number:
solid_angle_vanadium_ws = common._load_raw_files(run_number=vanadium_number, instrument=self)
else:
solid_angle_vanadium_ws = mantid.Load(Filename=vanadium_path)
solid_angle_vanadium_ws = self._normalise_ws(solid_angle_vanadium_ws)
corrections = self._calculate_solid_angle_efficiency_corrections(solid_angle_vanadium_ws)
corrected_ws = mantid.Divide(LHSWorkspace=ws_to_correct, RHSWorkspace=corrections)
common.remove_intermediate_workspace(solid_angle_vanadium_ws)
common.remove_intermediate_workspace(corrections)
common.remove_intermediate_workspace(ws_to_correct)
ws_to_correct = corrected_ws
return ws_to_correct
def _focus_processing(self, run_number, input_workspace, perform_vanadium_norm):
self._get_cycle_information(run_number=run_number)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
def _spline_background(self, focused_vanadium_ws, spline_number, instrument_version=''):
if spline_number is None:
spline_number = 100
mode = "spline" # TODO support spline modes for all instruments
extracted_spectra = _extract_vanadium_spectra(focused_vanadium_ws, self._number_of_banks)
if mode == "spline":
output = self._mask_spline_vanadium_ws(vanadium_spectra_list=extracted_spectra,
spline_coefficient=spline_number)
for ws in extracted_spectra:
common.remove_intermediate_workspace(ws)
return output
def _generate_vanadium_absorb_corrections(self, calibration_full_paths, ws_to_match):
absorb_ws = mantid.CloneWorkspace(InputWorkspace=ws_to_match)
# TODO move all of this into defaults
cylinder_sample_height = str(4)
cylinder_sample_radius = str(0.4)
attenuation_cross_section = str(4.88350)
scattering_cross_section = str(5.15775)
sample_number_density = str(0.0718956)
number_of_slices = str(10)
number_of_annuli = str(10)
number_of_wavelength_points = str(100)
exp_method = "Normal"
# TODO move all of the above into defaults
absorb_ws = mantid.CylinderAbsorption(InputWorkspace=absorb_ws,
CylinderSampleHeight=cylinder_sample_height,
CylinderSampleRadius=cylinder_sample_radius,
AttenuationXSection=attenuation_cross_section,
ScatteringXSection=scattering_cross_section,
SampleNumberDensity=sample_number_density,
NumberOfSlices=number_of_slices,
NumberOfAnnuli=number_of_annuli,
NumberOfWavelengthPoints=number_of_wavelength_points,
ExpMethod=exp_method)
return absorb_ws
def _read_masking_file(self):
all_banks_masking_list = []
bank_masking_list = []
mask_path = self.raw_data_dir + self._masking_file_name
ignore_line_prefixes = (' ', '\n', '\t', '#') # Matches whitespace or # symbol
with open(mask_path) as mask_file:
for line in mask_file:
if line.startswith(ignore_line_prefixes):
# Push back onto new bank
all_banks_masking_list.append(bank_masking_list)
bank_masking_list = []
else:
line.rstrip()
bank_masking_list.append(line.split())
return all_banks_masking_list
def _mask_spline_vanadium_ws(self, vanadium_spectra_list, spline_coefficient):
masked_workspace = _apply_masking(workspaces_to_mask=vanadium_spectra_list, mask_list=self._read_masking_file())
index = 0
output_list = []
for ws in masked_workspace:
index += 1
output_ws_name = "splined_vanadium_ws-" + str(index)
splined_ws = mantid.SplineBackground(InputWorkspace=ws, OutputWorkspace=output_ws_name,
WorkspaceIndex=0, NCoeff=spline_coefficient)
output_list.append(splined_ws)
return output_list
# Class private implementation
def _extract_vanadium_spectra(vanadium_ws, num_banks):
vanadium_spectra_list = []
for i in range(0, num_banks):
output_name = "vanadium-" + str(i + 1)
# Have to use crop workspace as extract single spectrum struggles with the variable bin widths
vanadium_spectra_list.append(mantid.CropWorkspace(InputWorkspace=vanadium_ws, OutputWorkspace=output_name,
StartWorkspaceIndex=i, EndWorkspaceIndex=i))
return vanadium_spectra_list
def _apply_masking(workspaces_to_mask, mask_list):
index = 0
output_workspaces = []
for ws in workspaces_to_mask:
output_workspaces.append(ws)
for bank_mask_list in mask_list:
if not bank_mask_list:
continue
output_name = "masked_vanadium-" + str(index + 1)
for mask_params in bank_mask_list:
out_workspace = mantid.MaskBins(InputWorkspace=output_workspaces[index], OutputWorkspace=output_name,
XMin=mask_params[0], XMax=mask_params[1])
output_workspaces[index] = out_workspace
index += 1
return output_workspaces
def _divide_sample_vanadium_splines(sample_ws, vanadium_splines_ws)