Newer
Older
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/FitPeaks.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/CompositeFunction.h"
#include "MantidAPI/CostFunctionFactory.h"
#include "MantidAPI/FuncMinimizerFactory.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/FunctionProperty.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAlgorithms/FindPeakBackground.h"
#include "MantidDataObjects/TableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidHistogramData/EstimatePolynomial.h"
#include "MantidHistogramData/HistogramIterator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/IValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/StartsWithValidator.h"
#include "boost/algorithm/string.hpp"
#include "boost/algorithm/string/trim.hpp"
using namespace Mantid;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Kernel;
using Mantid::HistogramData::Histogram;
using namespace std;
const size_t MIN_EVENTS = 100;
namespace Mantid {
namespace Algorithms {
namespace FitPeaksAlgorithm {
//----------------------------------------------------------------------------------------------
/// Holds all of the fitting information for a single spectrum
PeakFitResult::PeakFitResult(size_t num_peaks, size_t num_params)
: m_function_parameters_number(num_params) {
// check input
if (num_peaks == 0 || num_params == 0)
throw std::runtime_error("No peak or no parameter error.");
//
m_fitted_peak_positions.resize(num_peaks,
std::numeric_limits<double>::quiet_NaN());
m_costs.resize(num_peaks, DBL_MAX);
m_function_parameters_vector.resize(num_peaks);
for (size_t ipeak = 0; ipeak < num_peaks; ++ipeak) {
m_function_parameters_vector[ipeak].resize(
num_params, std::numeric_limits<double>::quiet_NaN());
}
return;
}
//----------------------------------------------------------------------------------------------
size_t PeakFitResult::getNumberParameters() const {
return m_function_parameters_number;
size_t PeakFitResult::getNumberPeaks() const {
return m_function_parameters_vector.size();
}
double PeakFitResult::getParameterValue(size_t ipeak, size_t iparam) const {
return m_function_parameters_vector[ipeak][iparam];
}
//----------------------------------------------------------------------------------------------
double PeakFitResult::getPeakPosition(size_t ipeak) const {
return m_fitted_peak_positions[ipeak];
}
//----------------------------------------------------------------------------------------------
double PeakFitResult::getCost(size_t ipeak) const { return m_costs[ipeak]; }
//----------------------------------------------------------------------------------------------
/// set the peak fitting record/parameter for one peak
void PeakFitResult::setRecord(size_t ipeak, const double cost,
const double peak_position,
// check input
throw std::runtime_error("Peak index is out of range.");
// set the values
// set peak position
m_fitted_peak_positions[ipeak] = peak_position;
// transfer from peak function to vector
size_t peak_num_params = fit_functions.peakfunction->nParams();
for (size_t ipar = 0; ipar < peak_num_params; ++ipar) {
// peak function
m_function_parameters_vector[ipeak][ipar] =
fit_functions.peakfunction->getParameter(ipar);
}
for (size_t ipar = 0; ipar < fit_functions.bkgdfunction->nParams(); ++ipar) {
// background function
m_function_parameters_vector[ipeak][ipar + peak_num_params] =
fit_functions.bkgdfunction->getParameter(ipar);
}
/// The peak postition should be negative and indicates what went wrong
void PeakFitResult::setBadRecord(size_t ipeak, const double peak_position) {
// check input
if (ipeak >= m_costs.size())
throw std::runtime_error("Peak index is out of range");
if (peak_position >= 0.)
throw std::runtime_error("Can only set negative postion for bad record");
// set the values
m_costs[ipeak] = DBL_MAX;
// set peak position
m_fitted_peak_positions[ipeak] = peak_position;
// transfer from peak function to vector
for (size_t ipar = 0; ipar < m_function_parameters_number; ++ipar) {
m_function_parameters_vector[ipeak][ipar] = 0.;
}
//----------------------------------------------------------------------------------------------
/** Get an index of a value in a sorted vector. The index should be the item
* with value nearest to X
*/
size_t findXIndex(const std::vector<double> &vecx, double x) {
size_t index;
if (x <= vecx.front()) {
index = 0;
} else if (x >= vecx.back()) {
index = vecx.size() - 1;
} else {
vector<double>::const_iterator fiter =
lower_bound(vecx.begin(), vecx.end(), x);
if (fiter == vecx.end())
throw runtime_error("It seems impossible to have this value. ");
index = static_cast<size_t>(fiter - vecx.begin());
if (x - vecx[index - 1] < vecx[index] - x)
--index;
}
return index;
}
enum PeakFitResult { NOSIGNAL, LOWPEAK, OUTOFBOUND, GOOD };
//----------------------------------------------------------------------------------------------
FitPeaks::FitPeaks()
: m_fitPeaksFromRight(true), m_numPeaksToFit(0), m_minPeakHeight(20.),
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
m_bkgdSimga(1.), m_peakPosTolCase234(false) {}
//----------------------------------------------------------------------------------------------
/** initialize the properties
*/
void FitPeaks::init() {
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "", Direction::Input),
"Name of the input workspace for peak fitting.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"Name of the output workspace containing peak centers for "
"fitting offset."
