Newer
Older
#include "MantidCurveFitting/Functions/CrystalFieldFunction.h"
#include "MantidCurveFitting/Functions/CrystalElectricField.h"
#include "MantidCurveFitting/Functions/CrystalFieldHeatCapacity.h"
#include "MantidCurveFitting/Functions/CrystalFieldMagnetisation.h"
#include "MantidCurveFitting/Functions/CrystalFieldMoment.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeakUtils.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeaks.h"
#include "MantidCurveFitting/Functions/CrystalFieldSusceptibility.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IConstraint.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IPeakFunction.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "MantidAPI/ParameterTie.h"
#include "MantidKernel/Exception.h"
#include <boost/make_shared.hpp>
#include <boost/optional.hpp>
namespace Mantid {
namespace CurveFitting {
namespace Functions {
using namespace CurveFitting;
using namespace Kernel;
using namespace API;
DECLARE_FUNCTION(CrystalFieldFunction)
namespace {
const std::string ION_PREFIX("ion");
const std::string SPECTRUM_PREFIX("sp");
const std::string BACKGROUND_PREFIX("bg");
const std::string PEAK_PREFIX("pk");
// Regex for names of attributes/parameters for a particular spectrum
// Example: sp1.FWHMX
const std::regex SPECTRUM_ATTR_REGEX(SPECTRUM_PREFIX + "([0-9]+)\\.(.+)");
// Regex for names of attributes/parameters for a background
// Example: bg.A1
const std::regex BACKGROUND_ATTR_REGEX(BACKGROUND_PREFIX + "\\.(.+)");
// Regex for names of attributes/parameters for peaks
// Example: pk1.PeakCentre
const std::regex PEAK_ATTR_REGEX(PEAK_PREFIX + "([0-9]+)\\.(.+)");
// Regex for names of attributes/parameters for peaks
// Example: ion1.pk0.PeakCentre
const std::regex ION_ATTR_REGEX(ION_PREFIX + "([0-9]+)\\.(.+)");
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/// Define the source function for CrystalFieldFunction.
/// Its function() method is not needed.
class Peaks : public CrystalFieldPeaksBase, public API::IFunctionGeneral {
public:
Peaks() : CrystalFieldPeaksBase() {}
std::string name() const override { return "Peaks"; }
size_t getNumberDomainColumns() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
size_t getNumberValuesPerArgument() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
void functionGeneral(const API::FunctionDomainGeneral &,
API::FunctionValues &) const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
std::vector<size_t> m_IntensityScalingIdx;
std::vector<size_t> m_PPLambdaIdxChild;
std::vector<size_t> m_PPLambdaIdxSelf;
/// Declare the intensity scaling parameters: one per spectrum.
void declareIntensityScaling(size_t nSpec) {
m_IntensityScalingIdx.clear();
m_PPLambdaIdxChild.resize(nSpec, -1);
m_PPLambdaIdxSelf.resize(nSpec, -1);
for (size_t i = 0; i < nSpec; ++i) {
auto si = std::to_string(i);
try { // If parameter has already been declared, don't declare it.
declareParameter("IntensityScaling" + si, 1.0,
"Intensity scaling factor for spectrum " + si);
} catch (std::invalid_argument &) {
}
m_IntensityScalingIdx.push_back(parameterIndex("IntensityScaling" + si));
}
}
};
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/// Value representing an undefined index.
const size_t UNDEFINED_INDEX = std::numeric_limits<size_t>::max();
enum ReferenceTupleType {Background, Peak, PhysProp, Other};
/// A type that defines a structure to reference a parameter or attribute
/// of a composite function
struct ReferenceTuple {
/// Parameter name in the function specified by the indices
std::string name;
/// The ion index
size_t ionIndex;
/// The spectrum
size_t spectrumIndex;
/// The peak
size_t peakIndex;
/// What kind of parameter is referenced
ReferenceTupleType type;
};
/// Work out parameter of which function the name referes to..
