Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/FitPeaks.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/CompositeFunction.h"
#include "MantidAPI/CostFunctionFactory.h"
#include "MantidAPI/FuncMinimizerFactory.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/FunctionProperty.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAlgorithms/FindPeakBackground.h"
#include "MantidDataObjects/TableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidHistogramData/HistogramIterator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/IValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/StartsWithValidator.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "boost/algorithm/string.hpp"
#include "boost/algorithm/string/trim.hpp"
using namespace Mantid;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Kernel;
using Mantid::HistogramData::HistogramX;
using Mantid::HistogramData::HistogramY;
using namespace std;
const size_t MIN_EVENTS = 100;
namespace Mantid {
namespace Algorithms {
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
namespace FitPeaksAlgorithm {
//----------------------------------------------------------------------------------------------
/** Initiailization
* @brief PeakFitResult::PeakFitResult
* @param num_peaks
* @param num_params
*/
PeakFitResult::PeakFitResult(size_t num_peaks, size_t num_params) {
// check input
if (num_peaks == 0 || num_params == 0)
throw std::runtime_error("No peak or no parameter error.");
function_parameters_number_ = num_params;
//
fitted_peak_positions.resize(num_peaks, -1);
costs.resize(num_peaks, DBL_MAX);
function_parameters_vector.resize(num_peaks);
for (size_t ipeak = 0; ipeak < num_peaks; ++ipeak) {
function_parameters_vector[ipeak].resize(num_params);
}
return;
}
//----------------------------------------------------------------------------------------------
/**
* @brief PeakFitResult::getNumberParameters
* @return
*/
size_t PeakFitResult::getNumberParameters() {
return function_parameters_number_;
}
double PeakFitResult::getParameterValue(size_t ipeak, size_t iparam) {
return function_parameters_vector[ipeak][iparam];
}
//----------------------------------------------------------------------------------------------
/**
* @brief PeakFitResult::getPeakPosition
* @param ipeak
* @return
*/
double PeakFitResult::getPeakPosition(size_t ipeak) {
return fitted_peak_positions[ipeak];
}
//----------------------------------------------------------------------------------------------
/**
* @brief PeakFitResult::getCost
* @param ipeak
* @return
*/
double PeakFitResult::getCost(size_t ipeak) { return costs[ipeak]; }
//----------------------------------------------------------------------------------------------
/** set the peak fitting record/parameter for one peak
* @brief PeakFitResult::setRecord
* @param ipeak
* @param cost
* @param peak_position
* @param fit_functions
*/
void PeakFitResult::setRecord(size_t ipeak, const double cost,
const double peak_position,
FitFunction fit_functions) {
// check input
if (ipeak >= costs.size())
throw std::runtime_error("Peak index is out of range.");
// set the values
costs[ipeak] = cost;
// set peak position
fitted_peak_positions[ipeak] = peak_position;
// transfer from peak function to vector
size_t peak_num_params = fit_functions.peakfunction->nParams();
for (size_t ipar = 0; ipar < peak_num_params; ++ipar) {
// peak function
function_parameters_vector[ipeak][ipar] =
fit_functions.peakfunction->getParameter(ipar);
}
for (size_t ipar = 0; ipar < fit_functions.bkgdfunction->nParams(); ++ipar) {
// background function
function_parameters_vector[ipeak][ipar + peak_num_params] =
fit_functions.bkgdfunction->getParameter(ipar);
}
return;
}
}
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
//----------------------------------------------------------------------------------------------
/** Get an index of a value in a sorted vector. The index should be the item
* with value nearest to X
*/
size_t findXIndex(const HistogramX &vecx, double x) {
size_t index;
if (x <= vecx.front()) {
index = 0;
} else if (x >= vecx.back()) {
index = vecx.size() - 1;
} else {
vector<double>::const_iterator fiter;
fiter = lower_bound(vecx.begin(), vecx.end(), x);
index = static_cast<size_t>(fiter - vecx.begin());
if (index == 0)
throw runtime_error("It seems impossible to have this value. ");
if (x - vecx[index - 1] < vecx[index] - x)
--index;
}
return index;
}
enum { NOSIGNAL, LOWPEAK, OUTOFBOUND, GOOD };
//----------------------------------------------------------------------------------------------
/** constructor
* @brief FitPeaks::FitPeaks
*/
FitPeaks::FitPeaks()
: fit_peaks_from_right_(true), m_numPeaksToFit(0), m_minPeakHeight(20.),
m_bkgdSimga(1.), m_peakPosTolCase234(false) {}
//----------------------------------------------------------------------------------------------
/** initialize the properties
* @brief FitPeaks::init
*/
void FitPeaks::init() {
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "", Direction::Input),
"Name of the input workspace for peak fitting.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"Name of the output workspace containing peak centers for "
"fitting offset."
