Newer
Older
#include "MantidCurveFitting/Functions/CrystalFieldFunction.h"
#include "MantidCurveFitting/Functions/CrystalElectricField.h"
#include "MantidCurveFitting/Functions/CrystalFieldHeatCapacity.h"
#include "MantidCurveFitting/Functions/CrystalFieldMagnetisation.h"
#include "MantidCurveFitting/Functions/CrystalFieldMoment.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeakUtils.h"
#include "MantidCurveFitting/Functions/CrystalFieldPeaks.h"
#include "MantidCurveFitting/Functions/CrystalFieldSusceptibility.h"
#include "MantidAPI/FunctionFactory.h"
#include "MantidAPI/IConstraint.h"
#include "MantidAPI/IFunction1D.h"
#include "MantidAPI/IPeakFunction.h"
#include "MantidAPI/MultiDomainFunction.h"
#include "MantidAPI/ParameterTie.h"
#include "MantidKernel/Exception.h"
#include "MantidKernel/StringTokenizer.h"
#include "MantidKernel/Strings.h"
#include <regex>
namespace Mantid {
namespace CurveFitting {
namespace Functions {
using namespace CurveFitting;
using namespace Kernel;
using namespace API;
DECLARE_FUNCTION(CrystalFieldFunction)
namespace {
// Regex for names of attributes/parameters for a particular spectrum
// Example: sp1.FWHMX
const std::regex SPECTRUM_ATTR_REGEX("sp([0-9]+)\\.(.+)");
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/// Define the source function for CrystalFieldFunction.
/// Its function() method is not needed.
class Peaks : public CrystalFieldPeaksBase, public API::IFunctionGeneral {
public:
Peaks() : CrystalFieldPeaksBase() {}
std::string name() const override { return "Peaks"; }
size_t getNumberDomainColumns() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
size_t getNumberValuesPerArgument() const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
void functionGeneral(const API::FunctionDomainGeneral &,
API::FunctionValues &) const override {
throw Exception::NotImplementedError(
"This method is intentionally not implemented.");
}
std::vector<size_t> m_IntensityScalingIdx;
std::vector<size_t> m_PPLambdaIdxChild;
std::vector<size_t> m_PPLambdaIdxSelf;
/// Declare the intensity scaling parameters: one per spectrum.
void declareIntensityScaling(size_t nSpec) {
m_IntensityScalingIdx.clear();
m_PPLambdaIdxChild.resize(nSpec, -1);
m_PPLambdaIdxSelf.resize(nSpec, -1);
for (size_t i = 0; i < nSpec; ++i) {
auto si = std::to_string(i);
try { // If parameter has already been declared, don't declare it.
declareParameter("IntensityScaling" + si, 1.0,
"Intensity scaling factor for spectrum " + si);
} catch (std::invalid_argument &) {
}
m_IntensityScalingIdx.push_back(parameterIndex("IntensityScaling" + si));
}
}
};
CrystalFieldFunction::CrystalFieldFunction() : IFunction() {
declareAttribute("Ions", Attribute(""));
declareAttribute("Symmetries", Attribute(""));
declareAttribute("Temperatures", Attribute(std::vector<double>()));
declareAttribute("ToleranceEnergy", Attribute(1.0e-10));
declareAttribute("ToleranceIntensity", Attribute(1.0e-1));
// declareAttribute("PhysicalProperties",
// Attribute(std::vector<double>(1, 0.0)));
}
// Evaluates the function
void CrystalFieldFunction::function(const FunctionDomain &domain,
FunctionValues &values) const {
updateTargetFunction();
if (!m_target) {
throw std::logic_error(
"FunctionGenerator failed to generate target function.");
}
m_target->function(domain, values);
}
/// Set the source function
/// @param source :: New source function.
