Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidAlgorithms/FitPeaks.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/CompositeFunction.h"
#include "MantidAPI/CostFunctionFactory.h"
#include "MantidAPI/FuncMinimizerFactory.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/FunctionProperty.h"
#include "MantidAPI/TableRow.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAlgorithms/FindPeakBackground.h"
#include "MantidDataObjects/TableWorkspace.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidHistogramData/HistogramIterator.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/IValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/StartsWithValidator.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "boost/algorithm/string.hpp"
#include "boost/algorithm/string/trim.hpp"
using namespace Mantid;
using namespace Mantid::API;
using namespace Mantid::DataObjects;
using namespace Mantid::Kernel;
using Mantid::HistogramData::HistogramX;
using Mantid::HistogramData::HistogramY;
using namespace std;
const size_t MIN_EVENTS = 100;
namespace Mantid {
namespace Algorithms {
//----------------------------------------------------------------------------------------------
/** Get an index of a value in a sorted vector. The index should be the item
* with value nearest to X
*/
size_t findXIndex(const HistogramX &vecx, double x) {
size_t index;
if (x <= vecx.front()) {
index = 0;
} else if (x >= vecx.back()) {
index = vecx.size() - 1;
} else {
vector<double>::const_iterator fiter;
fiter = lower_bound(vecx.begin(), vecx.end(), x);
index = static_cast<size_t>(fiter - vecx.begin());
if (index == 0)
throw runtime_error("It seems impossible to have this value. ");
if (x - vecx[index - 1] < vecx[index] - x)
--index;
}
return index;
}
enum { NOSIGNAL, LOWPEAK, OUTOFBOUND, GOOD };
//----------------------------------------------------------------------------------------------
/** constructor
* @brief FitPeaks::FitPeaks
*/
FitPeaks::FitPeaks()
: fit_peaks_from_right_(true), m_numPeaksToFit(0), m_minPeakHeight(20.),
m_bkgdSimga(1.), m_peakPosTolCase234(false) {}
//----------------------------------------------------------------------------------------------
/** initialize the properties
* @brief FitPeaks::init
*/
void FitPeaks::init() {
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"InputWorkspace", "", Direction::Input),
"Name of the input workspace for peak fitting.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"OutputWorkspace", "", Direction::Output),
"Name of the output workspace containing peak centers for "
"fitting offset."
"The output workspace is point data."
"Each workspace index corresponds to a spectrum. "
"Each X value ranges from 0 to N-1, where N is the number of "
"peaks to fit. "
"Each Y value is the peak position obtained by peak fitting. "
"Negative value is used for error signals. "
"-1 for data is zero; -2 for maximum value is smaller than "
"specified minimum value."
"and -3 for non-converged fitting.");
// properties about fitting range and criteria
declareProperty("StartWorkspaceIndex", EMPTY_INT(),
"Starting workspace index for fit");
declareProperty("StopWorkspaceIndex", EMPTY_INT(),
"Last workspace index to fit (which is included)");
// properties about peak positions to fit
declareProperty(Kernel::make_unique<ArrayProperty<double>>("PeakCenters"),
"List of peak centers to fit against.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"PeakCentersWorkspace", "", Direction::Input, PropertyMode::Optional),
"MatrixWorkspace containing peak centers");
std::string peakcentergrp("Peak Positions");
setPropertyGroup("PeakCenters", peakcentergrp);
setPropertyGroup("PeakCentersWorkspace", peakcentergrp);
// properties about peak profile
std::vector<std::string> peakNames =
FunctionFactory::Instance().getFunctionNames<API::IPeakFunction>();
declareProperty("PeakFunction", "Gaussian",
boost::make_shared<StringListValidator>(peakNames));
vector<string> bkgdtypes{"Flat", "Linear", "Quadratic"};
declareProperty("BackgroundType", "Linear",
boost::make_shared<StringListValidator>(bkgdtypes),
"Type of Background.");
std::string funcgroup("Function Types");
setPropertyGroup("PeakFunction", funcgroup);
setPropertyGroup("BackgroundType", funcgroup);
// properties about peak range including fitting window and peak width
// (percentage)
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("FitWindowBoundaryList"),