/// @param name :: A name to parse.
ReferenceTuple getReferenceTuple(const std::string &name) {
auto localName = name;
size_t ionIndex(UNDEFINED_INDEX);
size_t spectrumIndex(UNDEFINED_INDEX);
size_t peakIndex(UNDEFINED_INDEX);
ReferenceTupleType type(Other);
std::smatch match;
if (std::regex_match(name, match, ION_ATTR_REGEX)) {
ionIndex = std::stoul(match[1].str());
localName = match[2].str();
}
if (std::regex_match(localName, match, SPECTRUM_ATTR_REGEX)) {
spectrumIndex = std::stoul(match[1].str());
localName = match[2].str();
}
if (std::regex_match(localName, match, BACKGROUND_ATTR_REGEX)) {
localName = match[1].str();
if (std::regex_match(localName, match, PEAK_ATTR_REGEX)) {
if (type == Background) {
throw std::invalid_argument("Parameter or attribute cannot be both background and peak.");
}
peakIndex = std::stoul(match[1].str());
localName = match[2].str();
type = Peak;
}
return ReferenceTuple({localName, ionIndex, spectrumIndex, peakIndex, type});
} // namespace
CrystalFieldFunction::CrystalFieldFunction()
: IFunction(), m_nControlParams(0), m_nControlSourceParams(0),
m_dirtyTarget(true) {}
// Evaluates the function
void CrystalFieldFunction::function(const FunctionDomain &domain,
FunctionValues &values) const {
updateTargetFunction();
if (!m_target) {
throw std::logic_error(
"FunctionGenerator failed to generate target function.");
}
m_target->function(domain, values);
}
/// Set the source function
/// @param source :: New source function.
void CrystalFieldFunction::setSource(IFunction_sptr source) const {
m_source = source;
}
size_t CrystalFieldFunction::getNumberDomains() const {
if (!m_target) {
buildTargetFunction();
}
if (!m_target) {
throw std::runtime_error("Failed to build target function.");
}
return m_target->getNumberDomains();
}
std::vector<IFunction_sptr>
CrystalFieldFunction::createEquivalentFunctions() const {
checkTargetFunction();
std::vector<IFunction_sptr> funs;
auto &composite = dynamic_cast<CompositeFunction &>(*m_target);
for (size_t i = 0; i < composite.nFunctions(); ++i) {
funs.push_back(composite.getFunction(i));
}
return funs;
}
/// Set i-th parameter
void CrystalFieldFunction::setParameter(size_t i, const double &value,
bool explicitlySet) {
checkSourceFunction();
if (i < m_nControlParams) {
m_control.setParameter(i, value, explicitlySet);
m_dirtyTarget = true;
} else if (i < m_nControlSourceParams) {
m_source->setParameter(i - m_nControlParams, value, explicitlySet);
} else {
checkTargetFunction();
m_target->setParameter(i - m_nControlSourceParams, value, explicitlySet);
}
}
/// Set i-th parameter description
void CrystalFieldFunction::setParameterDescription(
size_t i, const std::string &description) {
checkSourceFunction();
if (i < m_nControlParams) {
m_control.setParameterDescription(i, description);
} else if (i < m_nControlSourceParams) {
m_source->setParameterDescription(i - m_nControlParams, description);
} else {
checkTargetFunction();
m_target->setParameterDescription(i - m_nControlSourceParams, description);
}
}
/// Get i-th parameter
double CrystalFieldFunction::getParameter(size_t i) const {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
return m_control.getParameter(i);
} else if (i < m_nControlSourceParams) {
return m_source->getParameter(i - m_nControlParams);
} else {
return m_target->getParameter(i - m_nControlSourceParams);
}
/// Set parameter by name.
void CrystalFieldFunction::setParameter(const std::string &name,
const double &value,
bool explicitlySet) {
auto ref = getParameterReference(name);
ref.setParameter(value, explicitlySet);
}
/// Set description of parameter by name.
