Skip to content
Snippets Groups Projects
FitPeaks.cpp 91.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/FitPeaks.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/CompositeFunction.h"
#include "MantidAPI/CostFunctionFactory.h"
#include "MantidAPI/FuncMinimizerFactory.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/FunctionProperty.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAlgorithms/FindPeakBackground.h"
#include "MantidDataObjects/TableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidHistogramData/HistogramIterator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/IValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/StartsWithValidator.h"

#include "MantidAPI/MultiDomainFunction.h"

#include "boost/algorithm/string.hpp"
#include "boost/algorithm/string/trim.hpp"

using namespace Mantid;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Kernel;
using Mantid::HistogramData::HistogramX;
using Mantid::HistogramData::HistogramY;

using namespace std;

const size_t MIN_EVENTS = 100;

namespace Mantid {
namespace Algorithms {

//----------------------------------------------------------------------------------------------
/** Get an index of a value in a sorted vector.  The index should be the item
 * with value nearest to X
  */
size_t findXIndex(const HistogramX &vecx, double x) {
  size_t index;
  if (x <= vecx.front()) {
    index = 0;
  } else if (x >= vecx.back()) {
    index = vecx.size() - 1;
  } else {
    vector<double>::const_iterator fiter;
    fiter = lower_bound(vecx.begin(), vecx.end(), x);
    index = static_cast<size_t>(fiter - vecx.begin());
    if (index == 0)
      throw runtime_error("It seems impossible to have this value. ");
    if (x - vecx[index - 1] < vecx[index] - x)
      --index;
  }

  return index;
}

enum { NOSIGNAL, LOWPEAK, OUTOFBOUND, GOOD };

//----------------------------------------------------------------------------------------------
/** constructor
 * @brief FitPeaks::FitPeaks
 */
FitPeaks::FitPeaks()
    : fit_peaks_from_right_(true), m_numPeaksToFit(0), m_minPeakHeight(20.),
      m_bkgdSimga(1.), m_peakPosTolCase234(false) {}

//----------------------------------------------------------------------------------------------
/** initialize the properties
 * @brief FitPeaks::init
 */
void FitPeaks::init() {
  declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
                      "InputWorkspace", "", Direction::Input),
                  "Name of the input workspace for peak fitting.");
  declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
                      "OutputWorkspace", "", Direction::Output),
                  "Name of the output workspace containing peak centers for "
                  "fitting offset."
                  "The output workspace is point data."
                  "Each workspace index corresponds to a spectrum. "
                  "Each X value ranges from 0 to N-1, where N is the number of "
                  "peaks to fit. "
                  "Each Y value is the peak position obtained by peak fitting. "
                  "Negative value is used for error signals. "
                  "-1 for data is zero;  -2 for maximum value is smaller than "
                  "specified minimum value."
                  "and -3 for non-converged fitting.");

  // properties about fitting range and criteria
  declareProperty("StartWorkspaceIndex", EMPTY_INT(),
                  "Starting workspace index for fit");
  declareProperty("StopWorkspaceIndex", EMPTY_INT(),
                  "Last workspace index to fit (which is included)");

  // properties about peak positions to fit
  declareProperty(Kernel::make_unique<ArrayProperty<double>>("PeakCenters"),
                  "List of peak centers to fit against.");
  declareProperty(
      Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
          "PeakCentersWorkspace", "", Direction::Input, PropertyMode::Optional),
      "MatrixWorkspace containing peak centers");

  std::string peakcentergrp("Peak Positions");
  setPropertyGroup("PeakCenters", peakcentergrp);
  setPropertyGroup("PeakCentersWorkspace", peakcentergrp);

  // properties about peak profile
  std::vector<std::string> peakNames =
      FunctionFactory::Instance().getFunctionNames<API::IPeakFunction>();
  declareProperty("PeakFunction", "Gaussian",
                  boost::make_shared<StringListValidator>(peakNames));
  vector<string> bkgdtypes{"Flat", "Linear", "Quadratic"};
  declareProperty("BackgroundType", "Linear",
                  boost::make_shared<StringListValidator>(bkgdtypes),
                  "Type of Background.");

  std::string funcgroup("Function Types");
  setPropertyGroup("PeakFunction", funcgroup);
  setPropertyGroup("BackgroundType", funcgroup);

  // properties about peak range including fitting window and peak width
  // (percentage)
  declareProperty(
      Kernel::make_unique<ArrayProperty<double>>("FitWindowBoundaryList"),
      "List of left boundaries of the peak fitting window corresponding to "
      "PeakCenters.");

  declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
                      "FitPeakWindowWorkspace", "", Direction::Input,
                      PropertyMode::Optional),
                  "MatrixWorkspace for of peak windows");

  auto min = boost::make_shared<BoundedValidator<double>>();
  min->setLower(1e-3);
  declareProperty("PeakWidthPercent", EMPTY_DBL(), min,
                  "The estimated peak width as a "
                  "percentage of the d-spacing "
                  "of the center of the peak.");

  std::string fitrangeegrp("Peak Range Setup");
  setPropertyGroup("PeakWidthPercent", fitrangeegrp);
  setPropertyGroup("FitWindowBoundaryList", fitrangeegrp);
  setPropertyGroup("FitPeakWindowWorkspace", fitrangeegrp);