"The output workspace is point data."
"Each workspace index corresponds to a spectrum. "
"Each X value ranges from 0 to N-1, where N is the number of "
"peaks to fit. "
"Each Y value is the peak position obtained by peak fitting. "
"Negative value is used for error signals. "
"-1 for data is zero; -2 for maximum value is smaller than "
"specified minimum value."
"and -3 for non-converged fitting.");
// properties about fitting range and criteria
declareProperty("StartWorkspaceIndex", EMPTY_INT(),
"Starting workspace index for fit");
declareProperty("StopWorkspaceIndex", EMPTY_INT(),
"Last workspace index to fit (which is included)");
// properties about peak positions to fit
declareProperty(Kernel::make_unique<ArrayProperty<double>>("PeakCenters"),
"List of peak centers to fit against.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"PeakCentersWorkspace", "", Direction::Input, PropertyMode::Optional),
"MatrixWorkspace containing peak centers");
std::string peakcentergrp("Peak Positions");
setPropertyGroup("PeakCenters", peakcentergrp);
setPropertyGroup("PeakCentersWorkspace", peakcentergrp);
// properties about peak profile
std::vector<std::string> peakNames =
FunctionFactory::Instance().getFunctionNames<API::IPeakFunction>();
declareProperty("PeakFunction", "Gaussian",
boost::make_shared<StringListValidator>(peakNames));
vector<string> bkgdtypes{"Flat", "Linear", "Quadratic"};
declareProperty("BackgroundType", "Linear",
boost::make_shared<StringListValidator>(bkgdtypes),
"Type of Background.");
std::string funcgroup("Function Types");
setPropertyGroup("PeakFunction", funcgroup);
setPropertyGroup("BackgroundType", funcgroup);
// properties about peak range including fitting window and peak width
// (percentage)
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("FitWindowBoundaryList"),
"List of left boundaries of the peak fitting window corresponding to "
"PeakCenters.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FitPeakWindowWorkspace", "", Direction::Input,
PropertyMode::Optional),
"MatrixWorkspace for of peak windows");
auto min = boost::make_shared<BoundedValidator<double>>();
min->setLower(1e-3);
declareProperty("PeakWidthPercent", EMPTY_DBL(), min,
"The estimated peak width as a "
"percentage of the d-spacing "
"of the center of the peak.");
std::string fitrangeegrp("Peak Range Setup");
setPropertyGroup("PeakWidthPercent", fitrangeegrp);
setPropertyGroup("FitWindowBoundaryList", fitrangeegrp);
setPropertyGroup("FitPeakWindowWorkspace", fitrangeegrp);
// properties about peak parameters' names and value
declareProperty(
Kernel::make_unique<ArrayProperty<std::string>>("PeakParameterNames"),
"List of peak parameters' names");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PeakParameterValues"),
"List of peak parameters' value");
declareProperty(Kernel::make_unique<WorkspaceProperty<TableWorkspace>>(
"PeakParameterValueTable", "", Direction::Input,
PropertyMode::Optional),
"Name of the an optional workspace, whose each column "
"corresponds to given peak parameter names"
", and each row corresponds to a subset of spectra.");
std::string startvaluegrp("Strting Parameters Setup");
setPropertyGroup("PeakParameterNames", startvaluegrp);
setPropertyGroup("PeakParameterValues", startvaluegrp);
setPropertyGroup("PeakParameterValueTable", startvaluegrp);
// optimization setup
declareProperty("FitFromRight", true,
"Flag for the order to fit peaks. If true, peaks are fitted "
"from rightmost;"
"Otherwise peaks are fitted from leftmost.");
std::vector<std::string> minimizerOptions =
API::FuncMinimizerFactory::Instance().getKeys();
declareProperty("Minimizer", "Levenberg-Marquardt",
Kernel::IValidator_sptr(
new Kernel::StartsWithValidator(minimizerOptions)),
"Minimizer to use for fitting. Minimizers available are "
"\"Levenberg-Marquardt\", \"Simplex\","
"\"Conjugate gradient (Fletcher-Reeves imp.)\", \"Conjugate "
"gradient (Polak-Ribiere imp.)\", \"BFGS\", and "
"\"Levenberg-MarquardtMD\"");
std::array<string, 2> costFuncOptions = {{"Least squares", "Rwp"}};