void CrystalFieldFunction::setParameterDescription(
const std::string &name, const std::string &description) {
auto ref = getParameterReference(name);
ref.getLocalFunction()->setParameterDescription(ref.getLocalIndex(),
description);
}
/// Get parameter by name.
double CrystalFieldFunction::getParameter(const std::string &name) const {
auto ref = getParameterReference(name);
return ref.getParameter();
}
/// Total number of parameters
size_t CrystalFieldFunction::nParams() const {
checkSourceFunction();
checkTargetFunction();
return m_nControlSourceParams + m_target->nParams();
/// Returns the index of a parameter with a given name
/// @param name :: Name of a parameter.
size_t CrystalFieldFunction::parameterIndex(const std::string &name) const {
checkSourceFunction();
checkTargetFunction();
if (nParams() != m_mapIndices2Names.size()) {
makeMaps();
auto found = m_mapNames2Indices.find(name);
if (found == m_mapNames2Indices.end()) {
throw std::invalid_argument("CrystalFieldFunction parameter not found: " + name);
return found->second;
}
/// Returns the name of parameter i
std::string CrystalFieldFunction::parameterName(size_t i) const {
if (i >= nParams()) {
throw std::invalid_argument("CrystalFieldFunction's parameter index " +
std::to_string(i) + " is out of range " +
std::to_string(nParams()));
}
checkSourceFunction();
checkTargetFunction();
if (nParams() != m_mapIndices2Names.size()) {
makeMaps();
return m_mapIndices2Names[i];
}
/// Returns the description of parameter i
std::string CrystalFieldFunction::parameterDescription(size_t i) const {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
return m_control.parameterDescription(i);
} else if (i < m_nControlSourceParams) {
return m_source->parameterDescription(i - m_nControlParams);
} else {
return m_target->parameterDescription(i - m_nControlSourceParams);
}
}
/// Checks if a parameter has been set explicitly
bool CrystalFieldFunction::isExplicitlySet(size_t i) const {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
return m_control.isExplicitlySet(i);
} else if (i < m_nControlSourceParams) {
return m_source->isExplicitlySet(i - m_nControlParams);
} else {
return m_target->isExplicitlySet(i - m_nControlSourceParams);
}
}
/// Get the fitting error for a parameter
double CrystalFieldFunction::getError(size_t i) const {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
return m_control.getError(i);
} else if (i < m_nControlSourceParams) {
return m_source->getError(i - m_nControlParams);
} else {
return m_target->getError(i - m_nControlSourceParams);
}
}
/// Set the fitting error for a parameter
void CrystalFieldFunction::setError(size_t i, double err) {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
m_control.setError(i, err);
} else if (i < m_nControlSourceParams) {
m_source->setError(i - m_nControlParams, err);
m_target->setError(i - m_nControlSourceParams, err);
}
}
/// Change status of parameter
void CrystalFieldFunction::setParameterStatus(
size_t i, IFunction::ParameterStatus status) {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
m_control.setParameterStatus(i, status);
} else if (i < m_nControlSourceParams) {
m_source->setParameterStatus(i - m_nControlParams, status);
m_target->setParameterStatus(i - m_nControlSourceParams, status);
}
}
/// Get status of parameter
IFunction::ParameterStatus
CrystalFieldFunction::getParameterStatus(size_t i) const {
checkSourceFunction();
checkTargetFunction();
if (i < m_nControlParams) {
return m_control.getParameterStatus(i);
} else if (i < m_nControlSourceParams) {
return m_source->getParameterStatus(i - m_nControlParams);
return m_target->getParameterStatus(i - m_nControlSourceParams);
}
}
/// Return parameter index from a parameter reference.