  // properties about peak parameters' names and value
  declareProperty(
      Kernel::make_unique<ArrayProperty<std::string>>("PeakParameterNames"),
      "List of peak parameters' names");
  declareProperty(
      Kernel::make_unique<ArrayProperty<double>>("PeakParameterValues"),
      "List of peak parameters' value");
  declareProperty(Kernel::make_unique<WorkspaceProperty<TableWorkspace>>(
                      "PeakParameterValueTable", "", Direction::Input,
                      PropertyMode::Optional),
                  "Name of the an optional workspace, whose each column "
                  "corresponds to given peak parameter names"
                  ", and each row corresponds to a subset of spectra.");

  std::string startvaluegrp("Strting Parameters Setup");
  setPropertyGroup("PeakParameterNames", startvaluegrp);
  setPropertyGroup("PeakParameterValues", startvaluegrp);
  setPropertyGroup("PeakParameterValueTable", startvaluegrp);

  // optimization setup
  declareProperty("FitFromRight", true,
                  "Flag for the order to fit peaks.  If true, peaks are fitted "
                  "from rightmost;"
                  "Otherwise peaks are fitted from leftmost.");

  std::vector<std::string> minimizerOptions =
      API::FuncMinimizerFactory::Instance().getKeys();
  declareProperty("Minimizer", "Levenberg-Marquardt",
                  Kernel::IValidator_sptr(
                      new Kernel::StartsWithValidator(minimizerOptions)),
                  "Minimizer to use for fitting. Minimizers available are "
                  "\"Levenberg-Marquardt\", \"Simplex\","
                  "\"Conjugate gradient (Fletcher-Reeves imp.)\", \"Conjugate "
                  "gradient (Polak-Ribiere imp.)\", \"BFGS\", and "
                  "\"Levenberg-MarquardtMD\"");

  std::array<string, 2> costFuncOptions = {{"Least squares", "Rwp"}};
  declareProperty("CostFunction", "Least squares",
                  Kernel::IValidator_sptr(
                      new Kernel::ListValidator<std::string>(costFuncOptions)),
                  "Cost functions");

  std::string optimizergrp("Optimization Setup");
  setPropertyGroup("Minimizer", optimizergrp);
  setPropertyGroup("CostFunction", optimizergrp);

  // other helping information
  declareProperty(
      "FindBackgroundSigma", 1.0,
      "Multiplier of standard deviations of the variance for convergence of "
      "peak elimination.  Default is 1.0. ");

  declareProperty("HighBackground", true,
                  "Flag whether the data has high background comparing to "
                  "peaks' intensities. "
                  "For example, vanadium peaks usually have high background.");

  declareProperty(
      Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
          "EventNumberWorkspace", "", Direction::Input, PropertyMode::Optional),
      "Name of an optional workspace, whose each spectrum corresponds to each "
      "spectrum "
      "in input workspace. "
      "It has 1 value of each spectrum, standing for the number of events of "
      "the corresponding spectrum.");

  declareProperty(
      Kernel::make_unique<ArrayProperty<double>>("PositionTolerance"),
      "List of tolerance on fitted peak positions against given peak positions."
      "If there is only one value given, then ");

  declareProperty("MinimumPeakHeight", EMPTY_DBL(),
                  "Minimum peak height such that all the fitted peaks with "
                  "height under this value will be excluded.");

  declareProperty(
      "ConstrainPeakPositions", true,
      "If true peak position will be constrained by estimated positions "
      "(highest Y value position) and "
      "the peak width either estimted by observation or calculate.");

  std::string helpgrp("Additional Information");

  setPropertyGroup("EventNumberWorkspace", helpgrp);

  // additional output for reviewing
  declareProperty(Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
                      "OutputPeakParametersWorkspace", "", Direction::Output),
                  "Name of workspace containing all fitted peak parameters.  "
                  "X-values are spectra/workspace index.");
  declareProperty(
      Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
          "FittedPeaksWorkspace", "", Direction::Output,
          PropertyMode::Optional),
      "Name of the output matrix workspace with fitted peak. "
      "This output workspace have the same dimesion as the input workspace."
      "The Y values belonged to peaks to fit are replaced by fitted value. "
      "Values of estimated background are used if peak fails to be fit.");

  std::string addoutgrp("Analysis");
  setPropertyGroup("OutputPeakParametersWorkspace", addoutgrp);
  setPropertyGroup("FittedPeaksWorkspace", addoutgrp);

  return;
}

//----------------------------------------------------------------------------------------------
/** main method to fit peaks
 * @brief FitPeaks::exec
 */
void FitPeaks::exec() {
  // process inputs
  processInputs();