declareProperty("CostFunction", "Least squares",
Kernel::IValidator_sptr(
new Kernel::ListValidator<std::string>(costFuncOptions)),
"Cost functions");
std::string optimizergrp("Optimization Setup");
setPropertyGroup("Minimizer", optimizergrp);
setPropertyGroup("CostFunction", optimizergrp);
// other helping information
declareProperty(
"FindBackgroundSigma", 1.0,
"Multiplier of standard deviations of the variance for convergence of "
"peak elimination. Default is 1.0. ");
declareProperty("HighBackground", true,
"Flag whether the data has high background comparing to "
"peaks' intensities. "
"For example, vanadium peaks usually have high background.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"EventNumberWorkspace", "", Direction::Input, PropertyMode::Optional),
"Name of an optional workspace, whose each spectrum corresponds to each "
"spectrum "
"in input workspace. "
"It has 1 value of each spectrum, standing for the number of events of "
"the corresponding spectrum.");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PositionTolerance"),
"List of tolerance on fitted peak positions against given peak positions."
"If there is only one value given, then ");
declareProperty("MinimumPeakHeight", EMPTY_DBL(),
"Minimum peak height such that all the fitted peaks with "
"height under this value will be excluded.");
declareProperty(
"ConstrainPeakPositions", true,
"If true peak position will be constrained by estimated positions "
"(highest Y value position) and "
"the peak width either estimted by observation or calculate.");
std::string helpgrp("Additional Information");
setPropertyGroup("EventNumberWorkspace", helpgrp);
// additional output for reviewing
declareProperty(Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"OutputPeakParametersWorkspace", "", Direction::Output),
"Name of workspace containing all fitted peak parameters. "
"X-values are spectra/workspace index.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FittedPeaksWorkspace", "", Direction::Output,
PropertyMode::Optional),
"Name of the output matrix workspace with fitted peak. "
"This output workspace have the same dimesion as the input workspace."
"The Y values belonged to peaks to fit are replaced by fitted value. "
"Values of estimated background are used if peak fails to be fit.");
std::string addoutgrp("Analysis");
setPropertyGroup("OutputPeakParametersWorkspace", addoutgrp);
setPropertyGroup("FittedPeaksWorkspace", addoutgrp);
return;
}
//----------------------------------------------------------------------------------------------
/** main method to fit peaks
* @brief FitPeaks::exec
*/
void FitPeaks::exec() {
// process inputs
processInputs();
// create output workspaces
generateOutputPeakPositionWS();
generateFittedParametersValueWorkspace();
generateCalculatedPeaksWS();
// fit peaks
fitPeaks();
// set the output workspaces to properites
processOutputs();
}
//----------------------------------------------------------------------------------------------
/** process inputs
* @brief FitPeaks::processInputs
*/
void FitPeaks::processInputs() {
// input workspaces
m_inputMatrixWS = getProperty("InputWorkspace");
std::string event_ws_name = getPropertyValue("EventNumberWorkspace");
if (event_ws_name.size() > 0)
m_eventNumberWS = getProperty("EventNumberWorkspace");
else
m_eventNumberWS = nullptr;
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
if (m_inputMatrixWS->getAxis(0)->unit()->unitID() == "dSpacing")
is_d_space_ = true;
else
is_d_space_ = false;
// spectra to fit
int start_wi = getProperty("StartWorkspaceIndex");
if (isEmpty(start_wi))
m_startWorkspaceIndex = 0;
else
m_startWorkspaceIndex = static_cast<size_t>(start_wi);
// last spectrum's workspace index, which is included
int stop_wi = getProperty("StopWorkspaceIndex");
if (isEmpty(stop_wi))
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
else {
m_stopWorkspaceIndex = static_cast<size_t>(stop_wi);
if (m_stopWorkspaceIndex > m_inputMatrixWS->getNumberHistograms() - 1)
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
}