size_t
CrystalFieldFunction::getParameterIndex(const ParameterReference &ref) const {
checkSourceFunction();
checkTargetFunction();
if (ref.getLocalFunction() == this) {
return ref.getLocalIndex();
auto index = m_control.getParameterIndex(ref);
if (index < m_nControlParams) {
return index;
}
index = m_source->getParameterIndex(ref);
if (index < m_source->nParams()) {
return index + m_nControlParams;
}
return m_target->getParameterIndex(ref) + m_nControlSourceParams;
}
/// Set up the function for a fit.
void CrystalFieldFunction::setUpForFit() {
checkSourceFunction();
updateTargetFunction();
IFunction::setUpForFit();
}
/// Declare a new parameter
void CrystalFieldFunction::declareParameter(const std::string &, double,
const std::string &) {
throw Kernel::Exception::NotImplementedError(
"CrystalFieldFunction cannot not have its own parameters.");
}
/// Build and cache the attribute names
void CrystalFieldFunction::buildAttributeNames() const {
checkSourceFunction();
checkTargetFunction();
if (!m_attributeNames.empty()) {
return;
m_attributeNames = IFunction::getAttributeNames();
auto controlAttributeNames = m_control.getAttributeNames();
// Lambda function that moves a attribute name from controlAttributeNames
// to attNames.
auto moveAttributeName = [&](const std::string &name) {
auto iterFound = std::find(controlAttributeNames.begin(),
controlAttributeNames.end(), name);
if (iterFound != controlAttributeNames.end()) {
controlAttributeNames.erase(iterFound);
m_attributeNames.push_back(name);
}
};
// These names must appear first and in this order in the output vector
moveAttributeName("Ions");
moveAttributeName("Symmetries");
moveAttributeName("Temperatures");
moveAttributeName("Background");
// Copy the rest of the names
m_attributeNames.insert(m_attributeNames.end(), controlAttributeNames.begin(),
controlAttributeNames.end());
// Get
for (size_t iSpec = 0; iSpec < m_control.nFunctions(); ++iSpec) {
std::string prefix(SPECTRUM_PREFIX);
prefix.append(std::to_string(iSpec)).append(".");
auto names = m_control.getFunction(iSpec)->getAttributeNames();
for (auto &name : names) {
name.insert(name.begin(), prefix.begin(), prefix.end());
}
m_attributeNames.insert(m_attributeNames.end(), names.begin(), names.end());
}
auto nSpec = nSpectra();
for (size_t iSpec = nSpec; iSpec < m_target->nFunctions(); ++iSpec) {
auto &physPropFun = *m_target->getFunction(iSpec);
auto names = physPropFun.getAttributeNames();
for (auto &name : names) {
if (name == "NumDeriv")
continue;
std::string prefix(physPropFun.name());
prefix.append(".");
name.insert(name.begin(), prefix.begin(), prefix.end());
m_attributeNames.push_back(name);
}
}
/// Returns the number of attributes associated with the function
size_t CrystalFieldFunction::nAttributes() const {
buildAttributeNames();
return m_attributeNames.size();
}
/// Returns a list of attribute names
std::vector<std::string> CrystalFieldFunction::getAttributeNames() const {
buildAttributeNames();
return m_attributeNames;
}
/// Return a value of attribute attName
/// @param attName :: Name of an attribute.
IFunction::Attribute
CrystalFieldFunction::getAttribute(const std::string &attName) const {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
// This will throw an exception because attribute doesn't exist
return IFunction::getAttribute(attName);
return attRef.first->getAttribute(attRef.second);
/// Perform custom actions on setting certain attributes.
void CrystalFieldFunction::setAttribute(const std::string &attName,
const Attribute &attr) {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
// This will throw an exception because attribute doesn't exist
IFunction::setAttribute(attName, attr);
} else if (attRef.first == &m_control) {
m_source.reset();
attRef.first->setAttribute(attRef.second, attr);
/// Check if attribute attName exists
bool CrystalFieldFunction::hasAttribute(const std::string &attName) const {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
return false;
}
return attRef.first->hasAttribute(attRef.second);
/// Get a reference to an attribute.