"List of left boundaries of the peak fitting window corresponding to "
"PeakCenters.");
declareProperty(Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FitPeakWindowWorkspace", "", Direction::Input,
PropertyMode::Optional),
"MatrixWorkspace for of peak windows");
auto min = boost::make_shared<BoundedValidator<double>>();
min->setLower(1e-3);
declareProperty("PeakWidthPercent", EMPTY_DBL(), min,
"The estimated peak width as a "
"percentage of the d-spacing "
"of the center of the peak.");
std::string fitrangeegrp("Peak Range Setup");
setPropertyGroup("PeakWidthPercent", fitrangeegrp);
setPropertyGroup("FitWindowBoundaryList", fitrangeegrp);
setPropertyGroup("FitPeakWindowWorkspace", fitrangeegrp);
// properties about peak parameters' names and value
declareProperty(
Kernel::make_unique<ArrayProperty<std::string>>("PeakParameterNames"),
"List of peak parameters' names");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PeakParameterValues"),
"List of peak parameters' value");
declareProperty(Kernel::make_unique<WorkspaceProperty<TableWorkspace>>(
"PeakParameterValueTable", "", Direction::Input,
PropertyMode::Optional),
"Name of the an optional workspace, whose each column "
"corresponds to given peak parameter names"
", and each row corresponds to a subset of spectra.");
std::string startvaluegrp("Strting Parameters Setup");
setPropertyGroup("PeakParameterNames", startvaluegrp);
setPropertyGroup("PeakParameterValues", startvaluegrp);
setPropertyGroup("PeakParameterValueTable", startvaluegrp);
// optimization setup
declareProperty("FitFromRight", true,
"Flag for the order to fit peaks. If true, peaks are fitted "
"from rightmost;"
"Otherwise peaks are fitted from leftmost.");
std::vector<std::string> minimizerOptions =
API::FuncMinimizerFactory::Instance().getKeys();
declareProperty("Minimizer", "Levenberg-Marquardt",
Kernel::IValidator_sptr(
new Kernel::StartsWithValidator(minimizerOptions)),
"Minimizer to use for fitting. Minimizers available are "
"\"Levenberg-Marquardt\", \"Simplex\","
"\"Conjugate gradient (Fletcher-Reeves imp.)\", \"Conjugate "
"gradient (Polak-Ribiere imp.)\", \"BFGS\", and "
"\"Levenberg-MarquardtMD\"");
std::array<string, 2> costFuncOptions = {{"Least squares", "Rwp"}};
declareProperty("CostFunction", "Least squares",
Kernel::IValidator_sptr(
new Kernel::ListValidator<std::string>(costFuncOptions)),
"Cost functions");
std::string optimizergrp("Optimization Setup");
setPropertyGroup("Minimizer", optimizergrp);
setPropertyGroup("CostFunction", optimizergrp);
// other helping information
declareProperty(
"FindBackgroundSigma", 1.0,
"Multiplier of standard deviations of the variance for convergence of "
"peak elimination. Default is 1.0. ");
declareProperty("HighBackground", true,
"Flag whether the data has high background comparing to "
"peaks' intensities. "
"For example, vanadium peaks usually have high background.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"EventNumberWorkspace", "", Direction::Input, PropertyMode::Optional),
"Name of an optional workspace, whose each spectrum corresponds to each "
"spectrum "
"in input workspace. "
"It has 1 value of each spectrum, standing for the number of events of "
"the corresponding spectrum.");
declareProperty(
Kernel::make_unique<ArrayProperty<double>>("PositionTolerance"),
"List of tolerance on fitted peak positions against given peak positions."
"If there is only one value given, then ");
declareProperty("MinimumPeakHeight", EMPTY_DBL(),
"Minimum peak height such that all the fitted peaks with "
"height under this value will be excluded.");
declareProperty(
"ConstrainPeakPositions", true,
"If true peak position will be constrained by estimated positions "
"(highest Y value position) and "
"the peak width either estimted by observation or calculate.");
std::string helpgrp("Additional Information");
setPropertyGroup("EventNumberWorkspace", helpgrp);
// additional output for reviewing
declareProperty(Kernel::make_unique<WorkspaceProperty<API::ITableWorkspace>>(
"OutputPeakParametersWorkspace", "", Direction::Output),
"Name of workspace containing all fitted peak parameters. "
"X-values are spectra/workspace index.");
declareProperty(
Kernel::make_unique<WorkspaceProperty<MatrixWorkspace>>(
"FittedPeaksWorkspace", "", Direction::Output,
PropertyMode::Optional),
"Name of the output matrix workspace with fitted peak. "
"This output workspace have the same dimesion as the input workspace."
