Newer
Older
#include "MantidCurveFitting/Functions/CrystalFieldFunction.h"
#include "MantidCurveFitting/Functions/CrystalElectricField.h"
#include "MantidCurveFitting/Functions/CrystalFieldHeatCapacity.h"
#include "MantidCurveFitting/Functions/CrystalFieldMagnetisation.h"
#include "MantidCurveFitting/Functions/CrystalFieldMoment.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeakUtils.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeaks.h"
#include "MantidCurveFitting/Functions/CrystalFieldSusceptibility.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IConstraint.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IPeakFunction.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "MantidAPI/ParameterTie.h"
#include "MantidKernel/Exception.h"
#include <iostream>
#include <regex>
namespace Mantid {
namespace CurveFitting {
namespace Functions {
using namespace CurveFitting;
using namespace Kernel;
using namespace API;
DECLARE_FUNCTION(CrystalFieldFunction)
namespace {
// Regex for names of attributes/parameters for a particular spectrum
// Example: sp1.FWHMX
const std::regex SPECTRUM_ATTR_REGEX("sp([0-9]+)\\.(.+)");
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/// Define the source function for CrystalFieldFunction.
/// Its function() method is not needed.
class Peaks : public CrystalFieldPeaksBase, public API::IFunctionGeneral {
public:
Peaks() : CrystalFieldPeaksBase() {}
std::string name() const override { return "Peaks"; }
size_t getNumberDomainColumns() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
size_t getNumberValuesPerArgument() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
void functionGeneral(const API::FunctionDomainGeneral &,
API::FunctionValues &) const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
std::vector<size_t> m_IntensityScalingIdx;
std::vector<size_t> m_PPLambdaIdxChild;
std::vector<size_t> m_PPLambdaIdxSelf;
/// Declare the intensity scaling parameters: one per spectrum.
void declareIntensityScaling(size_t nSpec) {
m_IntensityScalingIdx.clear();
m_PPLambdaIdxChild.resize(nSpec, -1);
m_PPLambdaIdxSelf.resize(nSpec, -1);
for (size_t i = 0; i < nSpec; ++i) {
auto si = std::to_string(i);
try { // If parameter has already been declared, don't declare it.
declareParameter("IntensityScaling" + si, 1.0,
"Intensity scaling factor for spectrum " + si);
} catch (std::invalid_argument &) {
}
m_IntensityScalingIdx.push_back(parameterIndex("IntensityScaling" + si));
}
}
};
CrystalFieldFunction::CrystalFieldFunction() : IFunction(), m_dirtyTarget(true), m_isMultiSpectrum(false), m_hasPeaks(false) {
// Evaluates the function
void CrystalFieldFunction::function(const FunctionDomain &domain,
FunctionValues &values) const {
updateTargetFunction();
if (!m_target) {
throw std::logic_error(
"FunctionGenerator failed to generate target function.");
}
m_target->function(domain, values);
}
/// Set the source function
/// @param source :: New source function.
void CrystalFieldFunction::setSource(IFunction_sptr source) const {
m_source = source;
}
size_t CrystalFieldFunction::getNumberDomains() const {
if (!m_target) {
buildTargetFunction();
}
if (!m_target) {
throw std::runtime_error("Failed to build target function.");
}
return m_target->getNumberDomains();
}
std::vector<IFunction_sptr>
CrystalFieldFunction::createEquivalentFunctions() const {
checkTargetFunction();
std::vector<IFunction_sptr> funs;
auto &composite = dynamic_cast<CompositeFunction &>(*m_target);
for (size_t i = 0; i < composite.nFunctions(); ++i) {
funs.push_back(composite.getFunction(i));
}
return funs;
}
/// Set i-th parameter
void CrystalFieldFunction::setParameter(size_t i, const double &value,
bool explicitlySet) {
checkSourceFunction();
if (i < m_nSourceParams) {
m_source->setParameter(i, value, explicitlySet);
} else {
checkTargetFunction();
m_target->setParameter(i - m_nSourceParams, value, explicitlySet);
}
}
/// Set i-th parameter description
void CrystalFieldFunction::setParameterDescription(
size_t i, const std::string &description) {
checkSourceFunction();
if (i < m_nSourceParams) {
m_source->setParameterDescription(i, description);
} else {
checkTargetFunction();
m_target->setParameterDescription(i - m_nSourceParams, description);
}
}
/// Get i-th parameter
double CrystalFieldFunction::getParameter(size_t i) const {
checkSourceFunction();
checkTargetFunction();
return i < m_nSourceParams ? m_source->getParameter(i)
: m_target->getParameter(i - m_nSourceParams);
}
/// Set parameter by name.