/// @param attName :: A name of an attribute. It can be a code rather than an
/// actual name. This method interprets the code and finds the function and
/// attribute it refers to.
/// @returns :: A pair (IFunction, attribute_name) where attribute_name is a
/// name that the IFunction has.
std::pair<API::IFunction *, std::string>
CrystalFieldFunction::getAttributeReference(const std::string &attName) const {
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
auto name = match[2].str();
if (m_control.nFunctions() == 0) {
m_control.buildControls();
}
if (name == "FWHMX" || name == "FWHMY") {
if (i < m_control.nFunctions()) {
return std::make_pair(m_control.getFunction(i).get(), name);
} else {
return std::make_pair(nullptr, "");
}
}
return std::make_pair(nullptr, "");
}
return std::make_pair(&m_control, attName);
}
/// Get a reference to a parameter
API::ParameterReference CrystalFieldFunction::getParameterReference(
const std::string ¶mName) const {
checkSourceFunction();
checkTargetFunction();
if (nParams() != m_mapIndices2Names.size()) {
makeMaps();
}
const auto refTuple = getReferenceTuple(paramName);
const auto &ionIndex = refTuple.ionIndex;
const auto &spectrumIndex = refTuple.spectrumIndex;
auto &name = refTuple.name;
// Check if it's a background's parameter
if (refTuple.type == Background) {
auto function = getBackground(spectrumIndex);
return API::ParameterReference(function, function->parameterIndex(name));
}
// Check if it's a peak parameter
if (refTuple.type == Peak) {
auto function = getPeak(ionIndex, spectrumIndex, refTuple.peakIndex);
return API::ParameterReference(function, function->parameterIndex(name));
}
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
// Check if it's a phys prop parameter
if (refTuple.type == PhysProp) {
throw Kernel::Exception::NotImplementedError("PhysProps are not implemented.");
}
// Check if it's a parameter of a spectrum function
if (spectrumIndex != UNDEFINED_INDEX) {
auto function = getSpectrumControl(spectrumIndex);
return API::ParameterReference(function, function->parameterIndex(name));
}
// Check for a ion-specific params
if (ionIndex != UNDEFINED_INDEX) {
auto function = getIon(ionIndex);
return API::ParameterReference(function,
function->parameterIndex(name));
}
// A parameter without a prefix is a parameter of m_control
// for multi-site ...
if (isMultiSite()) {
return API::ParameterReference(&m_control,
m_control.parameterIndex(paramName));
}
// ... and m_source for single site
return API::ParameterReference(m_source.get(),
m_source->parameterIndex(paramName));
} catch (std::invalid_argument &) {
throw std::invalid_argument("Parameter " + paramName + " not found.");
}
/// Get number of the number of spectra (excluding phys prop data).