"The Y values belonged to peaks to fit are replaced by fitted value. "
"Values of estimated background are used if peak fails to be fit.");
std::string addoutgrp("Analysis");
setPropertyGroup("OutputPeakParametersWorkspace", addoutgrp);
setPropertyGroup("FittedPeaksWorkspace", addoutgrp);
return;
}
//----------------------------------------------------------------------------------------------
/** main method to fit peaks
* @brief FitPeaks::exec
*/
void FitPeaks::exec() {
// process inputs
processInputs();
// create output workspaces
GenerateOutputPeakPositionWS();
GenerateFittedParametersValueWorkspace();
GenerateCalculatedPeaksWS();
// fit peaks
fitPeaks();
// set the output workspaces to properites
ProcessOutputs();
}
//----------------------------------------------------------------------------------------------
/** process inputs
* @brief FitPeaks::processInputs
*/
void FitPeaks::processInputs() {
// input workspaces
m_inputMatrixWS = getProperty("InputWorkspace");
std::string event_ws_name = getPropertyValue("EventNumberWorkspace");
if (event_ws_name.size() > 0)
m_eventNumberWS = getProperty("EventNumberWorkspace");
else
m_eventNumberWS = 0;
if (m_inputMatrixWS->getAxis(0)->unit()->unitID() == "dSpacing")
is_d_space_ = true;
else
is_d_space_ = false;
// spectra to fit
int start_wi = getProperty("StartWorkspaceIndex");
if (isEmpty(start_wi))
m_startWorkspaceIndex = 0;
else
m_startWorkspaceIndex = static_cast<size_t>(start_wi);
// last spectrum's workspace index, which is included
int stop_wi = getProperty("StopWorkspaceIndex");
if (isEmpty(stop_wi))
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
else {
m_stopWorkspaceIndex = static_cast<size_t>(stop_wi);
if (m_stopWorkspaceIndex > m_inputMatrixWS->getNumberHistograms() - 1)
m_stopWorkspaceIndex = m_inputMatrixWS->getNumberHistograms() - 1;
}
// optimizer, cost function and fitting scheme
m_minimizer = getPropertyValue("Minimizer");
m_costFunction = getPropertyValue("CostFunction");
fit_peaks_from_right_ = getProperty("FitFromRight");
constrain_peaks_position_ = getProperty("ConstrainPeakPositions");
// Peak centers, tolerance and fitting range
ProcessInputPeakCenters();
// check
if (m_numPeaksToFit == 0)
throw std::runtime_error("number of peaks to fit is zero.");
// about how to estimate the peak width
m_peakDSpacePercentage = getProperty("PeakWidthPercent");
if (isEmpty(m_peakDSpacePercentage))
m_peakDSpacePercentage = -1;
else if (m_peakDSpacePercentage < 0)
throw std::invalid_argument(
"Peak D-spacing percentage cannot be negative!");
g_log.debug() << "DeltaD/D = " << m_peakDSpacePercentage << "\n";
// set up background
m_highBackground = getProperty("HighBackground");
m_bkgdSimga = getProperty("FindBackgroundSigma");
// Set up peak and background functions
processInputFunctions();
// about peak width and other peak parameter estimating method
if (is_d_space_ && m_peakDSpacePercentage > 0)
peak_width_estimate_approach_ = EstimatePeakWidth::InstrumentResolution;
else if (m_peakFunction->name().compare("Gaussian") == 0)
peak_width_estimate_approach_ = EstimatePeakWidth::Observation;
else
peak_width_estimate_approach_ = EstimatePeakWidth::NoEstimation;
g_log.debug() << "Process inputs [3] peak type: " << m_peakFunction->name()
<< ", background type: " << m_bkgdFunction->name() << "\n";
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
ProcessInputPeakTolerance();
processInputFitRanges();
return;
}
//----------------------------------------------------------------------------------------------
/** process inputs for peak profile and background
* @brief FitPeaks::processInputFunctions
*/
void FitPeaks::processInputFunctions() {
// peak functions
std::string peakfunctiontype = getPropertyValue("PeakFunction");
m_peakFunction = boost::dynamic_pointer_cast<IPeakFunction>(
API::FunctionFactory::Instance().createFunction(peakfunctiontype));
// background functions
std::string bkgdfunctiontype = getPropertyValue("BackgroundType");
std::string bkgdname;
if (bkgdfunctiontype.compare("Linear") == 0)
bkgdname = "LinearBackground";
else if (bkgdfunctiontype.compare("Flat") == 0)
bkgdname = "FlatBackground";
else
bkgdname = bkgdfunctiontype;
m_bkgdFunction = boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(bkgdname));
if (m_highBackground)