// optimizer, cost function and fitting scheme
m_minimizer = getPropertyValue("Minimizer");
m_costFunction = getPropertyValue("CostFunction");
fit_peaks_from_right_ = getProperty("FitFromRight");
constrain_peaks_position_ = getProperty("ConstrainPeakPositions");
// Peak centers, tolerance and fitting range
processInputPeakCenters();
// check
if (m_numPeaksToFit == 0)
throw std::runtime_error("number of peaks to fit is zero.");
// about how to estimate the peak width
m_peakDSpacePercentage = getProperty("PeakWidthPercent");
if (isEmpty(m_peakDSpacePercentage))
m_peakDSpacePercentage = -1;
else if (m_peakDSpacePercentage < 0)
throw std::invalid_argument(
"Peak D-spacing percentage cannot be negative!");
g_log.debug() << "DeltaD/D = " << m_peakDSpacePercentage << "\n";
// set up background
m_highBackground = getProperty("HighBackground");
m_bkgdSimga = getProperty("FindBackgroundSigma");
// Set up peak and background functions
processInputFunctions();
// about peak width and other peak parameter estimating method
if (is_d_space_ && m_peakDSpacePercentage > 0)
peak_width_estimate_approach_ = EstimatePeakWidth::InstrumentResolution;
else if (m_peakFunction->name() == "Gaussian")
peak_width_estimate_approach_ = EstimatePeakWidth::Observation;
else
peak_width_estimate_approach_ = EstimatePeakWidth::NoEstimation;
g_log.debug() << "Process inputs [3] peak type: " << m_peakFunction->name()
<< ", background type: " << m_bkgdFunction->name() << "\n";
processInputPeakTolerance();
processInputFitRanges();
return;
}
//----------------------------------------------------------------------------------------------
/** process inputs for peak profile and background
* @brief FitPeaks::processInputFunctions
*/
void FitPeaks::processInputFunctions() {
// peak functions
std::string peakfunctiontype = getPropertyValue("PeakFunction");
m_peakFunction = boost::dynamic_pointer_cast<IPeakFunction>(
API::FunctionFactory::Instance().createFunction(peakfunctiontype));
// background functions
std::string bkgdfunctiontype = getPropertyValue("BackgroundType");
std::string bkgdname;
bkgdname = "FlatBackground";
else
bkgdname = bkgdfunctiontype;
m_bkgdFunction = boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(bkgdname));
if (m_highBackground)
linear_background_function_ =
boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(
"LinearBackground"));
else
linear_background_function_ = nullptr;
// input peak parameters
std::string partablename = getPropertyValue("PeakParameterValueTable");
m_peakParamNames = getProperty("PeakParameterNames");
if (partablename.size() == 0 && m_peakParamNames.size() > 0) {
// use uniform starting value of peak parameters
m_initParamValues = getProperty("PeakParameterValues");
// check whether given parameter names and initial values match
if (m_peakParamNames.size() != m_initParamValues.size())
throw std::invalid_argument("PeakParameterNames and PeakParameterValues "
"have different number of items.");
// convert the parameter name in string to parameter name in integer index
convertParametersNameToIndex();
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// set the flag
m_uniformProfileStartingValue = true;
} else if (partablename.size() > 0 && m_peakParamNames.size() == 0) {
// use non-uniform starting value of peak parameters
m_uniformProfileStartingValue = false;
m_profileStartingValueTable = getProperty(partablename);
} else if (partablename.size() > 0 && m_peakParamNames.size() > 0) {
// user specifies both of them causing confusion
throw std::invalid_argument("Parameter value table and initial parameter "
"name/value vectors cannot be given "
"simultanenously.");
} else {
// user specifies nothing
g_log.warning("Neither parameter value table nor initial "
"parameter name/value vectors is specified. Fitting might "
"not be reliable for peak profile other than Gaussian");
}
return;
}
//----------------------------------------------------------------------------------------------
/** process and check for inputs about peak fitting range (i.e., window)
* Note: What is the output of the method?
