Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
#include "MantidCurveFitting/Functions/CrystalFieldFunction.h"
#include "MantidCurveFitting/Functions/CrystalElectricField.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeaks.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeakUtils.h"
#include "MantidCurveFitting/Functions/CrystalFieldHeatCapacity.h"
#include "MantidCurveFitting/Functions/CrystalFieldSusceptibility.h"
#include "MantidCurveFitting/Functions/CrystalFieldMagnetisation.h"
#include "MantidCurveFitting/Functions/CrystalFieldMoment.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IConstraint.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IPeakFunction.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "MantidAPI/ParameterTie.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/Strings.h"
#include "MantidKernel/StringTokenizer.h"
#include <iostream>
namespace Mantid {
namespace CurveFitting {
namespace Functions {
using namespace CurveFitting;
using namespace Kernel;
using namespace API;
DECLARE_FUNCTION(CrystalFieldFunction)
namespace {
/// Define the source function for CrystalFieldFunction.
/// Its function() method is not needed.
class Peaks : public CrystalFieldPeaksBase, public API::IFunctionGeneral {
public:
Peaks() : CrystalFieldPeaksBase() {}
std::string name() const override { return "Peaks"; }
size_t getNumberDomainColumns() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
size_t getNumberValuesPerArgument() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
void functionGeneral(const API::FunctionDomainGeneral &,
API::FunctionValues &) const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
std::vector<size_t> m_IntensityScalingIdx;
std::vector<size_t> m_PPLambdaIdxChild;
std::vector<size_t> m_PPLambdaIdxSelf;
/// Declare the intensity scaling parameters: one per spectrum.
void declareIntensityScaling(size_t nSpec) {
m_IntensityScalingIdx.clear();
m_PPLambdaIdxChild.resize(nSpec, -1);
m_PPLambdaIdxSelf.resize(nSpec, -1);
for (size_t i = 0; i < nSpec; ++i) {
auto si = std::to_string(i);
try { // If parameter has already been declared, don't declare it.
declareParameter("IntensityScaling" + si, 1.0,
"Intensity scaling factor for spectrum " + si);
} catch (std::invalid_argument &) {
}
m_IntensityScalingIdx.push_back(parameterIndex("IntensityScaling" + si));
}
}
};
}
/// Constructor
CrystalFieldFunction::CrystalFieldFunction()
: FunctionGenerator(IFunction_sptr()) {
declareAttribute("Ions", Attribute(""));
declareAttribute("Symmetries", Attribute(""));
declareAttribute("Temperatures", Attribute(std::vector<double>()));
//declareAttribute("FWHMX0", Attribute(std::vector<double>()));
//declareAttribute("FWHMY0", Attribute(std::vector<double>()));
//declareAttribute("FWHMVariation", Attribute(0.1));
//declareAttribute("PhysicalProperties",
// Attribute(std::vector<double>(1, 0.0)));
}
size_t CrystalFieldFunction::getNumberDomains() const {
if (!m_target) {
buildTargetFunction();
}
if (!m_target) {
throw std::runtime_error("Failed to build target function.");
}
return m_target->getNumberDomains();
}
std::vector<IFunction_sptr>
CrystalFieldFunction::createEquivalentFunctions() const {
checkTargetFunction();
std::vector<IFunction_sptr> funs;
auto &composite = dynamic_cast<CompositeFunction &>(*m_target);
for (size_t i = 0; i < composite.nFunctions(); ++i) {
funs.push_back(composite.getFunction(i));
}
return funs;
}
/// Returns the number of attributes associated with the function
size_t CrystalFieldFunction::nAttributes() const {
//TODO: uncomment
//checkTargetFunction();
return IFunction::nAttributes() + m_source->nAttributes() +
m_target->nAttributes();
}
/// Returns a list of attribute names
std::vector<std::string> CrystalFieldFunction::getAttributeNames() const {
//TODO: uncomment
//checkTargetFunction();
std::vector<std::string> attNames = IFunction::getAttributeNames();
return attNames;
}
/// Return a value of attribute attName
IFunction::Attribute
CrystalFieldFunction::getAttribute(const std::string &attName) const {
return FunctionGenerator::getAttribute(attName);
//if (IFunction::hasAttribute(attName)) {
// return IFunction::getAttribute(attName);
//} else if (isSourceName(attName)) {
// return m_source->getAttribute(attName);
//} else {
// checkTargetFunction();
// return m_target->getAttribute(attName);
//}
}
/// Check if attribute attName exists
bool CrystalFieldFunction::hasAttribute(const std::string &attName) const {
if (IFunction::hasAttribute(attName)) {
return true;
}
if (isSourceName(attName)) {
return m_source->hasAttribute(attName);
} else {
checkTargetFunction();
return m_target->hasAttribute(attName);
}
}
/// Perform custom actions on setting certain attributes.