void CrystalFieldFunction::setParameter(const std::string &name,
const double &value,
bool explicitlySet) {
checkSourceFunction();
checkTargetFunction();
auto i = parameterIndex(name);
setParameter(i, value, explicitlySet);
}
/// Set description of parameter by name.
void CrystalFieldFunction::setParameterDescription(
const std::string &name, const std::string &description) {
checkSourceFunction();
checkTargetFunction();
auto i = parameterIndex(name);
setParameterDescription(i, description);
}
/// Get parameter by name.
double CrystalFieldFunction::getParameter(const std::string &name) const {
auto i = parameterIndex(name);
return getParameter(i);
}
/// Total number of parameters
size_t CrystalFieldFunction::nParams() const {
checkSourceFunction();
checkTargetFunction();
return m_source->nParams() + m_target->nParams();
}
/// Returns the index of parameter name
size_t CrystalFieldFunction::parameterIndex(const std::string &name) const {
checkSourceFunction();
if (isSourceName(name)) {
return m_source->parameterIndex(name);
} else {
checkTargetFunction();
return m_target->parameterIndex(name) + m_nSourceParams;
}
}
/// Returns the name of parameter i
std::string CrystalFieldFunction::parameterName(size_t i) const {
checkSourceFunction();
checkTargetFunction();
return i < m_nSourceParams ? m_source->parameterName(i)
: m_target->parameterName(i - m_nSourceParams);
}
/// Returns the description of parameter i
std::string CrystalFieldFunction::parameterDescription(size_t i) const {
checkSourceFunction();
checkTargetFunction();
return i < m_nSourceParams ? m_source->parameterDescription(i)
: m_target->parameterDescription(i - m_nSourceParams);
}
/// Checks if a parameter has been set explicitly
bool CrystalFieldFunction::isExplicitlySet(size_t i) const {
checkSourceFunction();
checkTargetFunction();
return i < m_nSourceParams ? m_source->isExplicitlySet(i)
: m_target->isExplicitlySet(i - m_nSourceParams);
}
/// Get the fitting error for a parameter
double CrystalFieldFunction::getError(size_t i) const {
checkSourceFunction();
checkTargetFunction();
return i < m_nSourceParams ? m_source->getError(i)
: m_target->getError(i - m_nSourceParams);
}
/// Set the fitting error for a parameter
void CrystalFieldFunction::setError(size_t i, double err) {
checkSourceFunction();
if (i < m_nSourceParams) {
m_source->setError(i, err);
} else {
checkTargetFunction();
m_target->setError(i - m_nSourceParams, err);
}
}
/// Change status of parameter
void CrystalFieldFunction::setParameterStatus(
size_t i, IFunction::ParameterStatus status) {
checkSourceFunction();
if (i < m_nSourceParams) {
m_source->setParameterStatus(i, status);
} else {
checkTargetFunction();
m_target->setParameterStatus(i - m_nSourceParams, status);
}
}
/// Get status of parameter
IFunction::ParameterStatus
CrystalFieldFunction::getParameterStatus(size_t i) const {
checkSourceFunction();
if (i < m_nSourceParams) {
return m_source->getParameterStatus(i);
} else {
checkTargetFunction();
return m_target->getParameterStatus(i - m_nSourceParams);
}
}
/// Return parameter index from a parameter reference.
size_t
CrystalFieldFunction::getParameterIndex(const ParameterReference &ref) const {
checkSourceFunction();
if (ref.getLocalFunction() == this) {
auto index = ref.getLocalIndex();
auto np = nParams();
if (index < np) {
return index;
}
return np;
}
checkTargetFunction();
return m_target->getParameterIndex(ref) + m_nSourceParams;
}
/// Set up the function for a fit.