* @brief FitPeaks::processInputFitRanges
*/
void FitPeaks::processInputFitRanges() {
// get peak fit window
std::vector<double> peakwindow = getProperty("FitWindowBoundaryList");
std::string peakwindowname = getPropertyValue("FitPeakWindowWorkspace");
// in most case, calculate window by instrument resolution is False
calculate_window_instrument_ = false;
if (peakwindow.size() > 0 && peakwindowname.size() == 0) {
// Peak windows are uniform among spectra: use vector for peak windows
m_uniformPeakWindows = true;
// check peak positions
if (!m_uniformPeakPositions)
throw std::invalid_argument(
"Uniform peak range/window requires uniform peak positions.");
// check size
if (peakwindow.size() != m_numPeaksToFit * 2)
throw std::invalid_argument(
"Peak window vector must be twice as large as number of peaks.");
// set up window to m_peakWindowVector
m_peakWindowVector.resize(m_numPeaksToFit);
for (size_t i = 0; i < m_numPeaksToFit; ++i) {
std::vector<double> peakranges(2);
peakranges[0] = peakwindow[i * 2];
peakranges[1] = peakwindow[i * 2 + 1];
// check peak window (range) against peak centers
if ((peakranges[0] < m_peakCenters[i]) &&
(m_peakCenters[i] < peakranges[1])) {
// pass check: set
m_peakWindowVector[i] = peakranges;
} else {
// failed
std::stringstream errss;
errss << "Peak " << i
<< ": user specifies an invalid range and peak center against "
<< peakranges[0] << " < " << m_peakCenters[i] << " < "
<< peakranges[1];
throw std::invalid_argument(errss.str());
}
} // END-FOR
// END for uniform peak window
} else if (peakwindow.size() == 0 && peakwindowname.size() > 0) {
// use matrix workspace for non-uniform peak windows
m_peakWindowWorkspace = getProperty("FitPeakWindowWorkspace");
m_uniformPeakWindows = false;
// check size
if (m_peakWindowWorkspace->getNumberHistograms() ==
m_inputMatrixWS->getNumberHistograms())
m_partialWindowSpectra = false;
else if (m_peakWindowWorkspace->getNumberHistograms() ==
(m_stopWorkspaceIndex - m_startWorkspaceIndex + 1))
m_partialWindowSpectra = true;
else
throw std::invalid_argument(
"Peak window workspace has unmatched number of spectra");
// check range for peak windows and peak positions
size_t window_index_start(0);
if (m_partialWindowSpectra)
window_index_start = m_startWorkspaceIndex;
size_t center_index_start(0);
if (m_partialSpectra)
center_index_start = m_startWorkspaceIndex;
// check each spectrum whether the window is defined with the correct size
for (size_t wi = 0; wi < m_peakWindowWorkspace->getNumberHistograms();
++wi) {
// check size
if (m_peakWindowWorkspace->y(wi).size() != m_numPeaksToFit * 2) {
std::stringstream errss;
errss << "Peak window workspace index " << wi
<< " has incompatible number of fit windows (x2) "
<< m_peakWindowWorkspace->y(wi).size()
<< "with the number of peaks " << m_numPeaksToFit << " to fit.";
throw std::invalid_argument(errss.str());
}
// check window range against peak center
size_t window_index = window_index_start + wi;
size_t center_index = window_index - center_index_start;
for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
double left_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2];
double right_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2 + 1];
double center = m_peakCenterWorkspace->x(center_index)[ipeak];
if (!(left_w_bound < center && center < right_w_bound)) {
std::stringstream errss;
errss << "Workspace index " << wi << " has incompatible peak window ("
<< left_w_bound << ", " << right_w_bound << ") with " << ipeak
<< "-th expected peak's center " << center;
throw std::runtime_error(errss.str());
}
}
}
} else if (peakwindow.size() == 0) {
// no peak window is defined, then the peak window will be estimated by
// delta(D)/D
if (is_d_space_ && m_peakDSpacePercentage > 0)
calculate_window_instrument_ = true;
else
throw std::invalid_argument("Without definition of peak window, the "
"input workspace must be in unit of dSpacing "
"and Delta(D)/D must be given!");
} else {
// non-supported situation
throw std::invalid_argument("One and only one of peak window array and "
"peak window workspace can be specified.");
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peaks centers and fitting tolerance information from input. the
* parameters that are
* set including
* 1. m_peakCenters/m_peakCenterWorkspace/m_uniformPeakPositions
* (bool)/m_partialSpectra (bool)
* 2. m_peakPosTolerances (vector)
* 3. m_numPeaksToFit
* @brief FitPeaks::processInputPeakCenters
*/
void FitPeaks::processInputPeakCenters() {
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// peak centers
m_peakCenters = getProperty("PeakCenters");
std::string peakpswsname = getPropertyValue("PeakCentersWorkspace");
if (m_peakCenters.size() > 0 && peakpswsname.size() == 0) {
// peak positions are uniform among all spectra
m_uniformPeakPositions = true;
// number of peaks to fit!