void CrystalFieldFunction::setAttribute(const std::string &name,
const Attribute &attr) {
if (name == "Ions") {
setIonsAttribute(name, attr);
} else if (name == "Symmetries") {
setSymmetriesAttribute(name, attr);
} else if (name == "Temperatures") {
setTemperaturesAttribute(name, attr);
} else {
FunctionGenerator::setAttribute(name, attr);
}
}
void CrystalFieldFunction::setIonsAttribute(const std::string &name, const Attribute &attr) {
Kernel::StringTokenizer tokenizer(attr.asString(), ",", Kernel::StringTokenizer::TOK_TRIM);
m_ions.clear();
m_ions.insert(m_ions.end(), tokenizer.begin(), tokenizer.end());
auto attrValue = Kernel::Strings::join(m_ions.begin(), m_ions.end(), ",");
FunctionGenerator::storeAttributeValue(name, Attribute(attrValue));
}
void CrystalFieldFunction::setSymmetriesAttribute(const std::string &name, const Attribute &attr) {
Kernel::StringTokenizer tokenizer(attr.asString(), ",", Kernel::StringTokenizer::TOK_TRIM);
m_symmetries.clear();
m_symmetries.insert(m_symmetries.end(), tokenizer.begin(), tokenizer.end());
auto attrValue = Kernel::Strings::join(m_symmetries.begin(), m_symmetries.end(), ",");
FunctionGenerator::storeAttributeValue(name, Attribute(attrValue));
}
void CrystalFieldFunction::setTemperaturesAttribute(const std::string &name, const Attribute &attr) {
m_temperatures = attr.asVector();
FunctionGenerator::storeAttributeValue(name, attr);
declareAttribute("Background", Attribute("", true));
declareAttribute("PeakShape", Attribute("Lorentzian"));
declareAttribute("FWHMs", Attribute(std::vector<double>()));
declareAttribute("FWHMVariation", Attribute(0.1));
if (m_temperatures.size() == 1) {
declareAttribute("FWHMX", Attribute(std::vector<double>()));
declareAttribute("FWHMY", Attribute(std::vector<double>()));
}
declareAttribute("NPeaks", Attribute(0));
declareAttribute("FixAllPeaks", Attribute(false));
// Define (declare) the parameters for intensity scaling.
//const auto nSpec = attr.asVector().size();
//dynamic_cast<Peaks &>(*m_source).declareIntensityScaling(nSpec);
//m_nOwnParams = m_source->nParams();
//m_fwhmX.resize(nSpec);
//m_fwhmY.resize(nSpec);
//for (size_t iSpec = 0; iSpec < nSpec; ++iSpec) {
// const auto suffix = std::to_string(iSpec);
// declareAttribute("FWHMX" + suffix, Attribute(m_fwhmX[iSpec]));
// declareAttribute("FWHMY" + suffix, Attribute(m_fwhmY[iSpec]));
//}
}
/// Check if the function is set up for a multi-site calculations.
/// (Multiple ions defined)
bool CrystalFieldFunction::isMultiSite() const {
return m_ions.size() > 1;
}
/// Check if the function is set up for a multi-spectrum calculations
/// (Multiple temperatures defined)
bool CrystalFieldFunction::isMultiSpectrum() const {
return m_temperatures.size() > 1;
}
/// Check if the spectra have a background.
bool CrystalFieldFunction::hasBackground() const {
if (!hasAttribute("Background")) {
return false;
}
auto background = getAttribute("Background").asString();
return background != "\"\"";
}
/// Check if there are peaks (there is at least one spectrum).
bool CrystalFieldFunction::hasPeaks() const {
return !m_temperatures.empty();
}
/// Check if there are any phys. properties.
bool CrystalFieldFunction::hasPhysProperties() const {
return false;
}
void CrystalFieldFunction::chacheAttributes() const {
if (hasAttribute("FWHMs")) {
m_FWHMs = getAttribute("FWHMs").asVector();
}
if (hasAttribute("FWHMX")) {
auto fwhmX = getAttribute("FWHMX").asVector();
auto fwhmY = getAttribute("FWHMY").asVector();
if (!fwhmX.empty()) {
m_fwhmX.clear();
m_fwhmX.push_back(fwhmX);
}
if (!fwhmY.empty()) {
m_fwhmY.clear();
m_fwhmY.push_back(fwhmY);
}
}
}
/// Check that attributes and parameters are consistent.