void CrystalFieldFunction::setUpForFit() {
checkSourceFunction();
updateTargetFunction();
IFunction::setUpForFit();
}
/// Declare a new parameter
void CrystalFieldFunction::declareParameter(const std::string &, double,
const std::string &) {
throw Kernel::Exception::NotImplementedError(
"CrystalFieldFunction cannot not have its own parameters.");
}
/// Returns the number of attributes associated with the function
size_t CrystalFieldFunction::nAttributes() const {
checkSourceFunction();
checkTargetFunction();
return IFunction::nAttributes() + m_source->nAttributes() +
m_target->nAttributes();
}
/// Returns a list of attribute names
std::vector<std::string> CrystalFieldFunction::getAttributeNames() const {
checkSourceFunction();
checkTargetFunction();
std::vector<std::string> attNames = IFunction::getAttributeNames();
return attNames;
}
/// Return a value of attribute attName
/// @param attName :: Name of an attribute.
IFunction::Attribute
CrystalFieldFunction::getAttribute(const std::string &attName) const {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
// This will throw an exception because attribute doesn't exist
return IFunction::getAttribute(attName);
return attRef.first->getAttribute(attRef.second);
/// Perform custom actions on setting certain attributes.
void CrystalFieldFunction::setAttribute(const std::string &attName,
const Attribute &attr) {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
// This will throw an exception because attribute doesn't exist
IFunction::setAttribute(attName, attr);
} else if (attRef.first == &m_control) {
m_source.reset();
attRef.first->setAttribute(attRef.second, attr);
/// Check if attribute attName exists
bool CrystalFieldFunction::hasAttribute(const std::string &attName) const {
auto attRef = getAttributeReference(attName);
if (attRef.first == nullptr) {
return false;
}
return attRef.first->hasAttribute(attRef.second);
//------------------------------------------------//
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
return hasSpectrumAttribute(i, match[2]);
}
if (IFunction::hasAttribute(attName)) {
return true;
}
checkSourceFunction();
if (isMultiSite()) {
if (attName == "Temperature" && !isMultiSpectrum()) {
return true;
} else {
throw std::logic_error("Attributes of multi-site source are not implemented yet.");
}
} else {
return m_source->hasAttribute(attName);
}
} else {
checkTargetFunction();
return m_target->hasAttribute(attName);
}
}
/// Get a reference to an attribute.
/// @param attName :: A name of an attribute. It can be a code rather than an
/// actual name. This method interprets the code and finds the function and
/// attribute it refers to.
/// @returns :: A pair (IFunction, attribute_name) where attribute_name is a
/// name that the IFunction has.
std::pair<API::IFunction *, std::string>
CrystalFieldFunction::getAttributeReference(const std::string &attName) const {
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
auto name = match[2].str();
if (m_control.nFunctions() == 0) {
m_control.buildControls();
}
if (name == "FWHMX" || name == "FWHMY") {
if (i < m_control.nFunctions()) {
return std::make_pair(m_control.getFunction(i).get(), name);
} else {
return std::make_pair(nullptr, "");
}
}
return std::make_pair(nullptr, "");
}
return std::make_pair(&m_control, attName);
}
/// Get number of the number of spectra (excluding phys prop data).
size_t CrystalFieldFunction::nSpectra() const {
return m_control.nFunctions();
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
}
/// Check that a spectrum index is within the range
/// @param iSpec :: Index of a spectrum.
/// @throws if index is outside the range.
void CrystalFieldFunction::checkSpectrumIndex(size_t iSpec) const {
auto nSpec = nSpectra();
if (nSpec == 0) {
throw std::runtime_error("No spectra defined.");
} else if (nSpec == 1) {
throw std::runtime_error("Cannot use spectra indices in a single-spectrum case.");
} else if (iSpec >= nSpec) {
throw std::out_of_range("Spectrum index (" + std::to_string(iSpec) +
") is out side outside the range (N=" +
std::to_string(nSpectra()) + ").");
}
}
/// Check if there is an attribute specific to a spectrum (multi-spectrum case only).
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute to check.
bool CrystalFieldFunction::hasSpectrumAttribute(size_t iSpec, const std::string &attName) const {
if (nSpectra() < 2) {
return false;
}
checkSpectrumIndex(iSpec);
if (attName == "FWHMX" || attName == "FWHMY" || attName == "Temperature") {
return true;
}
return false;
}
/// Get an attribute specific to a spectrum (multi-spectrum case only).
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute.