  // create output workspaces
  GenerateOutputPeakPositionWS();
  GenerateFittedParametersValueWorkspace();
  GenerateCalculatedPeaksWS();

  // fit peaks
  fitPeaks();

  // set the output workspaces to properites
  ProcessOutputs();
}

//----------------------------------------------------------------------------------------------
/** process inputs
 * @brief FitPeaks::processInputs
 */
void FitPeaks::processInputs() {
  // input workspaces
  m_inputMatrixWS = getProperty("InputWorkspace");
  std::string event_ws_name = getPropertyValue("EventNumberWorkspace");
  if (event_ws_name.size() > 0)
    m_eventNumberWS = getProperty("EventNumberWorkspace");
  else
    m_eventNumberWS = 0;
  if (m_inputMatrixWS->getAxis(0)->unit()->unitID() == "dSpacing")
    is_d_space_ = true;
  else
    is_d_space_ = false;

  // spectra to fit
  int start_wi = getProperty("StartWorkspaceIndex");
  if (isEmpty(start_wi))
    m_startWorkspaceIndex = 0;
  else
    m_startWorkspaceIndex = static_cast<size_t>(start_wi);

  // last spectrum's workspace index, which is included
  int stop_wi = getProperty("StopWorkspaceIndex");
  if (isEmpty(stop_wi))
    m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
  else {
    m_stopWorkspaceIndex = static_cast<size_t>(stop_wi);
    if (m_stopWorkspaceIndex > m_inputMatrixWS->getNumberHistograms() - 1)
      m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
  }

  // optimizer, cost function and fitting scheme
  m_minimizer = getPropertyValue("Minimizer");
  m_costFunction = getPropertyValue("CostFunction");
  fit_peaks_from_right_ = getProperty("FitFromRight");
  constrain_peaks_position_ = getProperty("ConstrainPeakPositions");

  // Peak centers, tolerance and fitting range
  ProcessInputPeakCenters();
  // check
  if (m_numPeaksToFit == 0)
    throw std::runtime_error("number of peaks to fit is zero.");
  // about how to estimate the peak width
  m_peakDSpacePercentage = getProperty("PeakWidthPercent");
  if (isEmpty(m_peakDSpacePercentage))
    m_peakDSpacePercentage = -1;
  else if (m_peakDSpacePercentage < 0)
    throw std::invalid_argument(
        "Peak D-spacing percentage cannot be negative!");
  g_log.debug() << "DeltaD/D = " << m_peakDSpacePercentage << "\n";

  // set up background
  m_highBackground = getProperty("HighBackground");
  m_bkgdSimga = getProperty("FindBackgroundSigma");

  //  observe_peak_width_ = false;
  //  g_log.notice() << "[DB...BAT] peak function name: " <<
  //  m_peakFunction->name()
  //                 << "\n";
  //  if () == 0) {
  //    if (!(is_d_space_ && m_peakDSpacePercentage > 0))
  //      observe_peak_width_ = true;
  //  }

  // Set up peak and background functions
  processInputFunctions();
  // about peak width and other peak parameter estimating method
  if (is_d_space_ && m_peakDSpacePercentage > 0)
    peak_width_estimate_approach_ = EstimatePeakWidth::InstrumentResolution;
  else if (m_peakFunction->name().compare("Gaussian") == 0)
    peak_width_estimate_approach_ = EstimatePeakWidth::Observation;
  else
    peak_width_estimate_approach_ = EstimatePeakWidth::NoEstimation;
  g_log.notice() << "[DB] Process inputs [3] peak type: "
                 << m_peakFunction->name()
                 << ", background type: " << m_bkgdFunction->name() << "\n";

  ProcessInputPeakTolerance();
  processInputFitRanges();

  g_log.notice("[DB] Process inputs [OVER]");

  return;
}

//----------------------------------------------------------------------------------------------
/** process inputs for peak profile and background
 * @brief FitPeaks::processInputFunctions
 */
void FitPeaks::processInputFunctions() {
  // peak functions
  std::string peakfunctiontype = getPropertyValue("PeakFunction");
  m_peakFunction = boost::dynamic_pointer_cast<IPeakFunction>(
      API::FunctionFactory::Instance().createFunction(peakfunctiontype));

  // background functions
  std::string bkgdfunctiontype = getPropertyValue("BackgroundType");
  std::string bkgdname;
  if (bkgdfunctiontype.compare("Linear") == 0)
    bkgdname = "LinearBackground";
  else if (bkgdfunctiontype.compare("Flat") == 0)
    bkgdname = "FlatBackground";
  else
    bkgdname = bkgdfunctiontype;
  m_bkgdFunction = boost::dynamic_pointer_cast<IBackgroundFunction>(
      API::FunctionFactory::Instance().createFunction(bkgdname));
  if (m_highBackground)
    linear_background_function_ =
        boost::dynamic_pointer_cast<IBackgroundFunction>(
            API::FunctionFactory::Instance().createFunction(
                "LinearBackground"));
  else
    linear_background_function_ = 0;