void CrystalFieldFunction::setSource(IFunction_sptr source) const {
m_source = source;
}
size_t CrystalFieldFunction::getNumberDomains() const {
if (!m_target) {
buildTargetFunction();
}
if (!m_target) {
throw std::runtime_error("Failed to build target function.");
}
return m_target->getNumberDomains();
}
std::vector<IFunction_sptr>
CrystalFieldFunction::createEquivalentFunctions() const {
checkTargetFunction();
std::vector<IFunction_sptr> funs;
auto &composite = dynamic_cast<CompositeFunction &>(*m_target);
for (size_t i = 0; i < composite.nFunctions(); ++i) {
funs.push_back(composite.getFunction(i));
}
return funs;
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/// Set i-th parameter
void CrystalFieldFunction::setParameter(size_t i, const double &value,
bool explicitlySet) {
if (i < m_nOwnParams) {
m_source->setParameter(i, value, explicitlySet);
m_dirty = true;
} else {
checkTargetFunction();
m_target->setParameter(i - m_nOwnParams, value, explicitlySet);
}
}
/// Set i-th parameter description
void CrystalFieldFunction::setParameterDescription(
size_t i, const std::string &description) {
if (i < m_nOwnParams) {
m_source->setParameterDescription(i, description);
} else {
checkTargetFunction();
m_target->setParameterDescription(i - m_nOwnParams, description);
}
}
/// Get i-th parameter
double CrystalFieldFunction::getParameter(size_t i) const {
checkTargetFunction();
return i < m_nOwnParams ? m_source->getParameter(i)
: m_target->getParameter(i - m_nOwnParams);
}
/// Set parameter by name.
void CrystalFieldFunction::setParameter(const std::string &name,
const double &value,
bool explicitlySet) {
checkTargetFunction();
auto i = parameterIndex(name);
setParameter(i, value, explicitlySet);
}
/// Set description of parameter by name.
void CrystalFieldFunction::setParameterDescription(
const std::string &name, const std::string &description) {
checkTargetFunction();
auto i = parameterIndex(name);
setParameterDescription(i, description);
}
/// Get parameter by name.
double CrystalFieldFunction::getParameter(const std::string &name) const {
auto i = parameterIndex(name);
return getParameter(i);
}
/// Total number of parameters
size_t CrystalFieldFunction::nParams() const {
checkTargetFunction();
return m_source->nParams() + m_target->nParams();
}
/// Returns the index of parameter name
size_t CrystalFieldFunction::parameterIndex(const std::string &name) const {
if (isSourceName(name)) {
return m_source->parameterIndex(name);
} else {
checkTargetFunction();
return m_target->parameterIndex(name) + m_nOwnParams;
}
}
/// Returns the name of parameter i
std::string CrystalFieldFunction::parameterName(size_t i) const {
checkTargetFunction();
return i < m_nOwnParams ? m_source->parameterName(i)
: m_target->parameterName(i - m_nOwnParams);
}
/// Returns the description of parameter i
std::string CrystalFieldFunction::parameterDescription(size_t i) const {
checkTargetFunction();
return i < m_nOwnParams ? m_source->parameterDescription(i)
: m_target->parameterDescription(i - m_nOwnParams);
}
/// Checks if a parameter has been set explicitly
bool CrystalFieldFunction::isExplicitlySet(size_t i) const {
checkTargetFunction();
return i < m_nOwnParams ? m_source->isExplicitlySet(i)
: m_target->isExplicitlySet(i - m_nOwnParams);
}
/// Get the fitting error for a parameter
double CrystalFieldFunction::getError(size_t i) const {
checkTargetFunction();
return i < m_nOwnParams ? m_source->getError(i)
: m_target->getError(i - m_nOwnParams);
}
/// Set the fitting error for a parameter
void CrystalFieldFunction::setError(size_t i, double err) {
if (i < m_nOwnParams) {
m_source->setError(i, err);
} else {
checkTargetFunction();
m_target->setError(i - m_nOwnParams, err);
}
}
/// Change status of parameter
void CrystalFieldFunction::setParameterStatus(
size_t i, IFunction::ParameterStatus status) {
if (i < m_nOwnParams) {
m_source->setParameterStatus(i, status);
} else {
checkTargetFunction();
m_target->setParameterStatus(i - m_nOwnParams, status);
}
}
/// Get status of parameter
IFunction::ParameterStatus
CrystalFieldFunction::getParameterStatus(size_t i) const {
if (i < m_nOwnParams) {
return m_source->getParameterStatus(i);
} else {
checkTargetFunction();
return m_target->getParameterStatus(i - m_nOwnParams);
}
}
/// Return parameter index from a parameter reference.