"The output workspace is point data."
"Each workspace index corresponds to a spectrum. "
"Each X value ranges from 0 to N-1, where N is the number of "
"peaks to fit. "
"Each Y value is the peak position obtained by peak fitting. "
"Negative value is used for error signals. "
"-1 for data is zero; -2 for maximum value is smaller than "
"specified minimum value."
"and -3 for non-converged fitting.");
// properties about fitting range and criteria
declareProperty("StartWorkspaceIndex", EMPTY_INT(),
"Starting workspace index for fit");
declareProperty("StopWorkspaceIndex", EMPTY_INT(),
"Last workspace index to fit (which is included)");
// properties about peak positions to fit
declareProperty(Kernel::make_unique<ArrayProperty<double>>("PeakCenters"),
"List of peak centers to fit against.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"PeakCentersWorkspace", "", Direction::Input, PropertyMode::Optional),
"MatrixWorkspace containing peak centers");
std::string peakcentergrp("Peak Positions");
setPropertyGroup("PeakCenters", peakcentergrp);
setPropertyGroup("PeakCentersWorkspace", peakcentergrp);
// properties about peak profile
std::vector<std::string> peakNames =
FunctionFactory::Instance().getFunctionNames<API::IPeakFunction>();
declareProperty("PeakFunction", "Gaussian",
boost::make_shared<StringListValidator>(peakNames));
vector<string> bkgdtypes{"Flat", "Linear", "Quadratic"};
declareProperty("BackgroundType", "Linear",
boost::make_shared<StringListValidator>(bkgdtypes),
"Type of Background.");
std::string funcgroup("Function Types");
setPropertyGroup("PeakFunction", funcgroup);
setPropertyGroup("BackgroundType", funcgroup);
// properties about peak range including fitting window and peak width
// (percentage)
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("FitWindowBoundaryList"),
"List of left boundaries of the peak fitting window corresponding to "
"PeakCenters.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FitPeakWindowWorkspace", "", Direction::Input,
PropertyMode::Optional),
"MatrixWorkspace for of peak windows");
auto min = boost::make_shared<BoundedValidator<double>>();
min->setLower(1e-3);
// min->setUpper(1.); TODO make this a limit
declareProperty("PeakWidthPercent", EMPTY_DBL(), min,
"The estimated peak width as a "
"percentage of the d-spacing "
"of the center of the peak. Value must be less than 1.");
std::string fitrangeegrp("Peak Range Setup");
setPropertyGroup("PeakWidthPercent", fitrangeegrp);
setPropertyGroup("FitWindowBoundaryList", fitrangeegrp);
setPropertyGroup("FitPeakWindowWorkspace", fitrangeegrp);
// properties about peak parameters' names and value
declareProperty(
Kernel::make_unique<ArrayProperty<std::string>>("PeakParameterNames"),
"List of peak parameters' names");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PeakParameterValues"),
"List of peak parameters' value");
declareProperty(Kernel::make_unique<WorkspaceProperty<TableWorkspace>>(
"PeakParameterValueTable", "", Direction::Input,
PropertyMode::Optional),
"Name of the an optional workspace, whose each column "
"corresponds to given peak parameter names"
", and each row corresponds to a subset of spectra.");
std::string startvaluegrp("Starting Parameters Setup");
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
setPropertyGroup("PeakParameterNames", startvaluegrp);
setPropertyGroup("PeakParameterValues", startvaluegrp);
setPropertyGroup("PeakParameterValueTable", startvaluegrp);
// optimization setup
declareProperty("FitFromRight", true,
"Flag for the order to fit peaks. If true, peaks are fitted "
"from rightmost;"
"Otherwise peaks are fitted from leftmost.");
std::vector<std::string> minimizerOptions =
API::FuncMinimizerFactory::Instance().getKeys();
declareProperty("Minimizer", "Levenberg-Marquardt",
Kernel::IValidator_sptr(
new Kernel::StartsWithValidator(minimizerOptions)),
"Minimizer to use for fitting. Minimizers available are "
"\"Levenberg-Marquardt\", \"Simplex\","
"\"Conjugate gradient (Fletcher-Reeves imp.)\", \"Conjugate "
"gradient (Polak-Ribiere imp.)\", \"BFGS\", and "
"\"Levenberg-MarquardtMD\"");
std::array<string, 2> costFuncOptions = {{"Least squares", "Rwp"}};
declareProperty("CostFunction", "Least squares",
Kernel::IValidator_sptr(
new Kernel::ListValidator<std::string>(costFuncOptions)),
"Cost functions");
std::string optimizergrp("Optimization Setup");
setPropertyGroup("Minimizer", optimizergrp);
setPropertyGroup("CostFunction", optimizergrp);