  // input peak parameters
  std::string partablename = getPropertyValue("PeakParameterValueTable");
  m_peakParamNames = getProperty("PeakParameterNames");
  if (partablename.size() == 0 && m_peakParamNames.size() > 0) {
    // use uniform starting value of peak parameters
    m_initParamValues = getProperty("PeakParameterValues");
    // check whether given parameter names and initial values match
    if (m_peakParamNames.size() != m_initParamValues.size())
      throw std::invalid_argument("PeakParameterNames and PeakParameterValues "
                                  "have different number of items.");
    // convert the parameter name in string to parameter name in integer index
    ConvertParametersNameToIndex();
    // set the flag
    m_uniformProfileStartingValue = true;
  } else if (partablename.size() > 0 && m_peakParamNames.size() == 0) {
    // use non-uniform starting value of peak parameters
    m_uniformProfileStartingValue = false;
    m_profileStartingValueTable = getProperty(partablename);
  } else if (partablename.size() > 0 && m_peakParamNames.size() > 0) {
    // user specifies both of them causing confusion
    throw std::invalid_argument("Parameter value table and initial parameter "
                                "name/value vectors cannot be given "
                                "simultanenously.");
  } else {
    // user specifies nothing
    g_log.warning("Neither parameter value table nor initial "
                  "parameter name/value vectors is specified. Fitting might "
                  "not be reliable for peak profile other than Gaussian");
  }

  return;
}

//----------------------------------------------------------------------------------------------
/** process and check for inputs about peak fitting range (i.e., window)
 * Note: What is the output of the method?
 * @brief FitPeaks::processInputFitRanges
 */
void FitPeaks::processInputFitRanges() {
  // get peak fit window
  std::vector<double> peakwindow = getProperty("FitWindowBoundaryList");
  std::string peakwindowname = getPropertyValue("FitPeakWindowWorkspace");

  // in most case, calculate window by instrument resolution is False
  calculate_window_instrument_ = false;

  if (peakwindow.size() > 0 && peakwindowname.size() == 0) {
    // Peak windows are uniform among spectra: use vector for peak windows
    m_uniformPeakWindows = true;

    // check peak positions
    if (!m_uniformPeakPositions)
      throw std::invalid_argument(
          "Uniform peak range/window requires uniform peak positions.");
    // check size
    if (peakwindow.size() != m_numPeaksToFit * 2)
      throw std::invalid_argument(
          "Peak window vector must be twice as large as number of peaks.");

    // set up window to m_peakWindowVector
    m_peakWindowVector.resize(m_numPeaksToFit);
    for (size_t i = 0; i < m_numPeaksToFit; ++i) {
      std::vector<double> peakranges(2);
      peakranges[0] = peakwindow[i * 2];
      peakranges[1] = peakwindow[i * 2 + 1];
      // check peak window (range) against peak centers
      if ((peakranges[0] < m_peakCenters[i]) &&
          (m_peakCenters[i] < peakranges[1])) {
        // pass check: set
        m_peakWindowVector[i] = peakranges;
      } else {
        // failed
        std::stringstream errss;
        errss << "Peak " << i
              << ": user specifies an invalid range and peak center against "
              << peakranges[0] << " < " << m_peakCenters[i] << " < "
              << peakranges[1];
        throw std::invalid_argument(errss.str());
      }
    } // END-FOR
    // END for uniform peak window
  } else if (peakwindow.size() == 0 && peakwindowname.size() > 0) {
    // use matrix workspace for non-uniform peak windows
    m_peakWindowWorkspace = getProperty("FitPeakWindowWorkspace");
    m_uniformPeakWindows = false;

    // check size
    if (m_peakWindowWorkspace->getNumberHistograms() ==
        m_inputMatrixWS->getNumberHistograms())
      m_partialWindowSpectra = false;
    else if (m_peakWindowWorkspace->getNumberHistograms() ==
             (m_stopWorkspaceIndex - m_startWorkspaceIndex + 1))
      m_partialWindowSpectra = true;
    else
      throw std::invalid_argument(
          "Peak window workspace has unmatched number of spectra");

    // check range for peak windows and peak positions
    size_t window_index_start(0);
    if (m_partialWindowSpectra)
      window_index_start = m_startWorkspaceIndex;
    size_t center_index_start(0);
    if (m_partialSpectra)
      center_index_start = m_startWorkspaceIndex;