size_t
CrystalFieldFunction::getParameterIndex(const ParameterReference &ref) const {
if (ref.getLocalFunction() == this) {
auto index = ref.getLocalIndex();
auto np = nParams();
if (index < np) {
return index;
}
return np;
}
checkTargetFunction();
return m_target->getParameterIndex(ref) + m_nOwnParams;
}
/// Set up the function for a fit.
void CrystalFieldFunction::setUpForFit() {
updateTargetFunction();
IFunction::setUpForFit();
}
/// Declare a new parameter
void CrystalFieldFunction::declareParameter(const std::string &, double,
const std::string &) {
throw Kernel::Exception::NotImplementedError(
"CrystalFieldFunction cannot not have its own parameters.");
}
/// Returns the number of attributes associated with the function
size_t CrystalFieldFunction::nAttributes() const {
// TODO: uncomment
// checkTargetFunction();
return IFunction::nAttributes() + m_source->nAttributes() +
m_target->nAttributes();
}
/// Returns a list of attribute names
std::vector<std::string> CrystalFieldFunction::getAttributeNames() const {
// TODO: uncomment
// checkTargetFunction();
std::vector<std::string> attNames = IFunction::getAttributeNames();
return attNames;
}
/// Return a value of attribute attName
/// @param attName :: Name of an attribute.
IFunction::Attribute
CrystalFieldFunction::getAttribute(const std::string &attName) const {
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
return getSpectrumAttribute(i, match[2]);
}
return IFunction::getAttribute(attName);
// if (IFunction::hasAttribute(attName)) {
// return IFunction::getAttribute(attName);
//} else if (isSourceName(attName)) {
// return m_source->getAttribute(attName);
//} else {
// checkTargetFunction();
// return m_target->getAttribute(attName);
//}
}
/// Perform custom actions on setting certain attributes.
void CrystalFieldFunction::setAttribute(const std::string &attName,
const Attribute &attr) {
if (attName == "Ions") {
setIonsAttribute(attName, attr);
} else if (attName == "Symmetries") {
setSymmetriesAttribute(attName, attr);
} else if (attName == "Temperatures") {
setTemperaturesAttribute(attName, attr);
} else {
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
setSpectrumAttribute(i, match[2], attr);
}
API::IFunction::setAttribute(attName, attr);
}
}
/// Check if attribute attName exists
bool CrystalFieldFunction::hasAttribute(const std::string &attName) const {
std::smatch match;
if (std::regex_match(attName, match, SPECTRUM_ATTR_REGEX)) {
auto i = std::stoul(match[1]);
return hasSpectrumAttribute(i, match[2]);
}
if (IFunction::hasAttribute(attName)) {
return true;
}
if (!m_source) {
return false;
}
if (isSourceName(attName)) {
return m_source->hasAttribute(attName);
} else {
checkTargetFunction();
return m_target->hasAttribute(attName);
}
}
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
/// Get number of the number of spectra (excluding phys prop data).
size_t CrystalFieldFunction::nSpectra() const {
return m_temperatures.size();
}
/// Check that a spectrum index is within the range
/// @param iSpec :: Index of a spectrum.
/// @throws if index is outside the range.
void CrystalFieldFunction::checkSpectrumIndex(size_t iSpec) const {
auto nSpec = nSpectra();
if (nSpec == 0) {
throw std::runtime_error("No spectra defined.");
} else if (nSpec == 1) {
throw std::runtime_error("Cannot use spectra indices in a single-spectrum case.");
} else if (iSpec >= nSpec) {
throw std::out_of_range("Spectrum index (" + std::to_string(iSpec) +
") is out side outside the range (N=" +
std::to_string(nSpectra()) + ").");
}
}
/// Check if there is an attribute specific to a spectrum (multi-spectrum case only).