API::IFunction::Attribute
CrystalFieldFunction::getSpectrumAttribute(size_t iSpec,
const std::string &attName) const {
//checkSpectrumIndex(iSpec);
//if (attName == "FWHMX") {
// if (iSpec < m_fwhmX.size()) {
// return Attribute(m_fwhmX[iSpec]);
// } else {
// return Attribute(std::vector<double>());
// }
//} else if (attName == "FWHMY") {
// if (iSpec < m_fwhmY.size()) {
// return Attribute(m_fwhmY[iSpec]);
// } else {
// return Attribute(std::vector<double>());
// }
//} else if (attName == "Temperature") {
// return Attribute(m_temperatures[iSpec]);
//}
throw std::runtime_error("Attribute " + attName + " not found.");
}
/// Set a value to a spectrum-specific attribute
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute.
/// @param value :: New value of the attribute.
void CrystalFieldFunction::setSpectrumAttribute(size_t iSpec, const std::string &attName, const Attribute &value) {
//checkSpectrumIndex(iSpec);
//if (attName == "FWHMX") {
// if (iSpec < m_fwhmX.size()) {
// m_fwhmX[iSpec] = value.asVector();
// }
//} else if (attName == "FWHMY") {
// if (iSpec < m_fwhmY.size()) {
// m_fwhmY[iSpec] = value.asVector();
// }
//} else if (attName == "Temperature") {
// m_temperatures[iSpec] = value.asDouble();
// IFunction::storeAttributeValue("Temperatures", Attribute(m_temperatures));
//}
/// Get the tie for i-th parameter
ParameterTie *CrystalFieldFunction::getTie(size_t i) const {
checkSourceFunction();
auto tie = IFunction::getTie(i);
if (!tie) {
return nullptr;
}
if (i < m_nSourceParams) {
tie = m_source->getTie(i);
} else {
checkTargetFunction();
tie = m_target->getTie(i - m_nSourceParams);
}
return tie;
}
/// Get the i-th constraint
IConstraint *CrystalFieldFunction::getConstraint(size_t i) const {
checkSourceFunction();
auto constraint = IFunction::getConstraint(i);
if (constraint == nullptr) {
if (i < m_nSourceParams) {
constraint = m_source->getConstraint(i);
} else {
checkTargetFunction();
constraint = m_target->getConstraint(i - m_nSourceParams);
}
}
return constraint;
}
void CrystalFieldFunction::setIonsAttribute(const std::string &name,
const Attribute &attr) {
void CrystalFieldFunction::setSymmetriesAttribute(const std::string &name,
const Attribute &attr) {
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
//void CrystalFieldFunction::setTemperaturesAttribute(const std::string &name,
// const Attribute &attr) {
// m_temperatures = attr.asVector();
// IFunction::storeAttributeValue(name, attr);
// declareAttribute("Background", Attribute("", true));
// declareAttribute("PeakShape", Attribute("Lorentzian"));
// declareAttribute("FWHMs", Attribute(std::vector<double>()));
// declareAttribute("FWHMVariation", Attribute(0.1));
// if (m_temperatures.size() == 1) {
// declareAttribute("FWHMX", Attribute(std::vector<double>()));
// declareAttribute("FWHMY", Attribute(std::vector<double>()));
// }
// declareAttribute("NPeaks", Attribute(0));
// declareAttribute("FixAllPeaks", Attribute(false));
//
// // Define (declare) the parameters for intensity scaling.
// // const auto nSpec = attr.asVector().size();
// // dynamic_cast<Peaks &>(*m_source).declareIntensityScaling(nSpec);
// // m_nSourceParams = m_source->nParams();
// // m_fwhmX.resize(nSpec);
// // m_fwhmY.resize(nSpec);
// // for (size_t iSpec = 0; iSpec < nSpec; ++iSpec) {
// // const auto suffix = std::to_string(iSpec);
// // declareAttribute("FWHMX" + suffix, Attribute(m_fwhmX[iSpec]));
// // declareAttribute("FWHMY" + suffix, Attribute(m_fwhmY[iSpec]));
// //}
//}
/// Check if the function is set up for a multi-site calculations.