// other helping information
declareProperty(
"FindBackgroundSigma", 1.0,
"Multiplier of standard deviations of the variance for convergence of "
"peak elimination. Default is 1.0. ");
declareProperty("HighBackground", true,
"Flag whether the data has high background comparing to "
"peaks' intensities. "
"For example, vanadium peaks usually have high background.");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PositionTolerance"),
"List of tolerance on fitted peak positions against given peak positions."
"If there is only one value given, then ");
declareProperty("MinimumPeakHeight", 0.,
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"Minimum peak height such that all the fitted peaks with "
"height under this value will be excluded.");
declareProperty(
"ConstrainPeakPositions", true,
"If true peak position will be constrained by estimated positions "
"(highest Y value position) and "
"the peak width either estimted by observation or calculate.");
std::string helpgrp("Additional Information");
// additional output for reviewing
declareProperty(Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"OutputPeakParametersWorkspace", "", Direction::Output),
"Name of workspace containing all fitted peak parameters. "
"X-values are spectra/workspace index.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FittedPeaksWorkspace", "", Direction::Output,
PropertyMode::Optional),
"Name of the output matrix workspace with fitted peak. "
"This output workspace have the same dimesion as the input workspace."
"The Y values belonged to peaks to fit are replaced by fitted value. "
"Values of estimated background are used if peak fails to be fit.");
std::string addoutgrp("Analysis");
setPropertyGroup("OutputPeakParametersWorkspace", addoutgrp);
setPropertyGroup("FittedPeaksWorkspace", addoutgrp);
return;
}
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
std::map<std::string, std::string> FitPeaks::validateInputs() {
map<std::string, std::string> issues;
// check that the peak parameters are in parallel properties
bool haveCommonPeakParameters(false);
std::vector<string> suppliedParameterNames =
getProperty("PeakParameterNames");
std::vector<double> peakParamValues = getProperty("PeakParameterValues");
if ((!suppliedParameterNames.empty()) || (!peakParamValues.empty())) {
haveCommonPeakParameters = true;
if (suppliedParameterNames.size() != peakParamValues.size()) {
issues["PeakParameterNames"] =
"must have same number of values as PeakParameterValues";
issues["PeakParameterValues"] =
"must have same number of values as PeakParameterNames";
}
}
// get the information out of the table
std::string partablename = getPropertyValue("PeakParameterValueTable");
if (!partablename.empty()) {
if (haveCommonPeakParameters) {
const std::string msg = "Parameter value table and initial parameter "
"name/value vectors cannot be given "
"simultanenously.";
issues["PeakParameterValueTable"] = msg;
issues["PeakParameterNames"] = msg;
issues["PeakParameterValues"] = msg;
} else {
m_profileStartingValueTable = getProperty("PeakParameterValueTable");
suppliedParameterNames = m_profileStartingValueTable->getColumnNames();
}
}
// check that the suggested peak parameter names exist in the peak function
if (!suppliedParameterNames.empty()) {
std::string peakfunctiontype = getPropertyValue("PeakFunction");
m_peakFunction = boost::dynamic_pointer_cast<IPeakFunction>(
API::FunctionFactory::Instance().createFunction(peakfunctiontype));
// put the names in a vector
std::vector<string> functionParameterNames;
for (size_t i = 0; i < m_peakFunction->nParams(); ++i)
functionParameterNames.push_back(m_peakFunction->parameterName(i));
// check that the supplied names are in the function
// it is acceptable to be missing parameters
bool failed = false;
for (const auto &name : suppliedParameterNames) {
if (std::find(functionParameterNames.begin(),
functionParameterNames.end(),
name) == functionParameterNames.end()) {
failed = true;
break;
}
}
if (failed) {
std::string msg = "Specified invalid parameter for peak function";
if (haveCommonPeakParameters)
issues["PeakParameterNames"] = msg;
else
issues["PeakParameterValueTable"] = msg;
}
}
return issues;
}
//----------------------------------------------------------------------------------------------
void FitPeaks::exec() {
// process inputs
processInputs();
// create output workspaces
generateOutputPeakPositionWS();
generateFittedParametersValueWorkspace();