/// If not excepion is thrown.
void CrystalFieldFunction::checkConsistent() const {
if (m_ions.empty()) {
throw std::runtime_error("No ions are set.");
}
if (m_ions.size() != m_symmetries.size()) {
throw std::runtime_error(
"Number of ions is different from number of symmetries.");
}
chacheAttributes();
if (!m_temperatures.empty()) {
const auto nSpec = m_temperatures.size();
if (m_FWHMs.empty()) {
if (m_fwhmX.empty() || m_fwhmY.empty()) {
throw std::runtime_error("No peak width settings (FWHMs and FWHMX and FWHMY attributes not set).");
}
m_FWHMs.resize(nSpec, 0.0);
} else if (m_FWHMs.size() != nSpec) {
if (m_FWHMs.size() == 1) {
auto fwhm = m_FWHMs.front();
m_FWHMs.resize(nSpec, fwhm);
} else {
throw std::runtime_error(
"Vector of FWHMs must either have same size as "
"Temperatures (" +
std::to_string(nSpec) + ") or have size 1.");
}
}
}
}
/// Uses source to calculate peak centres and intensities
/// then populates m_spectrum with peaks of type given in PeakShape attribute.
void CrystalFieldFunction::buildTargetFunction() const {
checkConsistent();
m_dirty = false;
if (isMultiSite()) {
buildMultiSite();
} else {
buildSingleSite();
}
}
/// Build the target function in a single site case.
void CrystalFieldFunction::buildSingleSite() const {
if (isMultiSpectrum()) {
buildSingleSiteMultiSpectrum();
} else {
buildSingleSiteSingleSpectrum();
}
}
/// Build the target function in a multi site case.
void CrystalFieldFunction::buildMultiSite() const {
if (isMultiSpectrum()) {
buildMultiSiteMultiSpectrum();
} else {
buildMultiSiteSingleSpectrum();
}
}
/// Build the target function in a single site - single spectrum case.
void CrystalFieldFunction::buildSingleSiteSingleSpectrum() const {
auto spectrum = new CompositeFunction;
m_target.reset(spectrum);
m_target->setAttribute("NumDeriv", this->getAttribute("NumDeriv"));
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
if (values.size() == 0) {
return;
}
if (values.size() % 2 != 0) {
throw std::runtime_error(
"CrystalFieldPeaks returned odd number of values.");
}
auto xVec = getAttribute("FWHMX").asVector();
auto yVec = getAttribute("FWHMY").asVector();
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
auto defaultFWHM = getAttribute("FWHM").asDouble();
size_t nRequiredPeaks = getAttribute("NPeaks").asInt();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
m_nPeaks[0] = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, xVec, yVec, fwhmVariation, defaultFWHM,
nRequiredPeaks, fixAllPeaks);
//storeReadOnlyAttribute("NPeaks", Attribute(static_cast<int>(m_nPeaks)));
}
/// Build the target function in a single site - multi spectrum case.
void CrystalFieldFunction::buildSingleSiteMultiSpectrum() const {
setSource(IFunction_sptr(new Peaks));
auto fun = new MultiDomainFunction;
m_target.reset(fun);
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<Peaks &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
const auto nSpec = m_temperatures.size();
// Get a list of "spectra" which corresponds to physical properties
//const auto physprops = getAttribute("PhysicalProperties").asVector();
//if (physprops.empty()) {
// m_physprops.resize(nSpec, 0); // Assume no physical properties - just INS
//} else if (physprops.size() != nSpec) {
// if (physprops.size() == 1) {
// int physprop = static_cast<int>(physprops.front());
// m_physprops.resize(nSpec, physprop);
// } else {
// throw std::runtime_error("Vector of PhysicalProperties must have same "
// "size as Temperatures or size 1.");
// }
//} else {
// m_physprops.clear();
// for (auto elem : physprops) {
// m_physprops.push_back(static_cast<int>(elem));
// }
//}
// Create the single-spectrum functions.
m_nPeaks.resize(nSpec);
if (m_fwhmX.empty()) {
m_fwhmX.resize(nSpec);
m_fwhmY.resize(nSpec);
}
for (size_t i = 0; i < nSpec; ++i) {
if (m_fwhmX[i].empty()) {
//auto suffix = std::to_string(i);
//m_fwhmX[i] = IFunction::getAttribute("FWHMX" + suffix).asVector();
//m_fwhmY[i] = IFunction::getAttribute("FWHMY" + suffix).asVector();
}
fun->addFunction(
buildSpectrum(nre, en, wf, m_temperatures[i], m_FWHMs[i], i));
fun->setDomainIndex(i, i);
}
}
/// Build the target function in a multi site - single spectrum case.