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute to check.
bool CrystalFieldFunction::hasSpectrumAttribute(size_t iSpec, const std::string &attName) const {
if (nSpectra() < 2) {
return false;
}
checkSpectrumIndex(iSpec);
if (attName == "FWHMX" || attName == "FWHMY" || attName == "Temperature") {
return true;
}
return false;
}
/// Get an attribute specific to a spectrum (multi-spectrum case only).
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute.
API::IFunction::Attribute
CrystalFieldFunction::getSpectrumAttribute(size_t iSpec,
const std::string &attName) const {
checkSpectrumIndex(iSpec);
if (attName == "FWHMX") {
if (iSpec < m_fwhmX.size()) {
return Attribute(m_fwhmX[iSpec]);
} else {
return Attribute(std::vector<double>());
}
} else if (attName == "FWHMY") {
if (iSpec < m_fwhmY.size()) {
return Attribute(m_fwhmY[iSpec]);
} else {
return Attribute(std::vector<double>());
}
} else if (attName == "Temperature") {
return Attribute(m_temperatures[iSpec]);
}
throw std::runtime_error("Attribute " + attName + " not found.");
}
/// Set a value to a spectrum-specific attribute
/// @param iSpec :: Index of a spectrum.
/// @param attName :: Name of an attribute.
/// @param value :: New value of the attribute.
void CrystalFieldFunction::setSpectrumAttribute(size_t iSpec, const std::string &attName, const Attribute &value) {
checkSpectrumIndex(iSpec);
if (attName == "FWHMX") {
if (iSpec < m_fwhmX.size()) {
m_fwhmX[iSpec] = value.asVector();
}
} else if (attName == "FWHMY") {
if (iSpec < m_fwhmY.size()) {
m_fwhmY[iSpec] = value.asVector();
}
} else if (attName == "Temperature") {
m_temperatures[iSpec] = value.asDouble();
IFunction::storeAttributeValue("Temperatures", Attribute(m_temperatures));
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/// Get the tie for i-th parameter
ParameterTie *CrystalFieldFunction::getTie(size_t i) const {
auto tie = IFunction::getTie(i);
if (!tie) {
return nullptr;
}
if (i < m_nOwnParams) {
tie = m_source->getTie(i);
} else {
checkTargetFunction();
tie = m_target->getTie(i - m_nOwnParams);
}
return tie;
}
/// Get the i-th constraint
IConstraint *CrystalFieldFunction::getConstraint(size_t i) const {
auto constraint = IFunction::getConstraint(i);
if (constraint == nullptr) {
if (i < m_nOwnParams) {
constraint = m_source->getConstraint(i);
} else {
checkTargetFunction();
constraint = m_target->getConstraint(i - m_nOwnParams);
}
}
return constraint;
}
void CrystalFieldFunction::setIonsAttribute(const std::string &name,
const Attribute &attr) {
Kernel::StringTokenizer tokenizer(attr.asString(), ",",
Kernel::StringTokenizer::TOK_TRIM);
m_ions.clear();
m_ions.insert(m_ions.end(), tokenizer.begin(), tokenizer.end());
auto attrValue = Kernel::Strings::join(m_ions.begin(), m_ions.end(), ",");
IFunction::storeAttributeValue(name, Attribute(attrValue));
void CrystalFieldFunction::setSymmetriesAttribute(const std::string &name,
const Attribute &attr) {
Kernel::StringTokenizer tokenizer(attr.asString(), ",",
Kernel::StringTokenizer::TOK_TRIM);
m_symmetries.clear();
m_symmetries.insert(m_symmetries.end(), tokenizer.begin(), tokenizer.end());
auto attrValue =
Kernel::Strings::join(m_symmetries.begin(), m_symmetries.end(), ",");
IFunction::storeAttributeValue(name, Attribute(attrValue));
void CrystalFieldFunction::setTemperaturesAttribute(const std::string &name,
const Attribute &attr) {
m_temperatures = attr.asVector();
IFunction::storeAttributeValue(name, attr);
declareAttribute("Background", Attribute("", true));
declareAttribute("PeakShape", Attribute("Lorentzian"));
declareAttribute("FWHMs", Attribute(std::vector<double>()));
declareAttribute("FWHMVariation", Attribute(0.1));
if (m_temperatures.size() == 1) {
declareAttribute("FWHMX", Attribute(std::vector<double>()));
declareAttribute("FWHMY", Attribute(std::vector<double>()));
}
declareAttribute("NPeaks", Attribute(0));
declareAttribute("FixAllPeaks", Attribute(false));
// Define (declare) the parameters for intensity scaling.