m_numPeaksToFit = m_peakCenters.size();
} else if (m_peakCenters.size() == 0 && peakpswsname.size() > 0) {
// peak positions can be different among spectra
m_uniformPeakPositions = false;
m_peakCenterWorkspace = getProperty("PeakCentersWorkspace");
// number of peaks to fit!
m_numPeaksToFit = m_peakCenterWorkspace->x(0).size();
// check matrix worksapce for peak positions
size_t numhist = m_peakCenterWorkspace->getNumberHistograms();
if (numhist == m_inputMatrixWS->size())
m_partialSpectra = false;
else if (numhist == m_stopWorkspaceIndex - m_startWorkspaceIndex + 1)
m_partialSpectra = true;
else
throw std::invalid_argument(
"Input peak center workspace has wrong number of spectra.");
} else {
std::stringstream errss;
errss << "One and only one in 'PeakCenters' (vector) and "
"'PeakCentersWorkspace' shall be given. "
<< "'PeakCenters' has size " << m_peakCenters.size()
<< ", and name of peak center workspace "
<< "is " << peakpswsname;
throw std::invalid_argument(errss.str());
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peak fitting tolerance information from input. The parameters
* that are
* set including
* 2. m_peakPosTolerances (vector)
* @brief FitPeaks::ProcessInputPeakTolerance
*/
void FitPeaks::processInputPeakTolerance() {
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
// check code integrity
if (m_numPeaksToFit == 0)
throw std::runtime_error("ProcessInputPeakTolerance() must be called after "
"ProcessInputPeakCenters()");
// peak tolerance
m_peakPosTolerances = getProperty("PositionTolerance");
if (m_peakPosTolerances.size() == 0) {
// case 2, 3, 4
m_peakPosTolerances.clear();
m_peakPosTolCase234 = true;
} else if (m_peakPosTolerances.size() == 1) {
// only 1 uniform peak position tolerance is defined: expand to all peaks
double peak_tol = m_peakPosTolerances[0];
m_peakPosTolerances.resize(m_numPeaksToFit, peak_tol);
} else if (m_peakPosTolerances.size() != m_numPeaksToFit) {
// not uniform but number of peaks does not match
g_log.error() << "number of peak position tolerance "
<< m_peakPosTolerances.size()
<< " is not same as number of peaks " << m_numPeaksToFit
<< "\n";
throw std::runtime_error("Number of peak position tolerances and number of "
"peaks to fit are inconsistent.");
}
// minimum peak height: set default to zero
m_minPeakHeight = getProperty("MinimumPeakHeight");
if (isEmpty(m_minPeakHeight))
m_minPeakHeight = 0.;
return;
}
//----------------------------------------------------------------------------------------------
/** Convert the input initial parameter name/value to parameter index/value for
* faster access
* according to the parameter name and peak profile function
* @brief FitPeaks::ConvertParametersNameToIndex
* Output: m_initParamIndexes will be set up
*/
void FitPeaks::convertParametersNameToIndex() {
// get a map for peak profile parameter name and parameter index
std::map<std::string, size_t> parname_index_map;
for (size_t iparam = 0; iparam < m_peakFunction->nParams(); ++iparam)
parname_index_map.insert(
std::make_pair(m_peakFunction->parameterName(iparam), iparam));
// define peak parameter names (class variable) if using table
if (m_profileStartingValueTable)
m_peakParamNames = m_profileStartingValueTable->getColumnNames();
// map the input parameter names to parameter indexes
for (size_t i = 0; i < m_peakParamNames.size(); ++i) {
std::map<std::string, size_t>::iterator locator =
parname_index_map.find(m_peakParamNames[i]);
if (locator != parname_index_map.end())
m_initParamIndexes.push_back(locator->second);
else {
// a parameter name that is not defined in the peak profile function. An
// out-of-range index is thus set to this
g_log.warning() << "Given peak parameter " << m_peakParamNames[i]
<< " is not an allowed parameter of peak "
"function " << m_peakFunction->name() << "\n";
m_initParamIndexes.push_back(m_peakFunction->nParams() * 10);
}
}
return;
}
//----------------------------------------------------------------------------------------------