size_t CrystalFieldFunction::nSpectra() const {
auto nFuns = m_control.nFunctions();
if (nFuns == 0) {
nFuns = 1;
}
return nFuns;
/// Get a reference to the control function
IFunction *CrystalFieldFunction::getControl() const {
return &m_control;
}
/// Get a reference to a spectrum control function
IFunction *CrystalFieldFunction::getSpectrumControl(size_t spectrumIndex) const {
return m_control.getFunction(spectrumIndex).get();
}
/// Get a reference to a function with ion parameters
IFunction *CrystalFieldFunction::getIon(size_t ionIndex) const {
if (isMultiSite()) {
return compositeSource().getFunction(ionIndex).get();
} else {
return m_source.get();
}
}
/// Get a reference to a function with background parameters
IFunction *CrystalFieldFunction::getBackground(size_t spectrumIndex) const {
if (!hasBackground()) {
throw std::invalid_argument("Function has no background");
}
// spectrumIndex must be given for multispectrum only
bool invalidArgument = (spectrumIndex == UNDEFINED_INDEX) == isMultiSpectrum();
if (invalidArgument) {
throw std::invalid_argument("Background parameter not found");
}
if (isMultiSite()) {
if (isMultiSpectrum()) {
auto &spectrum = dynamic_cast<CompositeFunction &>(
*m_target->getFunction(spectrumIndex));
auto &ionSpectrum =
dynamic_cast<CompositeFunction &>(*spectrum.getFunction(0));
return ionSpectrum.getFunction(0).get();
} else {
return m_target->getFunction(0).get();
}
} else {
if (isMultiSpectrum()) {
auto &spectrum = dynamic_cast<CompositeFunction &>(
*m_target->getFunction(spectrumIndex));
return spectrum.getFunction(0).get();
} else {
return m_target->getFunction(0).get();
}
}
}
/// Get a reference to a function with peak parameters
IFunction *CrystalFieldFunction::getPeak(size_t ionIndex, size_t spectrumIndex, size_t peakIndex) const {
bool invalidArgument = (spectrumIndex == UNDEFINED_INDEX) == isMultiSpectrum();
if (invalidArgument) {
throw std::invalid_argument("Peak parameter not found");
}
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
if (isMultiSite()) {
if (isMultiSpectrum()) {
auto &spectrum = dynamic_cast<CompositeFunction &>(
*m_target->getFunction(spectrumIndex));
auto &ionSpectrum =
dynamic_cast<CompositeFunction &>(*spectrum.getFunction(ionIndex));
if (ionIndex == 0 && hasBackground()) {
++peakIndex;
}
return ionSpectrum.getFunction(peakIndex).get();
} else {
if (hasBackground()) {
++ionIndex;
}
auto &ionSpectrum =
dynamic_cast<CompositeFunction &>(*m_target->getFunction(ionIndex));
return ionSpectrum.getFunction(peakIndex).get();
}
} else {
if (hasBackground()) {
++peakIndex;
}
if (isMultiSpectrum()) {
auto &spectrum = dynamic_cast<CompositeFunction &>(
*m_target->getFunction(spectrumIndex));
return spectrum.getFunction(peakIndex).get();
} else {
return m_target->getFunction(peakIndex).get();
}
}
}
/// Get the i-th spectrum
CompositeFunction_sptr CrystalFieldFunction::getSpectrum(size_t spectrumIndex) {
checkTargetFunction();
if (isMultiSpectrum()) {
return boost::dynamic_pointer_cast<CompositeFunction>(m_target->getFunction(spectrumIndex));
} else {
return m_target;
}
}
/// Get the tie for i-th parameter
ParameterTie *CrystalFieldFunction::getTie(size_t i) const {
checkSourceFunction();
checkTargetFunction();
auto tie = IFunction::getTie(i);
if (tie) {
return tie;
if (i < m_nControlParams) {
tie = m_control.getTie(i);
} else if (i < m_nControlSourceParams) {
tie = m_source->getTie(i - m_nControlParams);
tie = m_target->getTie(i - m_nControlSourceParams);
}
return tie;
}
/// Get the i-th constraint
IConstraint *CrystalFieldFunction::getConstraint(size_t i) const {
checkSourceFunction();
auto constraint = IFunction::getConstraint(i);
if (constraint == nullptr) {
if (i < m_nControlParams) {
constraint = m_control.getConstraint(i);
} else if (i < m_nControlSourceParams) {
constraint = m_source->getConstraint(i - m_nControlParams);
} else {
checkTargetFunction();
constraint = m_target->getConstraint(i - m_nControlSourceParams);
}
}
return constraint;
}
/// Check if the function is set up for a multi-site calculations.