generateCalculatedPeaksWS();
// fit peaks
fitPeaks();
// set the output workspaces to properites
processOutputs();
}
//----------------------------------------------------------------------------------------------
void FitPeaks::processInputs() {
// input workspaces
m_inputMatrixWS = getProperty("InputWorkspace");
if (m_inputMatrixWS->getAxis(0)->unit()->unitID() == "dSpacing")
m_inputIsDSpace = true;
m_inputIsDSpace = false;
// spectra to fit
int start_wi = getProperty("StartWorkspaceIndex");
if (isEmpty(start_wi))
m_startWorkspaceIndex = 0;
else
m_startWorkspaceIndex = static_cast<size_t>(start_wi);
// last spectrum's workspace index, which is included
int stop_wi = getProperty("StopWorkspaceIndex");
if (isEmpty(stop_wi))
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
else {
m_stopWorkspaceIndex = static_cast<size_t>(stop_wi);
if (m_stopWorkspaceIndex > m_inputMatrixWS->getNumberHistograms() - 1)
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
}
// optimizer, cost function and fitting scheme
m_minimizer = getPropertyValue("Minimizer");
m_costFunction = getPropertyValue("CostFunction");
m_fitPeaksFromRight = getProperty("FitFromRight");
m_constrainPeaksPosition = getProperty("ConstrainPeakPositions");
// Peak centers, tolerance and fitting range
processInputPeakCenters();
// check
if (m_numPeaksToFit == 0)
throw std::runtime_error("number of peaks to fit is zero.");
// about how to estimate the peak width
m_peakWidthPercentage = getProperty("PeakWidthPercent");
if (isEmpty(m_peakWidthPercentage))
m_peakWidthPercentage = -1;
if (m_peakWidthPercentage >= 1.) // TODO
throw std::runtime_error("PeakWidthPercent must be less than 1");
g_log.debug() << "peak width/value = " << m_peakWidthPercentage << "\n";
// set up background
m_highBackground = getProperty("HighBackground");
m_bkgdSimga = getProperty("FindBackgroundSigma");
// Set up peak and background functions
processInputFunctions();
// about peak width and other peak parameter estimating method
m_peakWidthEstimateApproach = EstimatePeakWidth::InstrumentResolution;
else if (m_peakFunction->name() == "Gaussian")
m_peakWidthEstimateApproach = EstimatePeakWidth::Observation;
m_peakWidthEstimateApproach = EstimatePeakWidth::NoEstimation;
// m_peakWidthEstimateApproach = EstimatePeakWidth::NoEstimation;
g_log.debug() << "Process inputs [3] peak type: " << m_peakFunction->name()
<< ", background type: " << m_bkgdFunction->name() << "\n";
processInputPeakTolerance();
processInputFitRanges();
return;
}
//----------------------------------------------------------------------------------------------
/** process inputs for peak profile and background
*/
void FitPeaks::processInputFunctions() {
// peak functions
std::string peakfunctiontype = getPropertyValue("PeakFunction");
m_peakFunction = boost::dynamic_pointer_cast<IPeakFunction>(
API::FunctionFactory::Instance().createFunction(peakfunctiontype));
// background functions
std::string bkgdfunctiontype = getPropertyValue("BackgroundType");
std::string bkgdname;
bkgdname = "FlatBackground";
else
bkgdname = bkgdfunctiontype;
m_bkgdFunction = boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(bkgdname));
if (m_highBackground)
m_linearBackgroundFunction =
boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(
"LinearBackground"));
else
m_linearBackgroundFunction = nullptr;
// TODO check that both parameter names and values exist
// input peak parameters
std::string partablename = getPropertyValue("PeakParameterValueTable");
m_peakParamNames = getProperty("PeakParameterNames");
if (partablename.empty() && (!m_peakParamNames.empty())) {
// use uniform starting value of peak parameters
m_initParamValues = getProperty("PeakParameterValues");
// convert the parameter name in string to parameter name in integer index
convertParametersNameToIndex();
} else if ((!partablename.empty()) && m_peakParamNames.empty()) {
// use non-uniform starting value of peak parameters
m_uniformProfileStartingValue = false;
m_profileStartingValueTable = getProperty(partablename);
} else {
// user specifies nothing
g_log.warning("Neither parameter value table nor initial "
"parameter name/value vectors is specified. Fitting might "
"not be reliable for peak profile other than Gaussian");
}
return;
}
//----------------------------------------------------------------------------------------------
/** process and check for inputs about peak fitting range (i.e., window)
* Note: What is the output of the method?