/** main method to fit peaks among all
* @brief FitPeaks::fitPeaks
*/
void FitPeaks::fitPeaks() {
// cppcheck-suppress syntaxError
PRAGMA_OMP(parallel for schedule(dynamic, 1) )
for (int wi = static_cast<int>(m_startWorkspaceIndex);
wi <= static_cast<int>(m_stopWorkspaceIndex); ++wi) {
PARALLEL_START_INTERUPT_REGION
// peaks to fit
std::vector<double> expected_peak_centers =
getExpectedPeakPositions(static_cast<size_t>(wi));
// initialize output for this
size_t numfuncparams =
m_peakFunction->nParams() + m_bkgdFunction->nParams();
// // main output: center
// std::vector<double> fitted_peak_centers(m_numPeaksToFit, -1);
// // others
// std::vector<std::vector<double>> fitted_parameters(
// m_numPeaksToFit); // peak+background
// for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
// std::vector<double> peak_i(numfuncparams);
// fitted_parameters[ipeak] = peak_i;
// }
// // goodness of fitting
// std::vector<double> peak_chi2_vec(m_numPeaksToFit, DBL_MAX);
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult> fit_result =
boost::make_shared<FitPeaksAlgorithm::PeakFitResult>(m_numPeaksToFit,
numfuncparams);
// check number of events
bool noevents(false);
if (m_eventNumberWS &&
m_eventNumberWS->histogram(static_cast<size_t>(wi)).x()[0] < 1.0) {
// no event with additional event number workspace
noevents = true;
} else if (m_inputEventWS &&
m_inputEventWS->getNumberEvents() < MIN_EVENTS) {
// too few events for peak fitting
noevents = true;
} else {
// fit
fitSpectrumPeaks(static_cast<size_t>(wi), expected_peak_centers,
fit_result);
// fitted_peak_centers, fitted_parameters, &peak_chi2_vec);
}
PARALLEL_CRITICAL(FindPeaks_WriteOutput) {
writeFitResult(static_cast<size_t>(wi), expected_peak_centers, fit_result,
// fitted_peak_centers, fitted_parameters, peak_chi2_vec,
}
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
//----------------------------------------------------------------------------------------------
/** Fit peaks across one single spectrum
* @brief FitPeaks::fitSpectrumPeaks
* @param wi
* @param expected_peak_centers
* @param fitted_peak_centers
* @param fitted_function_parameters
* @param peak_chi2_vec
*/
void FitPeaks::fitSpectrumPeaks(
size_t wi, const std::vector<double> &expected_peak_centers,
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult> fit_result) {
// std::vector<double> &fitted_peak_centers,
// std::vector<std::vector<double>> &fitted_function_parameters,
// std::vector<double> *peak_chi2_vec) {
// Set up sub algorithm Fit for peak and background
IAlgorithm_sptr peak_fitter; // both peak and background (combo)
try {
peak_fitter = createChildAlgorithm("Fit", -1, -1, false);
} catch (Exception::NotFoundError &) {
std::stringstream errss;
errss << "The FitPeak algorithm requires the CurveFitting library";
g_log.error(errss.str());
throw std::runtime_error(errss.str());
}
// Clone the function
IPeakFunction_sptr peakfunction =
boost::dynamic_pointer_cast<API::IPeakFunction>(m_peakFunction->clone());
IBackgroundFunction_sptr bkgdfunction =
boost::dynamic_pointer_cast<API::IBackgroundFunction>(
m_bkgdFunction->clone());
CompositeFunction_sptr compfunc = boost::make_shared<CompositeFunction>();
compfunc->addFunction(peakfunction);
compfunc->addFunction(bkgdfunction);
// high background to reduce
API::IBackgroundFunction_sptr high_bkgd_func(nullptr);
if (linear_background_function_)
high_bkgd_func = boost::dynamic_pointer_cast<API::IBackgroundFunction>(
linear_background_function_->clone());
// set up properties of algorithm (reference) 'Fit'
peak_fitter->setProperty("Minimizer", m_minimizer);
peak_fitter->setProperty("CostFunction", m_costFunction);
peak_fitter->setProperty("CalcErrors", true);
for (size_t fit_index = 0; fit_index < m_numPeaksToFit; ++fit_index) {
// convert fit index to peak index (in ascending order)
size_t peak_index(fit_index);
if (fit_peaks_from_right_)
peak_index = m_numPeaksToFit - fit_index - 1;