// const auto nSpec = attr.asVector().size();
// dynamic_cast<Peaks &>(*m_source).declareIntensityScaling(nSpec);
// m_nOwnParams = m_source->nParams();
// m_fwhmX.resize(nSpec);
// m_fwhmY.resize(nSpec);
// for (size_t iSpec = 0; iSpec < nSpec; ++iSpec) {
// const auto suffix = std::to_string(iSpec);
// declareAttribute("FWHMX" + suffix, Attribute(m_fwhmX[iSpec]));
// declareAttribute("FWHMY" + suffix, Attribute(m_fwhmY[iSpec]));
//}
}
/// Check if the function is set up for a multi-site calculations.
/// (Multiple ions defined)
bool CrystalFieldFunction::isMultiSite() const { return m_ions.size() > 1; }
/// Check if the function is set up for a multi-spectrum calculations
/// (Multiple temperatures defined)
bool CrystalFieldFunction::isMultiSpectrum() const {
return m_temperatures.size() > 1;
}
/// Check if the spectra have a background.
bool CrystalFieldFunction::hasBackground() const {
if (!hasAttribute("Background")) {
return false;
}
auto background = getAttribute("Background").asString();
return background != "\"\"";
}
/// Check if there are peaks (there is at least one spectrum).
bool CrystalFieldFunction::hasPeaks() const { return !m_temperatures.empty(); }
/// Check if there are any phys. properties.
bool CrystalFieldFunction::hasPhysProperties() const { return false; }
void CrystalFieldFunction::chacheAttributes() const {
if (hasAttribute("FWHMs")) {
m_FWHMs = getAttribute("FWHMs").asVector();
}
if (hasAttribute("FWHMX")) {
auto fwhmX = getAttribute("FWHMX").asVector();
auto fwhmY = getAttribute("FWHMY").asVector();
if (!fwhmX.empty()) {
m_fwhmX.clear();
m_fwhmX.push_back(fwhmX);
}
if (!fwhmY.empty()) {
m_fwhmY.clear();
m_fwhmY.push_back(fwhmY);
}
}
}
/// Test if a name (parameter's or attribute's) belongs to m_source
/// @param aName :: A name to test.
bool CrystalFieldFunction::isSourceName(const std::string &aName) const {
if (aName.empty()) {
throw std::invalid_argument(
"Parameter or attribute name cannot be empty string.");
}
return (aName.front() != 'f' || aName.find('.') == std::string::npos);
}
/// Check that attributes and parameters are consistent.
/// If not excepion is thrown.