linear_background_function_ =
boost::dynamic_pointer_cast<IBackgroundFunction>(
API::FunctionFactory::Instance().createFunction(
"LinearBackground"));
else
linear_background_function_ = 0;
// input peak parameters
std::string partablename = getPropertyValue("PeakParameterValueTable");
m_peakParamNames = getProperty("PeakParameterNames");
if (partablename.size() == 0 && m_peakParamNames.size() > 0) {
// use uniform starting value of peak parameters
m_initParamValues = getProperty("PeakParameterValues");
// check whether given parameter names and initial values match
if (m_peakParamNames.size() != m_initParamValues.size())
throw std::invalid_argument("PeakParameterNames and PeakParameterValues "
"have different number of items.");
// convert the parameter name in string to parameter name in integer index
ConvertParametersNameToIndex();
// set the flag
m_uniformProfileStartingValue = true;
} else if (partablename.size() > 0 && m_peakParamNames.size() == 0) {
// use non-uniform starting value of peak parameters
m_uniformProfileStartingValue = false;
m_profileStartingValueTable = getProperty(partablename);
} else if (partablename.size() > 0 && m_peakParamNames.size() > 0) {
// user specifies both of them causing confusion
throw std::invalid_argument("Parameter value table and initial parameter "
"name/value vectors cannot be given "
"simultanenously.");
} else {
// user specifies nothing
g_log.warning("Neither parameter value table nor initial "
"parameter name/value vectors is specified. Fitting might "
"not be reliable for peak profile other than Gaussian");
}
return;
}
//----------------------------------------------------------------------------------------------
/** process and check for inputs about peak fitting range (i.e., window)
* Note: What is the output of the method?
* @brief FitPeaks::processInputFitRanges
*/
void FitPeaks::processInputFitRanges() {
// get peak fit window
std::vector<double> peakwindow = getProperty("FitWindowBoundaryList");
std::string peakwindowname = getPropertyValue("FitPeakWindowWorkspace");
// in most case, calculate window by instrument resolution is False
calculate_window_instrument_ = false;
if (peakwindow.size() > 0 && peakwindowname.size() == 0) {
// Peak windows are uniform among spectra: use vector for peak windows
m_uniformPeakWindows = true;
// check peak positions
if (!m_uniformPeakPositions)
throw std::invalid_argument(
"Uniform peak range/window requires uniform peak positions.");
// check size
if (peakwindow.size() != m_numPeaksToFit * 2)
throw std::invalid_argument(
"Peak window vector must be twice as large as number of peaks.");
// set up window to m_peakWindowVector
m_peakWindowVector.resize(m_numPeaksToFit);
for (size_t i = 0; i < m_numPeaksToFit; ++i) {
std::vector<double> peakranges(2);
peakranges[0] = peakwindow[i * 2];
peakranges[1] = peakwindow[i * 2 + 1];
// check peak window (range) against peak centers
if ((peakranges[0] < m_peakCenters[i]) &&
(m_peakCenters[i] < peakranges[1])) {
// pass check: set
m_peakWindowVector[i] = peakranges;
} else {
// failed
std::stringstream errss;
errss << "Peak " << i
<< ": user specifies an invalid range and peak center against "
<< peakranges[0] << " < " << m_peakCenters[i] << " < "
<< peakranges[1];
throw std::invalid_argument(errss.str());
}
} // END-FOR
// END for uniform peak window
} else if (peakwindow.size() == 0 && peakwindowname.size() > 0) {
// use matrix workspace for non-uniform peak windows
m_peakWindowWorkspace = getProperty("FitPeakWindowWorkspace");
m_uniformPeakWindows = false;
// check size
if (m_peakWindowWorkspace->getNumberHistograms() ==
m_inputMatrixWS->getNumberHistograms())
m_partialWindowSpectra = false;
else if (m_peakWindowWorkspace->getNumberHistograms() ==
(m_stopWorkspaceIndex - m_startWorkspaceIndex + 1))
m_partialWindowSpectra = true;
else
throw std::invalid_argument(
"Peak window workspace has unmatched number of spectra");
// check range for peak windows and peak positions
size_t window_index_start(0);
if (m_partialWindowSpectra)
window_index_start = m_startWorkspaceIndex;
size_t center_index_start(0);
if (m_partialSpectra)
center_index_start = m_startWorkspaceIndex;
// check each spectrum whether the window is defined with the correct size
for (size_t wi = 0; wi < m_peakWindowWorkspace->getNumberHistograms();