    // check each spectrum whether the window is defined with the correct size
    for (size_t wi = 0; wi < m_peakWindowWorkspace->getNumberHistograms();
         ++wi) {
      // check size
      if (m_peakWindowWorkspace->y(wi).size() != m_numPeaksToFit * 2) {
        std::stringstream errss;
        errss << "Peak window workspace index " << wi
              << " has incompatible number of fit windows (x2) "
              << m_peakWindowWorkspace->y(wi).size()
              << "with the number of peaks " << m_numPeaksToFit << " to fit.";
        throw std::invalid_argument(errss.str());
      }

      // check window range against peak center
      size_t window_index = window_index_start + wi;
      size_t center_index = window_index - center_index_start;

      for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
        double left_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2];
        double right_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2 + 1];
        double center = m_peakCenterWorkspace->x(center_index)[ipeak];
        if (!(left_w_bound < center && center < right_w_bound)) {
          std::stringstream errss;
          errss << "Workspace index " << wi << " has incompatible peak window ("
                << left_w_bound << ", " << right_w_bound << ") with " << ipeak
                << "-th expected peak's center " << center;
          throw std::runtime_error(errss.str());
        }
      }
    }
  } else if (peakwindow.size() == 0) {
    // no peak window is defined, then the peak window will be estimated by
    // delta(D)/D
    if (is_d_space_ && m_peakDSpacePercentage > 0)
      calculate_window_instrument_ = true;
    else
      throw std::invalid_argument("Without definition of peak window, the "
                                  "input workspace must be in unit of dSpacing "
                                  "and Delta(D)/D must be given!");

  } else {
    // non-supported situation
    throw std::invalid_argument("One and only one of peak window array and "
                                "peak window workspace can be specified.");
  }

  g_log.notice() << "[DB] End of processInputFitRange: "
                 << "is_d_space = " << is_d_space_
                 << ", delta(d)/d = " << m_peakDSpacePercentage << "\n";

  return;
}

//----------------------------------------------------------------------------------------------
/** Processing peaks centers and fitting tolerance information from input.  the
 * parameters that are
 * set including
 * 1. m_peakCenters/m_peakCenterWorkspace/m_uniformPeakPositions
 * (bool)/m_partialSpectra (bool)
 * 2. m_peakPosTolerances (vector)
 * 3. m_numPeaksToFit
 * @brief FitPeaks::processInputPeakCenters
 */
void FitPeaks::ProcessInputPeakCenters() {
  // peak centers
  m_peakCenters = getProperty("PeakCenters");
  std::string peakpswsname = getPropertyValue("PeakCentersWorkspace");
  if (m_peakCenters.size() > 0 && peakpswsname.size() == 0) {
    // peak positions are uniform among all spectra
    m_uniformPeakPositions = true;
    // number of peaks to fit!
    m_numPeaksToFit = m_peakCenters.size();
  } else if (m_peakCenters.size() == 0 && peakpswsname.size() > 0) {
    // peak positions can be different among spectra
    m_uniformPeakPositions = false;
    m_peakCenterWorkspace = getProperty("PeakCentersWorkspace");
    // number of peaks to fit!
    m_numPeaksToFit = m_peakCenterWorkspace->x(0).size();

    // check matrix worksapce for peak positions
    size_t numhist = m_peakCenterWorkspace->getNumberHistograms();
    if (numhist == m_inputMatrixWS->size())
      m_partialSpectra = false;
    else if (numhist == m_stopWorkspaceIndex - m_startWorkspaceIndex + 1)
      m_partialSpectra = true;
    else
      throw std::invalid_argument(
          "Input peak center workspace has wrong number of spectra.");

  } else {
    std::stringstream errss;
    errss << "One and only one in 'PeakCenters' (vector) and "
             "'PeakCentersWorkspace' shall be given. "
          << "'PeakCenters' has size " << m_peakCenters.size()
          << ", and name of peak center workspace "
          << "is " << peakpswsname;
    throw std::invalid_argument(errss.str());
  }

  return;
}

//----------------------------------------------------------------------------------------------
/** Processing peak fitting tolerance information from input.  The parameters
 * that are
 * set including
 * 2. m_peakPosTolerances (vector)
 * @brief FitPeaks::ProcessInputPeakTolerance
 */
void FitPeaks::ProcessInputPeakTolerance() {
  // check code integrity
  if (m_numPeaksToFit == 0)
    throw std::runtime_error("ProcessInputPeakTolerance() must be called after "
                             "ProcessInputPeakCenters()");

  // peak tolerance
  m_peakPosTolerances = getProperty("PositionTolerance");

  if (m_peakPosTolerances.size() == 0) {
    // case 2, 3, 4
    m_peakPosTolerances.clear();
    m_peakPosTolCase234 = true;
  } else if (m_peakPosTolerances.size() == 1) {
    // only 1 uniform peak position tolerance is defined: expand to all peaks
    double peak_tol = m_peakPosTolerances[0];
    m_peakPosTolerances.resize(m_numPeaksToFit, peak_tol);
  } else if (m_peakPosTolerances.size() != m_numPeaksToFit) {
    // not uniform but number of peaks does not match
    g_log.error() << "number of peak position tolerance "
                  << m_peakPosTolerances.size()
                  << " is not same as number of peaks " << m_numPeaksToFit
                  << "\n";
    throw std::runtime_error("Number of peak position tolerances and number of "
                             "peaks to fit are inconsistent.");
  }