void CrystalFieldFunction::checkConsistent() const {
if (m_ions.empty()) {
throw std::runtime_error("No ions are set.");
}
if (m_ions.size() != m_symmetries.size()) {
throw std::runtime_error(
"Number of ions is different from number of symmetries.");
}
chacheAttributes();
if (!m_temperatures.empty()) {
const auto nSpec = m_temperatures.size();
if (m_FWHMs.empty()) {
if (m_fwhmX.empty() || m_fwhmY.empty()) {
throw std::runtime_error("No peak width settings (FWHMs and FWHMX and "
"FWHMY attributes not set).");
}
if (m_fwhmX.size() != nSpec || m_fwhmY.size() != nSpec) {
throw std::runtime_error("There must be as many (FWHMX, FWHMY) pairs of attributes as there are Temperatures.");
}
for(size_t i = 0; i < nSpec; ++i) {
if (m_fwhmX[i].size() != m_fwhmY[i].size()) {
throw std::runtime_error("Vectors in each pair of (FWHMX, FWHMY) attributes must have the same size");
}
}
m_FWHMs.resize(nSpec, 0.0);
} else if (m_FWHMs.size() != nSpec) {
if (m_FWHMs.size() == 1) {
auto fwhm = m_FWHMs.front();
m_FWHMs.resize(nSpec, fwhm);
} else {
throw std::runtime_error(
"Vector of FWHMs must either have same size as "
"Temperatures (" +
std::to_string(nSpec) + ") or have size 1.");
}
} else if (!m_fwhmX.empty() || !m_fwhmY.empty()) {
throw std::runtime_error("Either FWHMs or (FWHMX and FWHMY) can be set but not all.");
/// Update spectrum function if necessary.
void CrystalFieldFunction::checkTargetFunction() const {
if (m_dirty) {
updateTargetFunction();
}
if (!m_target) {
throw std::logic_error(
"CrystalFieldFunction failed to generate target function.");
}
}
/// Uses source to calculate peak centres and intensities
/// then populates m_spectrum with peaks of type given in PeakShape attribute.
void CrystalFieldFunction::buildTargetFunction() const {
checkConsistent();
m_dirty = false;
if (isMultiSite()) {
buildMultiSite();
} else {
buildSingleSite();
}
}
/// Build the target function in a single site case.
void CrystalFieldFunction::buildSingleSite() const {
m_source.reset(new CrystalFieldPeaks);
if (isMultiSpectrum()) {
buildSingleSiteMultiSpectrum();
} else {
buildSingleSiteSingleSpectrum();
}
}
/// Build the target function in a multi site case.
void CrystalFieldFunction::buildMultiSite() const {
m_source.reset(new Peaks);
if (isMultiSpectrum()) {
buildMultiSiteMultiSpectrum();
} else {
buildMultiSiteSingleSpectrum();
}
}
/// Build the target function in a single site - single spectrum case.
void CrystalFieldFunction::buildSingleSiteSingleSpectrum() const {
auto spectrum = new CompositeFunction;
m_target.reset(spectrum);
m_target->setAttributeValue("NumDeriv", true);
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
if (values.size() == 0) {
return;
}
if (values.size() % 2 != 0) {
throw std::runtime_error(
"CrystalFieldPeaks returned odd number of values.");
}
checkConsistent();
bool hasWidthModel = !m_fwhmX.empty();
auto xVec = hasWidthModel ? m_fwhmX[0] : std::vector<double>();
auto yVec = hasWidthModel ? m_fwhmY[0] : std::vector<double>();
auto defaultFWHM = m_FWHMs.empty() ? 0.0 : m_FWHMs[0];
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
size_t nRequiredPeaks = getAttribute("NPeaks").asInt();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
auto nPeaks = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, xVec, yVec, fwhmVariation, defaultFWHM,
nRequiredPeaks, fixAllPeaks);
(void)nPeaks;
// storeReadOnlyAttribute("NPeaks", Attribute(static_cast<int>(m_nPeaks)));
}
/// Build the target function in a single site - multi spectrum case.
void CrystalFieldFunction::buildSingleSiteMultiSpectrum() const {
setSource(IFunction_sptr(new Peaks));
auto fun = new MultiDomainFunction;
m_target.reset(fun);
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<Peaks &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
const auto nSpec = m_temperatures.size();
// Get a list of "spectra" which corresponds to physical properties
// const auto physprops = getAttribute("PhysicalProperties").asVector();
// if (physprops.empty()) {
// m_physprops.resize(nSpec, 0); // Assume no physical properties - just INS
//} else if (physprops.size() != nSpec) {
// if (physprops.size() == 1) {
// int physprop = static_cast<int>(physprops.front());
// m_physprops.resize(nSpec, physprop);
// } else {
// throw std::runtime_error("Vector of PhysicalProperties must have same "
// "size as Temperatures or size 1.");
// }
//} else {
// m_physprops.clear();
// for (auto elem : physprops) {
// m_physprops.push_back(static_cast<int>(elem));
// }
//}
// Create the single-spectrum functions.