*/
void FitPeaks::processInputFitRanges() {
// get peak fit window
std::vector<double> peakwindow = getProperty("FitWindowBoundaryList");
std::string peakwindowname = getPropertyValue("FitPeakWindowWorkspace");
API::MatrixWorkspace_const_sptr peakwindowws =
getProperty("FitPeakWindowWorkspace");
// in most case, calculate window by instrument resolution is False
m_calculateWindowInstrument = false;
if ((!peakwindow.empty()) && peakwindowname.empty()) {
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
// Peak windows are uniform among spectra: use vector for peak windows
m_uniformPeakWindows = true;
// check peak positions
if (!m_uniformPeakPositions)
throw std::invalid_argument(
"Uniform peak range/window requires uniform peak positions.");
// check size
if (peakwindow.size() != m_numPeaksToFit * 2)
throw std::invalid_argument(
"Peak window vector must be twice as large as number of peaks.");
// set up window to m_peakWindowVector
m_peakWindowVector.resize(m_numPeaksToFit);
for (size_t i = 0; i < m_numPeaksToFit; ++i) {
std::vector<double> peakranges(2);
peakranges[0] = peakwindow[i * 2];
peakranges[1] = peakwindow[i * 2 + 1];
// check peak window (range) against peak centers
if ((peakranges[0] < m_peakCenters[i]) &&
(m_peakCenters[i] < peakranges[1])) {
// pass check: set
m_peakWindowVector[i] = peakranges;
} else {
// failed
std::stringstream errss;
errss << "Peak " << i
<< ": user specifies an invalid range and peak center against "
<< peakranges[0] << " < " << m_peakCenters[i] << " < "
<< peakranges[1];
throw std::invalid_argument(errss.str());
}
} // END-FOR
// END for uniform peak window
Peterson, Peter
committed
} else if (peakwindow.empty() && peakwindowws != nullptr) {
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
// use matrix workspace for non-uniform peak windows
m_peakWindowWorkspace = getProperty("FitPeakWindowWorkspace");
m_uniformPeakWindows = false;
// check size
if (m_peakWindowWorkspace->getNumberHistograms() ==
m_inputMatrixWS->getNumberHistograms())
m_partialWindowSpectra = false;
else if (m_peakWindowWorkspace->getNumberHistograms() ==
(m_stopWorkspaceIndex - m_startWorkspaceIndex + 1))
m_partialWindowSpectra = true;
else
throw std::invalid_argument(
"Peak window workspace has unmatched number of spectra");
// check range for peak windows and peak positions
size_t window_index_start(0);
if (m_partialWindowSpectra)
window_index_start = m_startWorkspaceIndex;
size_t center_index_start(0);
if (m_partialSpectra)
center_index_start = m_startWorkspaceIndex;
// check each spectrum whether the window is defined with the correct size
for (size_t wi = 0; wi < m_peakWindowWorkspace->getNumberHistograms();
++wi) {
// check size
if (m_peakWindowWorkspace->y(wi).size() != m_numPeaksToFit * 2) {
std::stringstream errss;
errss << "Peak window workspace index " << wi
<< " has incompatible number of fit windows (x2) "
<< m_peakWindowWorkspace->y(wi).size()
<< "with the number of peaks " << m_numPeaksToFit << " to fit.";
throw std::invalid_argument(errss.str());
}
// check window range against peak center
size_t window_index = window_index_start + wi;
size_t center_index = window_index - center_index_start;
for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
double left_w_bound =
m_peakWindowWorkspace->x(wi)[ipeak * 2]; // TODO getting on y
double right_w_bound = m_peakWindowWorkspace->x(wi)[ipeak * 2 + 1];
double center = m_peakCenterWorkspace->x(center_index)[ipeak];
if (!(left_w_bound < center && center < right_w_bound)) {
std::stringstream errss;
errss << "Workspace index " << wi
<< " has incompatible peak window (" // <<<<<<< HERE!!!!!!!!!