// get expected peak position
double expected_peak_pos = expected_peak_centers[peak_index];
double x0 = m_inputMatrixWS->histogram(wi).x().front();
double xf = m_inputMatrixWS->histogram(wi).x().back();
double cost(DBL_MAX);
if (expected_peak_pos <= x0 || expected_peak_pos >= xf) {
// out of range and there won't be any fit
peakfunction->setIntensity(0);
peakfunction->setCentre(expected_peak_pos);
} else {
// find out the peak position to fit
std::pair<double, double> peak_window_i =
getPeakFitWindow(wi, peak_index);
decideToEstimatePeakWidth(fit_index, peakfunction);
// do fitting with peak and background function (no analysis at this
// point)
cost = fitIndividualPeak(wi, peak_fitter, expected_peak_pos,
peak_window_i, m_highBackground, high_bkgd_func,
observe_peak_width, peakfunction, bkgdfunction);
}
// process fitting result
FitPeaksAlgorithm::FitFunction fit_function;
fit_function.peakfunction = peakfunction;
fit_function.bkgdfunction = bkgdfunction;
processSinglePeakFitResult(wi, peak_index, cost, expected_peak_centers,
fit_function, fit_result);
// wi, peak_index, cost, expected_peak_centers, peakfunction,
// bkgdfunction, cost,
// fitted_peak_centers, fitted_function_parameters, peak_chi2_vec);
}
return;
}
//----------------------------------------------------------------------------------------------
/** Decide whether to estimate peak width. If not, then set the width related
* peak parameters from
* user specified starting value
* @brief FitPeaks::DecideToEstimatePeakWidth
* @param peak_index
* @param peak_function
* @return
*/
bool FitPeaks::decideToEstimatePeakWidth(
size_t peak_index, API::IPeakFunction_sptr peak_function) {
bool observe_peak_width(false);
if (m_initParamIndexes.size() > 0) {
// user specifies starting value of peak parameters
if (peak_index == 0) {
// first peak. using the user-specified value
for (size_t i = 0; i < m_initParamIndexes.size(); ++i) {
size_t param_index = m_initParamIndexes[i];
double param_value = m_initParamValues[i];
peak_function->setParameter(param_index, param_value);
}
} else {
// using the fitted paramters from the previous fitting result
// TODO FIXME - Disable to output fitted result after debugging
// std::stringstream dbss;
// for (size_t i = 0; i < peak_function->nParams(); ++i)
// dbss << peak_function->getParameterNames()[i] << " = "
// << peak_function->getParameter(i) << ", ";
// g_log.notice() << "[DB...BAT] Last fit parameters: " << dbss.str()
// << "\n";
}
} else {
// by observation
observe_peak_width = true;
}
return observe_peak_width;
}
//----------------------------------------------------------------------------------------------
/** retrieve the fitted peak information from functions and set to output
* vectors
* @brief FitPeaks::ProcessSinglePeakFitResult
* @param wsindex
* @param expected_peak_positions
* @param peakfunction
* @param bkgdfunction
* @param function_parameters_vector
void FitPeaks::processSinglePeakFitResult(
size_t wsindex, size_t peakindex, const double cost,
const std::vector<double> &expected_peak_positions,
FitPeaksAlgorithm::FitFunction fitfunction,
boost::shared_ptr<FitPeaksAlgorithm::PeakFitResult>
fit_result) // , std::vector<double> *peak_chi2_vec
/*void FitPeaks::processSinglePeakFitResult(
size_t wsindex, size_t peakindex,
const std::vector<double> &expected_peak_positions,
API::IPeakFunction_sptr peakfunction,
API::IBackgroundFunction_sptr bkgdfunction, double cost,
std::vector<double> &fitted_peak_positions,
std::vector<std::vector<double>> &function_parameters_vector,
std::vector<double> *peak_chi2_vec) */
{
// VZ TODO Move to FitResult object
// if (peakindex >= fitted_peak_positions.size() ||
// peakindex >= function_parameters_vector.size() ||
// peakindex >= peak_chi2_vec->size()) {
// throw std::runtime_error("peak index size is out of boundary for fitted
// "
// "peaks positions, peak parameters or chi2s");
// }
// determine peak position tolerance