  // minimum peak height: set default to zero
  m_minPeakHeight = getProperty("MinimumPeakHeight");
  if (isEmpty(m_minPeakHeight))
    m_minPeakHeight = 0.;

  return;
}

//----------------------------------------------------------------------------------------------
/** Convert the input initial parameter name/value to parameter index/value for
 * faster access
 * according to the parameter name and peak profile function
 * @brief FitPeaks::ConvertParametersNameToIndex
 * Output: m_initParamIndexes will be set up
 */
void FitPeaks::ConvertParametersNameToIndex() {
  // get a map for peak profile parameter name and parameter index
  std::map<std::string, size_t> parname_index_map;
  for (size_t iparam = 0; iparam < m_peakFunction->nParams(); ++iparam)
    parname_index_map.insert(
        std::make_pair(m_peakFunction->parameterName(iparam), iparam));

  // define peak parameter names (class variable) if using table
  if (m_profileStartingValueTable)
    m_peakParamNames = m_profileStartingValueTable->getColumnNames();

  // map the input parameter names to parameter indexes
  for (size_t i = 0; i < m_peakParamNames.size(); ++i) {
    std::map<std::string, size_t>::iterator locator =
        parname_index_map.find(m_peakParamNames[i]);
    if (locator != parname_index_map.end())
      m_initParamIndexes.push_back(locator->second);
    else {
      // a parameter name that is not defined in the peak profile function.  An
      // out-of-range index is thus set to this
      g_log.warning() << "Given peak parameter " << m_peakParamNames[i]
                      << " is not an allowed parameter of peak "
                         "function " << m_peakFunction->name() << "\n";
      m_initParamIndexes.push_back(m_peakFunction->nParams() * 10);
    }
  }

  return;
}

//----------------------------------------------------------------------------------------------
/** main method to fit peaks among all
 * @brief FitPeaks::fitPeaks
 */
void FitPeaks::fitPeaks() {
  // cppcheck-suppress syntaxError
  PRAGMA_OMP(parallel for schedule(dynamic, 1) )
  for (int wi = static_cast<int>(m_startWorkspaceIndex);
       wi <= static_cast<int>(m_stopWorkspaceIndex); ++wi) {

    PARALLEL_START_INTERUPT_REGION

    // peaks to fit
    std::vector<double> expected_peak_centers =
        GetExpectedPeakPositions(static_cast<size_t>(wi));

    // initialize output for this
    size_t numfuncparams =
        m_peakFunction->nParams() + m_bkgdFunction->nParams();
    // main output: center
    std::vector<double> fitted_peak_centers(m_numPeaksToFit, -1);
    // others
    std::vector<std::vector<double>> fitted_parameters(
        m_numPeaksToFit); // peak+background
    for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
      std::vector<double> peak_i(numfuncparams);
      fitted_parameters[ipeak] = peak_i;
    }
    // goodness of fitting
    std::vector<double> peak_chi2_vec(m_numPeaksToFit, DBL_MAX);

    // check number of events
    bool noevents(false);
    if (m_eventNumberWS &&
        m_eventNumberWS->histogram(static_cast<size_t>(wi)).x()[0] < 1.0) {
      // no event with additional event number workspace
      noevents = true;
    } else if (m_inputEventWS &&
               m_inputEventWS->getNumberEvents() < MIN_EVENTS) {
      // too few events for peak fitting
      noevents = true;
    } else {
      // fit
      fitSpectrumPeaks(static_cast<size_t>(wi), expected_peak_centers,
                       fitted_peak_centers, fitted_parameters, &peak_chi2_vec);
    }

    PARALLEL_CRITICAL(FindPeaks_WriteOutput) {
      writeFitResult(static_cast<size_t>(wi), expected_peak_centers,
                     fitted_peak_centers, fitted_parameters, peak_chi2_vec,
                     noevents);
    }

    PARALLEL_END_INTERUPT_REGION
  }

  PARALLEL_CHECK_INTERUPT_REGION
}

//----------------------------------------------------------------------------------------------
/** Fit peaks across one single spectrum
 * @brief FitPeaks::fitSpectrumPeaks
 * @param wi
 * @param expected_peak_centers
 * @param fitted_peak_centers
 * @param fitted_function_parameters
 * @param peak_chi2_vec
 */
void FitPeaks::fitSpectrumPeaks(
    size_t wi, const std::vector<double> &expected_peak_centers,
    std::vector<double> &fitted_peak_centers,
    std::vector<std::vector<double>> &fitted_function_parameters,
    std::vector<double> *peak_chi2_vec) {