<< left_w_bound << ", " << right_w_bound << ") with " << ipeak
<< "-th expected peak's center " << center;
throw std::runtime_error(errss.str());
}
}
}
} else if (peakwindow.empty()) {
// no peak window is defined, then the peak window will be estimated by
// delta(D)/D
if (m_inputIsDSpace && m_peakWidthPercentage > 0)
m_calculateWindowInstrument = true;
else
throw std::invalid_argument("Without definition of peak window, the "
"input workspace must be in unit of dSpacing "
"and Delta(D)/D must be given!");
} else {
// non-supported situation
throw std::invalid_argument("One and only one of peak window array and "
"peak window workspace can be specified.");
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peaks centers and fitting tolerance information from input. the
* parameters that are
* set including
* 1. m_peakCenters/m_peakCenterWorkspace/m_uniformPeakPositions
* (bool)/m_partialSpectra (bool)
* 2. m_peakPosTolerances (vector)
* 3. m_numPeaksToFit
*/
void FitPeaks::processInputPeakCenters() {
// peak centers
m_peakCenters = getProperty("PeakCenters");
API::MatrixWorkspace_const_sptr peakcenterws =
getProperty("PeakCentersWorkspace");
if (!peakcenterws)
g_log.error("There is no peak center workspace");
std::string peakpswsname = getPropertyValue("PeakCentersWorkspace");
Peterson, Peter
committed
if ((!m_peakCenters.empty()) && peakcenterws == nullptr) {
// peak positions are uniform among all spectra
m_uniformPeakPositions = true;
// number of peaks to fit!
m_numPeaksToFit = m_peakCenters.size();
Peterson, Peter
committed
} else if (m_peakCenters.empty() && peakcenterws != nullptr) {
// peak positions can be different among spectra
m_uniformPeakPositions = false;
m_peakCenterWorkspace = getProperty("PeakCentersWorkspace");
// number of peaks to fit!
m_numPeaksToFit = m_peakCenterWorkspace->x(0).size();
// check matrix worksapce for peak positions
const size_t numhist = m_peakCenterWorkspace->getNumberHistograms();
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
if (numhist == m_inputMatrixWS->size())
m_partialSpectra = false;
else if (numhist == m_stopWorkspaceIndex - m_startWorkspaceIndex + 1)
m_partialSpectra = true;
else
throw std::invalid_argument(
"Input peak center workspace has wrong number of spectra.");
} else {
std::stringstream errss;
errss << "One and only one in 'PeakCenters' (vector) and "
"'PeakCentersWorkspace' shall be given. "
<< "'PeakCenters' has size " << m_peakCenters.size()
<< ", and name of peak center workspace "
<< "is " << peakpswsname;
throw std::invalid_argument(errss.str());
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peak fitting tolerance information from input. The parameters
* that are
* set including
* 2. m_peakPosTolerances (vector)
*/
void FitPeaks::processInputPeakTolerance() {
// check code integrity
if (m_numPeaksToFit == 0)
throw std::runtime_error("ProcessInputPeakTolerance() must be called after "
"ProcessInputPeakCenters()");
// peak tolerance
m_peakPosTolerances = getProperty("PositionTolerance");
if (m_peakPosTolerances.empty()) {
// case 2, 3, 4
m_peakPosTolerances.clear();
m_peakPosTolCase234 = true;
} else if (m_peakPosTolerances.size() == 1) {
// only 1 uniform peak position tolerance is defined: expand to all peaks
double peak_tol = m_peakPosTolerances[0];
m_peakPosTolerances.resize(m_numPeaksToFit, peak_tol);
} else if (m_peakPosTolerances.size() != m_numPeaksToFit) {
// not uniform but number of peaks does not match
g_log.error() << "number of peak position tolerance "
<< m_peakPosTolerances.size()
<< " is not same as number of peaks " << m_numPeaksToFit
<< "\n";
throw std::runtime_error("Number of peak position tolerances and number of "
"peaks to fit are inconsistent.");
}
// minimum peak height: set default to zero
m_minPeakHeight = getProperty("MinimumPeakHeight");
if (isEmpty(m_minPeakHeight) || m_minPeakHeight < 0.)