// m_nPeaks.resize(nSpec);
if (m_fwhmX.empty()) {
m_fwhmX.resize(nSpec);
m_fwhmY.resize(nSpec);
}
for (size_t i = 0; i < nSpec; ++i) {
if (m_fwhmX[i].empty()) {
// auto suffix = std::to_string(i);
// m_fwhmX[i] = IFunction::getAttribute("FWHMX" + suffix).asVector();
// m_fwhmY[i] = IFunction::getAttribute("FWHMY" + suffix).asVector();
}
fun->addFunction(
buildSpectrum(nre, en, wf, m_temperatures[i], m_FWHMs[i], i));
fun->setDomainIndex(i, i);
}
}
/// Build the target function in a multi site - single spectrum case.
void CrystalFieldFunction::buildMultiSiteSingleSpectrum() const {
throw std::runtime_error(
"buildMultiSiteSingleSpectrum() not implemented yet.");
}
/// Build the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::buildMultiSiteMultiSpectrum() const {
throw std::runtime_error(
"buildMultiSiteMultiSpectrum() not implemented yet.");
}
/// Calculate excitations at given temperature
void CrystalFieldFunction::calcExcitations(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, FunctionValues &values, size_t iSpec) const {
IntFortranVector degeneration;
DoubleFortranVector eEnergies;
DoubleFortranMatrix iEnergies;
const double de = getAttribute("ToleranceEnergy").asDouble();
const double di = getAttribute("ToleranceIntensity").asDouble();
DoubleFortranVector eExcitations;
DoubleFortranVector iExcitations;
calculateIntensities(nre, en, wf, temperature, de, degeneration, eEnergies,
iEnergies);
calculateExcitations(eEnergies, iEnergies, de, di, eExcitations,
iExcitations);
const size_t nSpec = m_temperatures.size();
// Get intensity scaling parameter "IntensityScaling" + std::to_string(iSpec)
// using an index instead of a name for performance reasons
auto &source = dynamic_cast<Peaks &>(*m_source);
double intensityScaling = 1.0;
// if (source.m_IntensityScalingIdx.size() == 0) {
// intensityScaling = getParameter(m_nOwnParams - nSpec + iSpec);
//} else {
// intensityScaling = getParameter(source.m_IntensityScalingIdx[iSpec]);
//}
const auto nPeaks = eExcitations.size();
values.expand(2 * nPeaks);
for (size_t i = 0; i < nPeaks; ++i) {
values.setCalculated(i, eExcitations.get(i));
values.setCalculated(i + nPeaks, iExcitations.get(i) * intensityScaling);
}
}
/// Build a function for a single spectrum.
API::IFunction_sptr CrystalFieldFunction::buildSpectrum(
int nre, const DoubleFortranVector &en, const ComplexFortranMatrix &wf,
double temperature, double fwhm, size_t iSpec) const {
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
auto nPeaks = CrystalFieldUtils::calculateNPeaks(values);
(void)nPeaks;
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
auto bkgdShape = IFunction::getAttribute("Background").asUnquotedString();
const size_t nRequiredPeaks = IFunction::getAttribute("NPeaks").asInt();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
if (!bkgdShape.empty() && bkgdShape.find("name=") != 0 &&
bkgdShape.front() != '(') {
bkgdShape = "name=" + bkgdShape;
}
auto spectrum = new CompositeFunction;
if (!bkgdShape.empty()) {
auto background =
API::FunctionFactory::Instance().createInitialized(bkgdShape);
spectrum->addFunction(background);
if (fixAllPeaks) {
background->fixAll();
}
}
nPeaks = CrystalFieldUtils::buildSpectrumFunction(
*spectrum, peakShape, values, m_fwhmX[iSpec], m_fwhmY[iSpec],
fwhmVariation, fwhm, nRequiredPeaks, fixAllPeaks);
return IFunction_sptr(spectrum);
}
/// Update m_spectrum function.