  // Set up sub algorithm Fit for peak and background
  IAlgorithm_sptr peak_fitter; // both peak and background (combo)
  try {
    peak_fitter = createChildAlgorithm("Fit", -1, -1, false);
  } catch (Exception::NotFoundError &) {
    std::stringstream errss;
    errss << "The FitPeak algorithm requires the CurveFitting library";
    g_log.error(errss.str());
    throw std::runtime_error(errss.str());
  }

  // Clone the function
  IPeakFunction_sptr peakfunction =
      boost::dynamic_pointer_cast<API::IPeakFunction>(m_peakFunction->clone());
  IBackgroundFunction_sptr bkgdfunction =
      boost::dynamic_pointer_cast<API::IBackgroundFunction>(
          m_bkgdFunction->clone());
  CompositeFunction_sptr compfunc = boost::make_shared<CompositeFunction>();
  compfunc->addFunction(peakfunction);
  compfunc->addFunction(bkgdfunction);

  // set up properties of algorithm (reference) 'Fit'
  peak_fitter->setProperty("Minimizer", m_minimizer);
  peak_fitter->setProperty("CostFunction", m_costFunction);
  peak_fitter->setProperty("CalcErrors", true);

  // background fitter
  IAlgorithm_sptr bkgd_fitter;
  if (m_highBackground) {
    try {
      bkgd_fitter = createChildAlgorithm("Fit", -1, -1, false);
    } catch (Exception::NotFoundError &) {
      std::stringstream errss;
      errss << "The FitPeak algorithm requires the CurveFitting library";
      throw std::runtime_error(errss.str());
    }
    // set up background fit instance
    bkgd_fitter->setProperty("Minimizer", m_minimizer);
    bkgd_fitter->setProperty("CostFunction", m_costFunction);
    bkgd_fitter->setProperty("CalcErrors", true);
  }

  for (size_t fit_index = 0; fit_index < m_numPeaksToFit; ++fit_index) {

    // convert fit index to peak index (in ascending order)
    size_t peak_index(fit_index);
    if (fit_peaks_from_right_)
      peak_index = m_numPeaksToFit - fit_index - 1;

    // get expected peak position
    double expected_peak_pos = expected_peak_centers[peak_index];
    double x0 = m_inputMatrixWS->histogram(wi).x().front();
    double xf = m_inputMatrixWS->histogram(wi).x().back();
    double cost(DBL_MAX);
    if (expected_peak_pos <= x0 || expected_peak_pos >= xf) {
      // out of range and there won't be any fit
      peakfunction->setIntensity(0);
      peakfunction->setCentre(expected_peak_pos);
    } else {
      g_log.notice() << "[DB] Fit ws-index = " << wi
                     << ", fit-index = " << fit_index << ": expeted "
                     << peak_index << "-th peak @ "
                     << expected_peak_centers[peak_index] << "\n";

      // find out the peak position to fit
      std::pair<double, double> peak_window_i =
          GetPeakFitWindow(wi, peak_index);

      bool observe_peak_width =
          DecideToEstimatePeakWidth(fit_index, peakfunction);

      // do fitting with peak and background function (no analysis at this
      // point)
      cost = FitIndividualPeak(wi, peak_fitter, bkgd_fitter, expected_peak_pos,
                               peak_window_i, m_highBackground,
                               observe_peak_width, peakfunction, bkgdfunction);
    }

    // process fitting result
    ProcessSinglePeakFitResult(
        wi, peak_index, expected_peak_centers, peakfunction, bkgdfunction, cost,
        fitted_peak_centers, fitted_function_parameters, peak_chi2_vec);
  }

  return;
}

//----------------------------------------------------------------------------------------------
/** Decided whether to estimate peak width.  If not, then set the width related
 * peak parameters from
 * user specified starting value
 * @brief FitPeaks::DecideToEstimatePeakWidth
 * @param peak_index
 * @param peak_function
 * @return
 */
bool FitPeaks::DecideToEstimatePeakWidth(
    size_t peak_index, API::IPeakFunction_sptr peak_function) {
  bool observe_peak_width(false);

  if (m_initParamIndexes.size() > 0) {
    // user specifies starting value of peak parameters
    if (peak_index == 0) {
      // first peak.  using the user-specified value
      for (size_t i = 0; i < m_initParamIndexes.size(); ++i) {
        size_t param_index = m_initParamIndexes[i];
        double param_value = m_initParamValues[i];
        peak_function->setParameter(param_index, param_value);
      }
    } else {
      // using the fitted paramters from the previous fitting result
      // TODO FIXME - Disable to output fitted result after debugging
      std::stringstream dbss;
      for (size_t i = 0; i < peak_function->nParams(); ++i)
        dbss << peak_function->getParameterNames()[i] << " = "
             << peak_function->getParameter(i) << ", ";
      g_log.notice() << "[DB...BAT] Last fit parameters: " << dbss.str()
                     << "\n";
    }
  } else {
    // by observation
    observe_peak_width = true;
  }