m_minPeakHeight = 0.;
return;
}
//----------------------------------------------------------------------------------------------
/** Convert the input initial parameter name/value to parameter index/value for
* faster access
* according to the parameter name and peak profile function
* Output: m_initParamIndexes will be set up
*/
void FitPeaks::convertParametersNameToIndex() {
// get a map for peak profile parameter name and parameter index
std::map<std::string, size_t> parname_index_map;
for (size_t iparam = 0; iparam < m_peakFunction->nParams(); ++iparam)
parname_index_map.insert(
std::make_pair(m_peakFunction->parameterName(iparam), iparam));
// define peak parameter names (class variable) if using table
if (m_profileStartingValueTable)
m_peakParamNames = m_profileStartingValueTable->getColumnNames();
// map the input parameter names to parameter indexes
for (const auto ¶mName : m_peakParamNames) {
std::map<std::string, size_t>::iterator locator =
parname_index_map.find(paramName);
if (locator != parname_index_map.end())
m_initParamIndexes.push_back(locator->second);
else {
// a parameter name that is not defined in the peak profile function. An
// out-of-range index is thus set to this
g_log.warning() << "Given peak parameter " << paramName
<< " is not an allowed parameter of peak "
"function " << m_peakFunction->name() << "\n";
m_initParamIndexes.push_back(m_peakFunction->nParams() * 10);
}
}
return;
}
//----------------------------------------------------------------------------------------------
/** main method to fit peaks among all
*/
void FitPeaks::fitPeaks() {
API::Progress prog(this, 0., 1.,
m_stopWorkspaceIndex - m_startWorkspaceIndex);
// cppcheck-suppress syntaxError
PRAGMA_OMP(parallel for schedule(dynamic, 1) )
for (int wi = static_cast<int>(m_startWorkspaceIndex);
wi <= static_cast<int>(m_stopWorkspaceIndex); ++wi) {
PARALLEL_START_INTERUPT_REGION
// peaks to fit
std::vector<double> expected_peak_centers =
getExpectedPeakPositions(static_cast<size_t>(wi));
// initialize output for this
size_t numfuncparams =
m_peakFunction->nParams() + m_bkgdFunction->nParams();
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult> fit_result =
boost::make_shared<FitPeaksAlgorithm::PeakFitResult>(m_numPeaksToFit,
numfuncparams);
fitSpectrumPeaks(static_cast<size_t>(wi), expected_peak_centers,
fit_result);
PARALLEL_CRITICAL(FindPeaks_WriteOutput) {
writeFitResult(static_cast<size_t>(wi), expected_peak_centers,
fit_result);
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
namespace {
double numberCounts(const Histogram &histogram) {
double total = 0.;
for (const auto &value : histogram.y())
total += std::fabs(value);
return total;
}
double numberCounts(const Histogram &histogram, const double xmin,
const double xmax) {
const auto &vector_x = histogram.points();
// determine left boundary
std::vector<double>::const_iterator start_iter = vector_x.begin();
if (xmin > vector_x.front())
start_iter = std::lower_bound(vector_x.begin(), vector_x.end(), xmin);
if (start_iter == vector_x.end())
return 0.; // past the end of the data means nothing to integrate
// determine right boundary
std::vector<double>::const_iterator stop_iter = vector_x.end();
if (xmax < vector_x.back()) // will set at end of vector if too large
stop_iter = std::lower_bound(start_iter, stop_iter, xmax);
// convert to indexes to sum over y
size_t start_index = static_cast<size_t>(start_iter - vector_x.begin());
size_t stop_index = static_cast<size_t>(stop_iter - vector_x.begin());
// integrate
double total = 0.;
for (size_t i = start_index; i < stop_index; ++i)
total += std::fabs(histogram.y()[i]);
return total;
}
}
//----------------------------------------------------------------------------------------------
/** Fit peaks across one single spectrum
*/
void FitPeaks::fitSpectrumPeaks(
size_t wi, const std::vector<double> &expected_peak_centers,
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult> fit_result) {