/// (Multiple ions defined)
bool CrystalFieldFunction::isMultiSite() const {
return m_control.isMultiSite();
}
/// Check if the function is set up for a multi-spectrum calculations
/// (Multiple temperatures defined)
bool CrystalFieldFunction::isMultiSpectrum() const {
return m_control.isMultiSpectrum();
}
/// Check if the spectra have a background.
bool CrystalFieldFunction::hasBackground() const {
if (!hasAttribute("Background")) {
return false;
}
return !getAttribute("Background").isEmpty();
}
/// Check if there are peaks (there is at least one spectrum).
bool CrystalFieldFunction::hasPeaks() const { return m_control.hasPeaks(); }
/// Check if there are any phys. properties.
bool CrystalFieldFunction::hasPhysProperties() const { return m_control.hasPhysProperties(); }
/// Get a reference to the source function if it's composite
API::CompositeFunction &CrystalFieldFunction::compositeSource() const {
auto composite = dynamic_cast<CompositeFunction*>(m_source.get());
if (composite == nullptr) {
throw std::logic_error("Source of CrystalFieldFunction is not composite.");
}
return *composite;
}
/// Build source function if necessary.
void CrystalFieldFunction::checkSourceFunction() const {
if (!m_source) {
buildSourceFunction();
/// Build the source function
void CrystalFieldFunction::buildSourceFunction() const {
setSource(m_control.buildSource());
m_nControlParams = m_control.nParams();
m_nControlSourceParams = m_nControlParams + m_source->nParams();
}
/// Update spectrum function if necessary.
void CrystalFieldFunction::checkTargetFunction() const {
updateTargetFunction();
}
if (!m_target) {
throw std::logic_error(
"CrystalFieldFunction failed to generate target function.");
}
}
/// Uses source to calculate peak centres and intensities
/// then populates m_spectrum with peaks of type given in PeakShape attribute.
void CrystalFieldFunction::buildTargetFunction() const {
checkSourceFunction();
m_dirtyTarget = false;
if (isMultiSite()) {
buildMultiSite();
} else {
buildSingleSite();
}
m_attributeNames.clear();
}
/// Build the target function in a single site case.
void CrystalFieldFunction::buildSingleSite() const {
if (isMultiSpectrum()) {
buildSingleSiteMultiSpectrum();
} else {
buildSingleSiteSingleSpectrum();
}
}
/// Build the target function in a multi site case.
void CrystalFieldFunction::buildMultiSite() const {
if (isMultiSpectrum()) {
buildMultiSiteMultiSpectrum();
} else {
buildMultiSiteSingleSpectrum();
}
}
/// Build the target function in a single site - single spectrum case.
void CrystalFieldFunction::buildSingleSiteSingleSpectrum() const {
auto spectrum = new CompositeFunction;
m_target.reset(spectrum);
m_target->setAttributeValue("NumDeriv", true);
auto bkgdShape = getAttribute("Background").asUnquotedString();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
if (!bkgdShape.empty()) {
auto background =
API::FunctionFactory::Instance().createInitialized(bkgdShape);
spectrum->addFunction(background);
if (fixAllPeaks) {
background->fixAll();
}
}
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
if (values.size() == 0) {
return;
}
if (values.size() % 2 != 0) {
throw std::runtime_error(
"CrystalFieldPeaks returned odd number of values.");
}
auto xVec = m_control.getAttribute("FWHMX").asVector();
auto yVec = m_control.getAttribute("FWHMY").asVector();
auto &FWHMs = m_control.FWHMs();
auto defaultFWHM = FWHMs.empty() ? 0.0 : FWHMs[0];
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
size_t nRequiredPeaks = getAttribute("NPeaks").asInt();
*spectrum, peakShape, values, xVec, yVec, fwhmVariation, defaultFWHM,
nRequiredPeaks, fixAllPeaks);
}
/// Build the target function in a single site - multi spectrum case.