  return observe_peak_width;
}

//----------------------------------------------------------------------------------------------
/** retrieve the fitted peak information from functions and set to output
 * vectors
 * @brief FitPeaks::ProcessSinglePeakFitResult
 * @param wsindex
 * @param peakindex
 * @param expected_peak_positions
 * @param peakfunction
 * @param bkgdfunction
 * @param fitted_peak_positions
 * @param function_parameters_vector
 * @param peak_chi2_vec
 */
void FitPeaks::ProcessSinglePeakFitResult(
    size_t wsindex, size_t peakindex,
    const std::vector<double> &expected_peak_positions,
    API::IPeakFunction_sptr peakfunction,
    API::IBackgroundFunction_sptr bkgdfunction, double cost,
    std::vector<double> &fitted_peak_positions,
    std::vector<std::vector<double>> &function_parameters_vector,
    std::vector<double> *peak_chi2_vec) {
  // check input
  if (peakindex >= fitted_peak_positions.size() ||
      peakindex >= function_parameters_vector.size() ||
      peakindex >= peak_chi2_vec->size()) {
    throw std::runtime_error("peak index size is out of boundary for fitted "
                             "peaks positions, peak parameters or chi2s");
  }

  // determine peak position tolerance
  double postol(DBL_MAX);
  bool case23(false);
  if (m_peakPosTolCase234) {
    // peak tolerance is not defined
    if (m_numPeaksToFit == 1) {
      // case (d) one peak only
      postol = m_inputMatrixWS->histogram(wsindex).x().back() -
               m_inputMatrixWS->histogram(wsindex).x().front();
    } else {
      // case b and c: more than 1 peaks without defined peak tolerance
      case23 = true;
    }
  } else {
    // user explicitly specified
    if (peakindex >= m_peakPosTolerances.size())
      throw std::runtime_error("Peak tolerance out of index");
    postol = m_peakPosTolerances[peakindex];
  }

  // get peak position and analyze the fitting is good or not by various
  // criteria
  double peak_pos = peakfunction->centre();
  g_log.notice() << "[DB...Report] Fitted Peak function: , height = "
                 << peakfunction->height() << " position = " << peak_pos
                 << " of position tolerance case234 = " << m_peakPosTolCase234
                 << ", tolerance case23 = " << case23 << "\n";
  bool good_fit(false);

  if ((cost < 0) || (cost >= DBL_MAX - 1.)) {
    // unphysical cost function value
    peak_pos = -4;
  } else if (peakfunction->height() < m_minPeakHeight) {
    // peak height is under minimum request
    peak_pos = -3;
  } else if (case23) {
    // case b and c to check peak position without defined peak tolerance
    std::pair<double, double> fitwindow = GetPeakFitWindow(wsindex, peakindex);
    if (fitwindow.first < fitwindow.second) {
      // peak fit window is specified or calculated: use peak window as position
      // tolerance
      if (peak_pos < fitwindow.first || peak_pos > fitwindow.second) {
        // peak is out of fit window
        peak_pos = -2;
        g_log.notice() << "[DB...INFO] Peak position " << peak_pos
                       << " is out of fit "
                       << "window boundary " << fitwindow.first << ", "
                       << fitwindow.second << "\n";
      } else
        good_fit = true;
    } else {
      // use the 1/2 distance to neiboring peak without defined peak window
      double left_bound(-1);
      if (peakindex > 0)
        left_bound = 0.5 * (expected_peak_positions[peakindex] -
                            expected_peak_positions[peakindex - 1]);
      double right_bound(-1);
      if (peakindex < m_numPeaksToFit - 1)
        right_bound = 0.5 * (expected_peak_positions[peakindex + 1] -
                             expected_peak_positions[peakindex]);
      if (left_bound < 0)
        left_bound = right_bound;
      if (right_bound < 0)
        right_bound = left_bound;
      if (left_bound < 0 || right_bound < 0)
        throw std::runtime_error("Code logic error such that left or right "
                                 "boundary of peak position is negative.");
      if (peak_pos < left_bound || peak_pos > right_bound)
        peak_pos = -2.5;
      else
        good_fit = true;
    }
  } else if (fabs(peakfunction->centre() - expected_peak_positions[peakindex]) >
             postol) {
    // peak center is not within tolerance
    peak_pos = -5;
    g_log.notice() << "[DB...INFO] position difference "
                   << fabs(peakfunction->centre() -
                           expected_peak_positions[peakindex])
                   << " is out of tolerance: " << postol << "\n";
  } else {
    // all criteria are passed
    good_fit = true;
  }

  // set cost function to DBL_MAX if fitting is bad
  if (good_fit) {