++wi) {
// check size
if (m_peakWindowWorkspace->y(wi).size() != m_numPeaksToFit * 2) {
std::stringstream errss;
errss << "Peak window workspace index " << wi
<< " has incompatible number of fit windows (x2) "
<< m_peakWindowWorkspace->y(wi).size()
<< "with the number of peaks " << m_numPeaksToFit << " to fit.";
throw std::invalid_argument(errss.str());
}
// check window range against peak center
size_t window_index = window_index_start + wi;
size_t center_index = window_index - center_index_start;
for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
double left_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2];
double right_w_bound = m_peakWindowWorkspace->y(wi)[ipeak * 2 + 1];
double center = m_peakCenterWorkspace->x(center_index)[ipeak];
if (!(left_w_bound < center && center < right_w_bound)) {
std::stringstream errss;
errss << "Workspace index " << wi << " has incompatible peak window ("
<< left_w_bound << ", " << right_w_bound << ") with " << ipeak
<< "-th expected peak's center " << center;
throw std::runtime_error(errss.str());
}
}
}
} else if (peakwindow.size() == 0) {
// no peak window is defined, then the peak window will be estimated by
// delta(D)/D
if (is_d_space_ && m_peakDSpacePercentage > 0)
calculate_window_instrument_ = true;
else
throw std::invalid_argument("Without definition of peak window, the "
"input workspace must be in unit of dSpacing "
"and Delta(D)/D must be given!");
} else {
// non-supported situation
throw std::invalid_argument("One and only one of peak window array and "
"peak window workspace can be specified.");
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peaks centers and fitting tolerance information from input. the
* parameters that are
* set including
* 1. m_peakCenters/m_peakCenterWorkspace/m_uniformPeakPositions
* (bool)/m_partialSpectra (bool)
* 2. m_peakPosTolerances (vector)
* 3. m_numPeaksToFit
* @brief FitPeaks::processInputPeakCenters
*/
void FitPeaks::ProcessInputPeakCenters() {
// peak centers
m_peakCenters = getProperty("PeakCenters");
std::string peakpswsname = getPropertyValue("PeakCentersWorkspace");
if (m_peakCenters.size() > 0 && peakpswsname.size() == 0) {
// peak positions are uniform among all spectra
m_uniformPeakPositions = true;
// number of peaks to fit!
m_numPeaksToFit = m_peakCenters.size();
} else if (m_peakCenters.size() == 0 && peakpswsname.size() > 0) {
// peak positions can be different among spectra
m_uniformPeakPositions = false;
m_peakCenterWorkspace = getProperty("PeakCentersWorkspace");
// number of peaks to fit!
m_numPeaksToFit = m_peakCenterWorkspace->x(0).size();
// check matrix worksapce for peak positions
size_t numhist = m_peakCenterWorkspace->getNumberHistograms();
if (numhist == m_inputMatrixWS->size())
m_partialSpectra = false;
else if (numhist == m_stopWorkspaceIndex - m_startWorkspaceIndex + 1)
m_partialSpectra = true;
else
throw std::invalid_argument(
"Input peak center workspace has wrong number of spectra.");
} else {
std::stringstream errss;
errss << "One and only one in 'PeakCenters' (vector) and "
"'PeakCentersWorkspace' shall be given. "
<< "'PeakCenters' has size " << m_peakCenters.size()
<< ", and name of peak center workspace "
<< "is " << peakpswsname;
throw std::invalid_argument(errss.str());
}
return;
}
//----------------------------------------------------------------------------------------------
/** Processing peak fitting tolerance information from input. The parameters
* that are
* set including
* 2. m_peakPosTolerances (vector)
* @brief FitPeaks::ProcessInputPeakTolerance
*/
void FitPeaks::ProcessInputPeakTolerance() {
// check code integrity
if (m_numPeaksToFit == 0)
throw std::runtime_error("ProcessInputPeakTolerance() must be called after "
"ProcessInputPeakCenters()");
// peak tolerance
m_peakPosTolerances = getProperty("PositionTolerance");
if (m_peakPosTolerances.size() == 0) {
// case 2, 3, 4
m_peakPosTolerances.clear();
m_peakPosTolCase234 = true;
} else if (m_peakPosTolerances.size() == 1) {
// only 1 uniform peak position tolerance is defined: expand to all peaks
double peak_tol = m_peakPosTolerances[0];
m_peakPosTolerances.resize(m_numPeaksToFit, peak_tol);
} else if (m_peakPosTolerances.size() != m_numPeaksToFit) {
// not uniform but number of peaks does not match