/// (Multiple ions defined)
bool CrystalFieldFunction::isMultiSite() const {
return m_control.isMultiSite();
}
/// Check if the function is set up for a multi-spectrum calculations
/// (Multiple temperatures defined)
bool CrystalFieldFunction::isMultiSpectrum() const {
return m_control.isMultiSpectrum();
}
/// Check if the spectra have a background.
bool CrystalFieldFunction::hasBackground() const {
if (!hasAttribute("Background")) {
return false;
}
auto background = getAttribute("Background").asString();
return background != "\"\"";
}
/// Check if there are peaks (there is at least one spectrum).
bool CrystalFieldFunction::hasPeaks() const { return m_hasPeaks; }
/// Check if there are any phys. properties.
bool CrystalFieldFunction::hasPhysProperties() const { return false; }
/// Test if a name (parameter's or attribute's) belongs to m_source
/// @param aName :: A name to test.
bool CrystalFieldFunction::isSourceName(const std::string &aName) const {
if (aName.empty()) {
throw std::invalid_argument(
"Parameter or attribute name cannot be empty string.");
}
return (aName.front() != 'f' || aName.find('.') == std::string::npos);
}
/// Get a reference to the source function if it's composite
API::CompositeFunction &CrystalFieldFunction::compositeSource() const {
auto composite = dynamic_cast<CompositeFunction*>(m_source.get());
if (composite == nullptr) {
throw std::logic_error("Source of CrystalFieldFunction is not composite.");
}
return *composite;
}
///// Check that attributes needed to build the source are consistent
//void CrystalFieldFunction::checkSourceConsistent() const {
// if (m_ions.empty()) {
// throw std::runtime_error("No ions are set.");
// }
// if (m_ions.size() != m_symmetries.size()) {
// throw std::runtime_error(
// "Number of ions is different from number of symmetries.");
// }
//}
/// Check that attributes and parameters are consistent.
/// If not excepion is thrown.
//void CrystalFieldFunction::checkConsistent() const {
// if (m_control.nFunctions() == 0) {
// m_control.buildControls();
// }
// m_control.checkConsistent();
//}
/// Build source function if necessary.
void CrystalFieldFunction::checkSourceFunction() const {
if (!m_source) {
buildSourceFunction();
/// Build the source function
void CrystalFieldFunction::buildSourceFunction() const {
setSource(m_control.buildSource());
m_nSourceParams = m_source->nParams();
}
/// Update spectrum function if necessary.
void CrystalFieldFunction::checkTargetFunction() const {
updateTargetFunction();
}
if (!m_target) {
throw std::logic_error(
"CrystalFieldFunction failed to generate target function.");
}
}
/// Uses source to calculate peak centres and intensities
/// then populates m_spectrum with peaks of type given in PeakShape attribute.
void CrystalFieldFunction::buildTargetFunction() const {
checkSourceFunction();
m_dirtyTarget = false;
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
if (isMultiSite()) {
buildMultiSite();
} else {
buildSingleSite();
}
}
/// Build the target function in a single site case.
void CrystalFieldFunction::buildSingleSite() const {
if (isMultiSpectrum()) {
buildSingleSiteMultiSpectrum();
} else {
buildSingleSiteSingleSpectrum();
}
}
/// Build the target function in a multi site case.
void CrystalFieldFunction::buildMultiSite() const {
if (isMultiSpectrum()) {
buildMultiSiteMultiSpectrum();
} else {
buildMultiSiteSingleSpectrum();
}
}
/// Build the target function in a single site - single spectrum case.
void CrystalFieldFunction::buildSingleSiteSingleSpectrum() const {
auto spectrum = new CompositeFunction;
m_target.reset(spectrum);
m_target->setAttributeValue("NumDeriv", true);
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
if (values.size() == 0) {
return;
}
if (values.size() % 2 != 0) {
throw std::runtime_error(
"CrystalFieldPeaks returned odd number of values.");
}
//bool hasWidthModel = !m_fwhmX.empty();
auto xVec = m_control.getFunction(0)->getAttribute("FWHMX").asVector();
auto yVec = m_control.getFunction(0)->getAttribute("FWHMX").asVector();
auto FWHMs = m_control.getAttribute("FWHMs").asVector();
auto defaultFWHM = FWHMs.empty() ? 0.0 : FWHMs[0];
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
size_t nRequiredPeaks = getAttribute("NPeaks").asInt();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
auto nPeaks = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, xVec, yVec, fwhmVariation, defaultFWHM,
nRequiredPeaks, fixAllPeaks);
(void)nPeaks;
// storeReadOnlyAttribute("NPeaks", Attribute(static_cast<int>(m_nPeaks)));
}
/// Build the target function in a single site - multi spectrum case.