void CrystalFieldFunction::buildSingleSiteMultiSpectrum() const {
auto fun = new MultiDomainFunction;
m_target.reset(fun);
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<CrystalFieldPeaksBase &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
const auto nSpec = nSpectra();
auto &temperatures = m_control.temperatures();
auto &FWHMs = m_control.FWHMs();
const bool addBackground = true;
for (size_t i = 0; i < nSpec; ++i) {
auto intensityScaling =
m_control.getFunction(i)->getParameter("IntensityScaling");
fun->addFunction(buildSpectrum(nre, en, wf, temperatures[i], FWHMs[i], i,
addBackground, intensityScaling));
fun->setDomainIndex(i, i);
}
auto &physProps = m_control.physProps();
size_t i = nSpec;
for(auto &prop: physProps) {
fun->addFunction(buildPhysprop(nre, en, wf, ham, prop));
}
}
/// Build the target function in a multi site - single spectrum case.
void CrystalFieldFunction::buildMultiSiteSingleSpectrum() const {
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
auto spectrum = new CompositeFunction;
m_target.reset(spectrum);
m_target->setAttributeValue("NumDeriv", true);
auto bkgdShape = getAttribute("Background").asUnquotedString();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
if (!bkgdShape.empty()) {
auto background =
API::FunctionFactory::Instance().createInitialized(bkgdShape);
spectrum->addFunction(background);
if (fixAllPeaks) {
background->fixAll();
}
}
auto &FWHMs = m_control.FWHMs();
auto defaultFWHM = FWHMs.empty() ? 0.0 : FWHMs[0];
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
size_t nRequiredPeaks = getAttribute("NPeaks").asInt();
auto xVec = m_control.getAttribute("FWHMX").asVector();
auto yVec = m_control.getAttribute("FWHMY").asVector();
auto &compSource = compositeSource();
for (size_t ionIndex = 0; ionIndex < compSource.nFunctions(); ++ionIndex) {
FunctionDomainGeneral domain;
FunctionValues values;
compSource.getFunction(ionIndex)->function(domain, values);
if (values.size() == 0) {
continue;
}
if (values.size() % 2 != 0) {
throw std::runtime_error(
"CrystalFieldPeaks returned odd number of values.");
}
auto ionSpectrum = boost::make_shared<CompositeFunction>();
CrystalFieldUtils::buildSpectrumFunction(*ionSpectrum, peakShape, values, xVec,
yVec, fwhmVariation, defaultFWHM,
nRequiredPeaks, fixAllPeaks);
spectrum->addFunction(ionSpectrum);
}
/// Build the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::buildMultiSiteMultiSpectrum() const {
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
auto multiDomain = new MultiDomainFunction;
m_target.reset(multiDomain);
const auto nSpec = nSpectra();
std::vector<CompositeFunction*> spectra(nSpec);
for (size_t i = 0; i < nSpec; ++i) {
auto spectrum = boost::make_shared<CompositeFunction>();
spectra[i] = spectrum.get();
multiDomain->addFunction(spectrum);
multiDomain->setDomainIndex(i, i);
}
auto &compSource = compositeSource();
for (size_t ionIndex = 0; ionIndex < compSource.nFunctions(); ++ionIndex) {
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<CrystalFieldPeaksBase &>(*compSource.getFunction(ionIndex));
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
auto &temperatures = m_control.temperatures();
auto &FWHMs = m_control.FWHMs();
const bool addBackground = ionIndex == 0;
auto ionIntensityScaling = compSource.getFunction(ionIndex)->getParameter("IntensityScaling");
for (size_t i = 0; i < nSpec; ++i) {
auto spectrumIntensityScaling = m_control.getFunction(i)->getParameter("IntensityScaling");
buildSpectrum(nre, en, wf, temperatures[i], FWHMs[i], i, addBackground, ionIntensityScaling * spectrumIntensityScaling));
m_target->checkFunction();
}
/// Calculate excitations at given temperature
void CrystalFieldFunction::calcExcitations(int nre,
const DoubleFortranVector &en,
const ComplexFortranMatrix &wf,
double temperature,
FunctionValues &values, size_t iSpec,