g_log.error() << "number of peak position tolerance "
<< m_peakPosTolerances.size()
<< " is not same as number of peaks " << m_numPeaksToFit
<< "\n";
throw std::runtime_error("Number of peak position tolerances and number of "
"peaks to fit are inconsistent.");
}
// minimum peak height: set default to zero
m_minPeakHeight = getProperty("MinimumPeakHeight");
if (isEmpty(m_minPeakHeight))
m_minPeakHeight = 0.;
return;
}
//----------------------------------------------------------------------------------------------
/** Convert the input initial parameter name/value to parameter index/value for
* faster access
* according to the parameter name and peak profile function
* @brief FitPeaks::ConvertParametersNameToIndex
* Output: m_initParamIndexes will be set up
*/
void FitPeaks::ConvertParametersNameToIndex() {
// get a map for peak profile parameter name and parameter index
std::map<std::string, size_t> parname_index_map;
for (size_t iparam = 0; iparam < m_peakFunction->nParams(); ++iparam)
parname_index_map.insert(
std::make_pair(m_peakFunction->parameterName(iparam), iparam));
// define peak parameter names (class variable) if using table
if (m_profileStartingValueTable)
m_peakParamNames = m_profileStartingValueTable->getColumnNames();
// map the input parameter names to parameter indexes
for (size_t i = 0; i < m_peakParamNames.size(); ++i) {
std::map<std::string, size_t>::iterator locator =
parname_index_map.find(m_peakParamNames[i]);
if (locator != parname_index_map.end())
m_initParamIndexes.push_back(locator->second);
else {
// a parameter name that is not defined in the peak profile function. An
// out-of-range index is thus set to this
g_log.warning() << "Given peak parameter " << m_peakParamNames[i]
<< " is not an allowed parameter of peak "
"function " << m_peakFunction->name() << "\n";
m_initParamIndexes.push_back(m_peakFunction->nParams() * 10);
}
}
return;
}
//----------------------------------------------------------------------------------------------
/** main method to fit peaks among all
* @brief FitPeaks::fitPeaks
*/
void FitPeaks::fitPeaks() {
// cppcheck-suppress syntaxError
PRAGMA_OMP(parallel for schedule(dynamic, 1) )
for (int wi = static_cast<int>(m_startWorkspaceIndex);
wi <= static_cast<int>(m_stopWorkspaceIndex); ++wi) {
PARALLEL_START_INTERUPT_REGION
// peaks to fit
std::vector<double> expected_peak_centers =
GetExpectedPeakPositions(static_cast<size_t>(wi));
// initialize output for this
size_t numfuncparams =
m_peakFunction->nParams() + m_bkgdFunction->nParams();
// main output: center
std::vector<double> fitted_peak_centers(m_numPeaksToFit, -1);
// others
std::vector<std::vector<double>> fitted_parameters(
m_numPeaksToFit); // peak+background
for (size_t ipeak = 0; ipeak < m_numPeaksToFit; ++ipeak) {
std::vector<double> peak_i(numfuncparams);
fitted_parameters[ipeak] = peak_i;
}
// goodness of fitting
std::vector<double> peak_chi2_vec(m_numPeaksToFit, DBL_MAX);
// check number of events
bool noevents(false);
if (m_eventNumberWS &&
m_eventNumberWS->histogram(static_cast<size_t>(wi)).x()[0] < 1.0) {
// no event with additional event number workspace
noevents = true;
} else if (m_inputEventWS &&
m_inputEventWS->getNumberEvents() < MIN_EVENTS) {
// too few events for peak fitting
noevents = true;
} else {
// fit
fitSpectrumPeaks(static_cast<size_t>(wi), expected_peak_centers,
fitted_peak_centers, fitted_parameters, &peak_chi2_vec);
}
PARALLEL_CRITICAL(FindPeaks_WriteOutput) {
writeFitResult(static_cast<size_t>(wi), expected_peak_centers,
fitted_peak_centers, fitted_parameters, peak_chi2_vec,
noevents);
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
}
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
//----------------------------------------------------------------------------------------------
/** Fit peaks across one single spectrum
* @brief FitPeaks::fitSpectrumPeaks
* @param wi
* @param expected_peak_centers
* @param fitted_peak_centers
* @param fitted_function_parameters
* @param peak_chi2_vec
*/
void FitPeaks::fitSpectrumPeaks(
size_t wi, const std::vector<double> &expected_peak_centers,
std::vector<double> &fitted_peak_centers,
std::vector<std::vector<double>> &fitted_function_parameters,
std::vector<double> *peak_chi2_vec) {
// Set up sub algorithm Fit for peak and background