void CrystalFieldFunction::buildSingleSiteMultiSpectrum() const {
auto fun = new MultiDomainFunction;
m_target.reset(fun);
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<CrystalFieldPeaksBase &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
const auto nSpec = nSpectra();
// Get a list of "spectra" which corresponds to physical properties
// const auto physprops = getAttribute("PhysicalProperties").asVector();
// if (physprops.empty()) {
// m_physprops.resize(nSpec, 0); // Assume no physical properties - just INS
//} else if (physprops.size() != nSpec) {
// if (physprops.size() == 1) {
// int physprop = static_cast<int>(physprops.front());
// m_physprops.resize(nSpec, physprop);
// } else {
// throw std::runtime_error("Vector of PhysicalProperties must have same "
// "size as Temperatures or size 1.");
// }
//} else {
// m_physprops.clear();
// for (auto elem : physprops) {
// m_physprops.push_back(static_cast<int>(elem));
// }
//}
// Create the single-spectrum functions.
// m_nPeaks.resize(nSpec);
//if (m_fwhmX.empty()) {
// m_fwhmX.resize(nSpec);
// m_fwhmY.resize(nSpec);
//}
auto temperatures = m_control.getAttribute("Temperatures").asVector();
auto FWHMs = m_control.getAttribute("FWHMs").asVector();
for (size_t i = 0; i < nSpec; ++i) {
//if (m_fwhmX[i].empty()) {
// auto suffix = std::to_string(i);
// m_fwhmX[i] = IFunction::getAttribute("FWHMX" + suffix).asVector();
// m_fwhmY[i] = IFunction::getAttribute("FWHMY" + suffix).asVector();
//}
buildSpectrum(nre, en, wf, temperatures[i], FWHMs[i], i));
fun->setDomainIndex(i, i);
}
}
/// Build the target function in a multi site - single spectrum case.
void CrystalFieldFunction::buildMultiSiteSingleSpectrum() const {
}
/// Build the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::buildMultiSiteMultiSpectrum() const {
throw std::runtime_error(
"buildMultiSiteMultiSpectrum() not implemented yet.");
}
/// Calculate excitations at given temperature
void CrystalFieldFunction::calcExcitations(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, FunctionValues &values, size_t iSpec) const {
IntFortranVector degeneration;
DoubleFortranVector eEnergies;
DoubleFortranMatrix iEnergies;
const double de = getAttribute("ToleranceEnergy").asDouble();
const double di = getAttribute("ToleranceIntensity").asDouble();
DoubleFortranVector eExcitations;
DoubleFortranVector iExcitations;
calculateIntensities(nre, en, wf, temperature, de, degeneration, eEnergies,
iEnergies);
calculateExcitations(eEnergies, iEnergies, de, di, eExcitations,
iExcitations);
const size_t nSpec = nSpectra();
// Get intensity scaling parameter "IntensityScaling" + std::to_string(iSpec)
// using an index instead of a name for performance reasons
auto &source = dynamic_cast<CrystalFieldPeaksBase &>(*m_source);
double intensityScaling = 1.0;
// if (source.m_IntensityScalingIdx.size() == 0) {
// intensityScaling = getParameter(m_nSourceParams - nSpec + iSpec);
//} else {
// intensityScaling = getParameter(source.m_IntensityScalingIdx[iSpec]);
//}
const auto nPeaks = eExcitations.size();
values.expand(2 * nPeaks);
for (size_t i = 0; i < nPeaks; ++i) {
values.setCalculated(i, eExcitations.get(i));
values.setCalculated(i + nPeaks, iExcitations.get(i) * intensityScaling);
}
}
/// Build a function for a single spectrum.