void CrystalFieldFunction::updateTargetFunction() const {
if (!m_target) {
buildTargetFunction();
return;
}
if (isMultiSite()) {
updateMultiSite();
} else {
updateSingleSite();
}
}
/// Update the target function in a single site case.
void CrystalFieldFunction::updateSingleSite() const {
if (isMultiSpectrum()) {
updateSingleSiteMultiSpectrum();
} else {
updateSingleSiteSingleSpectrum();
}
}
/// Update the target function in a multi site case.
void CrystalFieldFunction::updateMultiSite() const {
if (isMultiSpectrum()) {
updateMultiSiteMultiSpectrum();
} else {
updateMultiSiteSingleSpectrum();
}
}
/// Update the target function in a single site - single spectrum case.
void CrystalFieldFunction::updateSingleSiteSingleSpectrum() const {
auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
auto peakShape = getAttribute("PeakShape").asString();
bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
bool hasWidthModel = !m_fwhmX.empty();
auto xVec = hasWidthModel ? m_fwhmX[0] : std::vector<double>();
auto yVec = hasWidthModel ? m_fwhmY[0] : std::vector<double>();
auto defaultFWHM = m_FWHMs.empty() ? 0.0 : m_FWHMs[0];
FunctionDomainGeneral domain;
FunctionValues values;
m_source->function(domain, values);
m_target->setAttributeValue("NumDeriv", true);
auto &spectrum = dynamic_cast<CompositeFunction &>(*m_target);
auto nPeaks = CrystalFieldUtils::calculateNPeaks(values);
(void)nPeaks;
CrystalFieldUtils::updateSpectrumFunction(spectrum, peakShape, values, 0,
xVec, yVec, fwhmVariation,
defaultFWHM, fixAllPeaks);
}
/// Update the target function in a single site - multi spectrum case.
void CrystalFieldFunction::updateSingleSiteMultiSpectrum() const {
DoubleFortranVector en;
ComplexFortranMatrix wf;
ComplexFortranMatrix ham;
ComplexFortranMatrix hz;
int nre = 0;
auto &peakCalculator = dynamic_cast<Peaks &>(*m_source);
peakCalculator.calculateEigenSystem(en, wf, ham, hz, nre);
ham += hz;
auto &fun = dynamic_cast<MultiDomainFunction &>(*m_target);
try {
for (size_t i = 0; i < m_temperatures.size(); ++i) {
updateSpectrum(*fun.getFunction(i), nre, en, wf, ham, m_temperatures[i],
m_FWHMs[i], i);
}
} catch (std::out_of_range &) {
buildTargetFunction();
return;
}
}
/// Update the target function in a multi site - single spectrum case.
void CrystalFieldFunction::updateMultiSiteSingleSpectrum() const {}
/// Update the target function in a multi site - multi spectrum case.
void CrystalFieldFunction::updateMultiSiteMultiSpectrum() const {}
/// Update a function for a single spectrum.
void CrystalFieldFunction::updateSpectrum(API::IFunction &spectrum, int nre,
const DoubleFortranVector &en,
const ComplexFortranMatrix &wf,
const ComplexFortranMatrix &ham,
double temperature, double fwhm,
size_t iSpec) const {
const auto fwhmVariation = getAttribute("FWHMVariation").asDouble();
const auto peakShape = IFunction::getAttribute("PeakShape").asString();
const bool fixAllPeaks = getAttribute("FixAllPeaks").asBool();
FunctionValues values;
calcExcitations(nre, en, wf, temperature, values, iSpec);
auto &composite = dynamic_cast<API::CompositeFunction &>(spectrum);
auto nPeaks = CrystalFieldUtils::updateSpectrumFunction(
composite, peakShape, values, 1, m_fwhmX[iSpec], m_fwhmY[iSpec],
fwhmVariation, fwhm, fixAllPeaks);
}
} // namespace Functions
} // namespace CurveFitting
} // namespace Mantid