void CrystalFieldFunction::buildMultiSiteSingleSpectrum() const {
throw std::runtime_error("buildMultiSiteSingleSpectrum() not implemented yet.");
}
/// Build the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::buildMultiSiteMultiSpectrum() const {
throw std::runtime_error("buildMultiSiteMultiSpectrum() not implemented yet.");
}
/// Calculate excitations at given temperature
void CrystalFieldFunction::calcExcitations(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, FunctionValues &values, size_t iSpec) const {
IntFortranVector degeneration;
DoubleFortranVector eEnergies;
DoubleFortranMatrix iEnergies;
const double de = getAttribute("ToleranceEnergy").asDouble();
const double di = getAttribute("ToleranceIntensity").asDouble();
DoubleFortranVector eExcitations;
DoubleFortranVector iExcitations;
calculateIntensities(nre, en, wf, temperature, de, degeneration, eEnergies,
iEnergies);
calculateExcitations(eEnergies, iEnergies, de, di, eExcitations,
iExcitations);
const size_t nSpec = m_nPeaks.size();
// Get intensity scaling parameter "IntensityScaling" + std::to_string(iSpec)
// using an index instead of a name for performance reasons
auto &source = dynamic_cast<Peaks &>(*m_source);
double intensityScaling;
if (source.m_IntensityScalingIdx.size() == 0) {
intensityScaling = getParameter(m_nOwnParams - nSpec + iSpec);
} else {
intensityScaling = getParameter(source.m_IntensityScalingIdx[iSpec]);
}
const auto nPeaks = eExcitations.size();
values.expand(2 * nPeaks);
for (size_t i = 0; i < nPeaks; ++i) {
values.setCalculated(i, eExcitations.get(i));
values.setCalculated(i + nPeaks, iExcitations.get(i) * intensityScaling);
}
}
/// Build a function for a single spectrum.
API::IFunction_sptr CrystalFieldFunction::buildSpectrum(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, double fwhm, size_t iSpec) const {
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
m_nPeaks[iSpec] = CrystalFieldUtils::calculateNPeaks(values);
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
auto bkgdShape = IFunction::getAttribute("Background").asUnquotedString();
const size_t nRequiredPeaks = IFunction::getAttribute("NPeaks").asInt();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
if (!bkgdShape.empty() && bkgdShape.find("name=") != 0 &&
bkgdShape.front() != '(') {
bkgdShape = "name=" + bkgdShape;
}
auto spectrum = new CompositeFunction;
if (!bkgdShape.empty()) {
auto background =
API::FunctionFactory::Instance().createInitialized(bkgdShape);
spectrum->addFunction(background);
if (fixAllPeaks) {
background->fixAll();
}
}
m_nPeaks[iSpec] = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, m_fwhmX[iSpec], m_fwhmY[iSpec],
fwhmVariation, fwhm, nRequiredPeaks, fixAllPeaks);
return IFunction_sptr(spectrum);
}
/// Update m_spectrum function.
void CrystalFieldFunction::updateTargetFunction() const {
if (!m_target) {
buildTargetFunction();
return;
}
m_dirty = false;
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<Peaks &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
auto &fun = dynamic_cast<MultiDomainFunction &>(*m_target);
try {
for (size_t i = 0; i < m_temperatures.size(); ++i) {
updateSpectrum(*fun.getFunction(i), nre, en, wf, ham, m_temperatures[i],
m_FWHMs[i], i);
}
} catch (std::out_of_range &) {
buildTargetFunction();
return;
}
}
/// Update a function for a single spectrum.
void CrystalFieldFunction::updateSpectrum(API::IFunction &spectrum, int nre,
const DoubleFortranVector &en,
const ComplexFortranMatrix &wf,
const ComplexFortranMatrix &ham,
double temperature, double fwhm,
size_t iSpec) const {
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
auto &composite = dynamic_cast<API::CompositeFunction &>(spectrum);
m_nPeaks[iSpec] = CrystalFieldUtils::updateSpectrumFunction(
composite, peakShape, values, 1, m_fwhmX[iSpec], m_fwhmY[iSpec],
fwhmVariation, fwhm, fixAllPeaks);
}
} // namespace Functions
} // namespace CurveFitting
} // namespace Mantid