API::IFunction_sptr CrystalFieldFunction::buildSpectrum(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, double fwhm, size_t iSpec) const {
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
auto nPeaks = CrystalFieldUtils::calculateNPeaks(values);
(void)nPeaks;
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
auto bkgdShape = IFunction::getAttribute("Background").asUnquotedString();
const size_t nRequiredPeaks = IFunction::getAttribute("NPeaks").asInt();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
if (!bkgdShape.empty() && bkgdShape.find("name=") != 0 &&
bkgdShape.front() != '(') {
bkgdShape = "name=" + bkgdShape;
}
auto spectrum = new CompositeFunction;
if (!bkgdShape.empty()) {
auto background =
API::FunctionFactory::Instance().createInitialized(bkgdShape);
spectrum->addFunction(background);
if (fixAllPeaks) {
background->fixAll();
}
}
auto xVec = m_control.getFunction(iSpec)->getAttribute("FWHMX").asVector();
auto yVec = m_control.getFunction(iSpec)->getAttribute("FWHMX").asVector();
nPeaks = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, xVec, yVec,
fwhmVariation, fwhm, nRequiredPeaks, fixAllPeaks);
return IFunction_sptr(spectrum);
}
/// Update m_spectrum function.
void CrystalFieldFunction::updateTargetFunction() const {
if (!m_target) {
buildTargetFunction();
return;
}
if (isMultiSite()) {
updateMultiSite();
} else {
updateSingleSite();
}
}
/// Update the target function in a single site case.
void CrystalFieldFunction::updateSingleSite() const {
if (isMultiSpectrum()) {
updateSingleSiteMultiSpectrum();
} else {
updateSingleSiteSingleSpectrum();
}
}
/// Update the target function in a multi site case.
void CrystalFieldFunction::updateMultiSite() const {
if (isMultiSpectrum()) {
updateMultiSiteMultiSpectrum();
} else {
updateMultiSiteSingleSpectrum();
}
}
/// Update the target function in a single site - single spectrum case.
void CrystalFieldFunction::updateSingleSiteSingleSpectrum() const {
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
auto xVec = m_control.getFunction(0)->getAttribute("FWHMX").asVector();
auto yVec = m_control.getFunction(0)->getAttribute("FWHMX").asVector();
auto FWHMs = m_control.getAttribute("FWHMs").asVector();
auto defaultFWHM = FWHMs.empty() ? 0.0 : FWHMs[0];
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
m_target->setAttributeValue("NumDeriv", true);
auto &spectrum = dynamic_cast<CompositeFunction &>(*m_target);
auto nPeaks = CrystalFieldUtils::calculateNPeaks(values);
(void)nPeaks;
CrystalFieldUtils::updateSpectrumFunction(spectrum, peakShape, values, 0,
xVec, yVec, fwhmVariation,
defaultFWHM, fixAllPeaks);
}
/// Update the target function in a single site - multi spectrum case.
void CrystalFieldFunction::updateSingleSiteMultiSpectrum() const {
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<CrystalFieldPeaksBase &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
auto &fun = dynamic_cast<MultiDomainFunction &>(*m_target);
try {
auto temperatures = m_control.getAttribute("Temperatures").asVector();
auto FWHMs = m_control.getAttribute("FWHMs").asVector();
for (size_t i = 0; i < temperatures.size(); ++i) {
updateSpectrum(*fun.getFunction(i), nre, en, wf, ham, temperatures[i],
FWHMs[i], i);
}
} catch (std::out_of_range &) {
buildTargetFunction();
return;
}
}
/// Update the target function in a multi site - single spectrum case.
void CrystalFieldFunction::updateMultiSiteSingleSpectrum() const {}
/// Update the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::updateMultiSiteMultiSpectrum() const {}
/// Update a function for a single spectrum.
void CrystalFieldFunction::updateSpectrum(API::IFunction &spectrum, int nre,
const DoubleFortranVector &en,
const ComplexFortranMatrix &wf,
const ComplexFortranMatrix &ham,
double temperature, double fwhm,
size_t iSpec) const {
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
auto xVec = m_control.getFunction(iSpec)->getAttribute("FWHMX").asVector();
auto yVec = m_control.getFunction(iSpec)->getAttribute("FWHMX").asVector();
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
auto &composite = dynamic_cast<API::CompositeFunction &>(spectrum);
auto nPeaks = CrystalFieldUtils::updateSpectrumFunction(
composite, peakShape, values, 1, xVec, yVec,
fwhmVariation, fwhm, fixAllPeaks);
}
} // namespace Functions
} // namespace CurveFitting
} // namespace Mantid