IAlgorithm_sptr peak_fitter; // both peak and background (combo)
try {
peak_fitter = createChildAlgorithm("Fit", -1, -1, false);
} catch (Exception::NotFoundError &) {
std::stringstream errss;
errss << "The FitPeak algorithm requires the CurveFitting library";
g_log.error(errss.str());
throw std::runtime_error(errss.str());
}
// Clone the function
IPeakFunction_sptr peakfunction =
boost::dynamic_pointer_cast<API::IPeakFunction>(m_peakFunction->clone());
IBackgroundFunction_sptr bkgdfunction =
boost::dynamic_pointer_cast<API::IBackgroundFunction>(
m_bkgdFunction->clone());
CompositeFunction_sptr compfunc = boost::make_shared<CompositeFunction>();
compfunc->addFunction(peakfunction);
compfunc->addFunction(bkgdfunction);
// set up properties of algorithm (reference) 'Fit'
peak_fitter->setProperty("Minimizer", m_minimizer);
peak_fitter->setProperty("CostFunction", m_costFunction);
peak_fitter->setProperty("CalcErrors", true);
for (size_t fit_index = 0; fit_index < m_numPeaksToFit; ++fit_index) {
// convert fit index to peak index (in ascending order)
size_t peak_index(fit_index);
if (fit_peaks_from_right_)
peak_index = m_numPeaksToFit - fit_index - 1;
// get expected peak position
double expected_peak_pos = expected_peak_centers[peak_index];
double x0 = m_inputMatrixWS->histogram(wi).x().front();
double xf = m_inputMatrixWS->histogram(wi).x().back();
double cost(DBL_MAX);
if (expected_peak_pos <= x0 || expected_peak_pos >= xf) {
// out of range and there won't be any fit
peakfunction->setIntensity(0);
peakfunction->setCentre(expected_peak_pos);
} else {
// find out the peak position to fit
std::pair<double, double> peak_window_i =
GetPeakFitWindow(wi, peak_index);
bool observe_peak_width =
DecideToEstimatePeakWidth(fit_index, peakfunction);
// do fitting with peak and background function (no analysis at this
// point)
cost = FitIndividualPeak(wi, peak_fitter, expected_peak_pos,
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
peak_window_i, m_highBackground,
observe_peak_width, peakfunction, bkgdfunction);
}
// process fitting result
ProcessSinglePeakFitResult(
wi, peak_index, expected_peak_centers, peakfunction, bkgdfunction, cost,
fitted_peak_centers, fitted_function_parameters, peak_chi2_vec);
}
return;
}
//----------------------------------------------------------------------------------------------
/** Decided whether to estimate peak width. If not, then set the width related
* peak parameters from
* user specified starting value
* @brief FitPeaks::DecideToEstimatePeakWidth
* @param peak_index
* @param peak_function
* @return
*/
bool FitPeaks::DecideToEstimatePeakWidth(
size_t peak_index, API::IPeakFunction_sptr peak_function) {
bool observe_peak_width(false);
if (m_initParamIndexes.size() > 0) {
// user specifies starting value of peak parameters
if (peak_index == 0) {
// first peak. using the user-specified value
for (size_t i = 0; i < m_initParamIndexes.size(); ++i) {
size_t param_index = m_initParamIndexes[i];
double param_value = m_initParamValues[i];
peak_function->setParameter(param_index, param_value);
}
} else {
// using the fitted paramters from the previous fitting result
// TODO FIXME - Disable to output fitted result after debugging
// std::stringstream dbss;
// for (size_t i = 0; i < peak_function->nParams(); ++i)
// dbss << peak_function->getParameterNames()[i] << " = "
// << peak_function->getParameter(i) << ", ";
// g_log.notice() << "[DB...BAT] Last fit parameters: " << dbss.str()
// << "\n";
}
} else {
// by observation
observe_peak_width = true;
}
return observe_peak_width;
}
//----------------------------------------------------------------------------------------------
/** retrieve the fitted peak information from functions and set to output
* vectors
* @brief FitPeaks::ProcessSinglePeakFitResult
* @param wsindex
* @param expected_peak_positions
* @param peakfunction
* @param bkgdfunction
* @param function_parameters_vector
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
* @param peak_chi2_vec
*/
void FitPeaks::ProcessSinglePeakFitResult(
size_t wsindex, size_t peakindex,
const std::vector<double> &expected_peak_positions,
API::IPeakFunction_sptr peakfunction,
API::IBackgroundFunction_sptr bkgdfunction, double cost,
std::vector<double> &fitted_peak_positions,