if (numberCounts(m_inputMatrixWS->histogram(wi)) <= m_minPeakHeight) {
for (size_t i = 0; i < fit_result->getNumberPeaks(); ++i)
fit_result->setBadRecord(i, -1.);
// Set up sub algorithm Fit for peak and background
IAlgorithm_sptr peak_fitter; // both peak and background (combo)
try {
peak_fitter = createChildAlgorithm("Fit", -1, -1, false);
} catch (Exception::NotFoundError &) {
std::stringstream errss;
errss << "The FitPeak algorithm requires the CurveFitting library";
g_log.error(errss.str());
throw std::runtime_error(errss.str());
}
// Clone the function
IPeakFunction_sptr peakfunction =
boost::dynamic_pointer_cast<API::IPeakFunction>(m_peakFunction->clone());
IBackgroundFunction_sptr bkgdfunction =
boost::dynamic_pointer_cast<API::IBackgroundFunction>(
m_bkgdFunction->clone());
// set up properties of algorithm (reference) 'Fit'
peak_fitter->setProperty("Minimizer", m_minimizer);
peak_fitter->setProperty("CostFunction", m_costFunction);
peak_fitter->setProperty("CalcErrors", true);
const double x0 = m_inputMatrixWS->histogram(wi).x().front();
const double xf = m_inputMatrixWS->histogram(wi).x().back();
for (size_t fit_index = 0; fit_index < m_numPeaksToFit; ++fit_index) {
// convert fit index to peak index (in ascending order)
size_t peak_index(fit_index);
if (m_fitPeaksFromRight)
peak_index = m_numPeaksToFit - fit_index - 1;
// get expected peak position
double expected_peak_pos = expected_peak_centers[peak_index];
double cost(DBL_MAX);
if (expected_peak_pos <= x0 || expected_peak_pos >= xf) {
// out of range and there won't be any fit
peakfunction->setIntensity(0);
peakfunction->setCentre(expected_peak_pos);
} else {
// find out the peak position to fit
std::pair<double, double> peak_window_i =
getPeakFitWindow(wi, peak_index);
decideToEstimatePeakWidth(fit_index == 0, peakfunction);
// do fitting with peak and background function (no analysis at this
// point)
cost =
fitIndividualPeak(wi, peak_fitter, expected_peak_pos, peak_window_i,
observe_peak_width, peakfunction, bkgdfunction);
FitPeaksAlgorithm::FitFunction fit_function;
fit_function.peakfunction = peakfunction;
fit_function.bkgdfunction = bkgdfunction;
processSinglePeakFitResult(wi, peak_index, cost, expected_peak_centers,
fit_function, fit_result); // sets the record
}
return;
}
//----------------------------------------------------------------------------------------------
/** Decide whether to estimate peak width. If not, then set the width related
* peak parameters from user specified starting value
bool FitPeaks::decideToEstimatePeakWidth(
const bool firstPeakInSpectrum, API::IPeakFunction_sptr peak_function) {
if (!m_initParamIndexes.empty()) {
// user specifies starting value of peak parameters
if (firstPeakInSpectrum) {
// TODO just set the parameter values in a vector and loop over it
// first peak. using the user-specified value
for (size_t i = 0; i < m_initParamIndexes.size(); ++i) {
size_t param_index = m_initParamIndexes[i];
double param_value = m_initParamValues[i];
peak_function->setParameter(param_index, param_value);
}
} else {
// using the fitted paramters from the previous fitting result
}
} else {
// by observation
observe_peak_width = true;
}
return observe_peak_width;
}
//----------------------------------------------------------------------------------------------
/** retrieve the fitted peak information from functions and set to output
* vectors
*/
void FitPeaks::processSinglePeakFitResult(
size_t wsindex, size_t peakindex, const double cost,
const std::vector<double> &expected_peak_positions,
FitPeaksAlgorithm::FitFunction fitfunction,
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult> fit_result) {
// determine peak position tolerance
double postol(DBL_MAX);
bool case23(false);
if (m_peakPosTolCase234) {
// peak tolerance is not defined
if (m_numPeaksToFit == 1) {
// case (d) one peak only
postol = m_inputMatrixWS->histogram(wsindex).x().back() -
m_inputMatrixWS->histogram(wsindex).x().front();