std::vector<std::vector<double>> &function_parameters_vector,
std::vector<double> *peak_chi2_vec) {
// check input
if (peakindex >= fitted_peak_positions.size() ||
peakindex >= function_parameters_vector.size() ||
peakindex >= peak_chi2_vec->size()) {
throw std::runtime_error("peak index size is out of boundary for fitted "
"peaks positions, peak parameters or chi2s");
}
// determine peak position tolerance
double postol(DBL_MAX);
bool case23(false);
if (m_peakPosTolCase234) {
// peak tolerance is not defined
if (m_numPeaksToFit == 1) {
// case (d) one peak only
postol = m_inputMatrixWS->histogram(wsindex).x().back() -
m_inputMatrixWS->histogram(wsindex).x().front();
} else {
// case b and c: more than 1 peaks without defined peak tolerance
case23 = true;
}
} else {
// user explicitly specified
if (peakindex >= m_peakPosTolerances.size())
throw std::runtime_error("Peak tolerance out of index");
postol = m_peakPosTolerances[peakindex];
}
// get peak position and analyze the fitting is good or not by various
// criteria
double peak_pos = peakfunction->centre();
bool good_fit(false);
if ((cost < 0) || (cost >= DBL_MAX - 1.)) {
// unphysical cost function value
peak_pos = -4;
} else if (peakfunction->height() < m_minPeakHeight) {
// peak height is under minimum request
peak_pos = -3;
} else if (case23) {
// case b and c to check peak position without defined peak tolerance
std::pair<double, double> fitwindow = GetPeakFitWindow(wsindex, peakindex);
if (fitwindow.first < fitwindow.second) {
// peak fit window is specified or calculated: use peak window as position
// tolerance
if (peak_pos < fitwindow.first || peak_pos > fitwindow.second) {
// peak is out of fit window
peak_pos = -2;
g_log.debug() << "Peak position " << peak_pos << " is out of fit "
<< "window boundary " << fitwindow.first << ", "
<< fitwindow.second << "\n";
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
} else
good_fit = true;
} else {
// use the 1/2 distance to neiboring peak without defined peak window
double left_bound(-1);
if (peakindex > 0)
left_bound = 0.5 * (expected_peak_positions[peakindex] -
expected_peak_positions[peakindex - 1]);
double right_bound(-1);
if (peakindex < m_numPeaksToFit - 1)
right_bound = 0.5 * (expected_peak_positions[peakindex + 1] -
expected_peak_positions[peakindex]);
if (left_bound < 0)
left_bound = right_bound;
if (right_bound < 0)
right_bound = left_bound;
if (left_bound < 0 || right_bound < 0)
throw std::runtime_error("Code logic error such that left or right "
"boundary of peak position is negative.");
if (peak_pos < left_bound || peak_pos > right_bound)
peak_pos = -2.5;
else
good_fit = true;
}
} else if (fabs(peakfunction->centre() - expected_peak_positions[peakindex]) >
postol) {
// peak center is not within tolerance
peak_pos = -5;
g_log.debug() << "Peak position difference "
<< fabs(peakfunction->centre() -
expected_peak_positions[peakindex])
<< " is out of range of tolerance: " << postol << "\n";
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
} else {
// all criteria are passed
good_fit = true;
}
// set cost function to DBL_MAX if fitting is bad
if (good_fit) {
// convert fitting result to analysis data structure
} else {
// set the cost function value to DBL_MAX
cost = DBL_MAX;
}
// chi2
(*peak_chi2_vec)[peakindex] = cost;
double peak_position = peak_pos;
if (cost > DBL_MAX - 1) {
peakfunction->setIntensity(0);
}
// set peak position
fitted_peak_positions[peakindex] = peak_position;
// transfer from peak function to vector
size_t peak_num_params = m_peakFunction->nParams();
for (size_t ipar = 0; ipar < peak_num_params; ++ipar) {
// peak function
function_parameters_vector[peakindex][ipar] =
peakfunction->getParameter(ipar);
}
for (size_t ipar = 0; ipar < m_bkgdFunction->nParams(); ++ipar) {
// background function
function_parameters_vector[peakindex][ipar + peak_num_params] =
bkgdfunction->getParameter(ipar);
}
return;
}
//----------------------------------------------------------------------------------------------
// TODO/NOW - Implement such that it can be parallelized
/** calculate fitted peaks with background in the output workspace
* @brief FitPeaks::calculateFittedPeaks
*/
void FitPeaks::CalculateFittedPeaks() {
// check
if (!m_fittedParamTable)
throw std::runtime_error("No parameters");