Newer
Older
#include "MantidAlgorithms/CalculateIqt.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/AnalysisDataService.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidHistogramData/HistogramY.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/MersenneTwister.h"
#include <boost/numeric/conversion/cast.hpp>
#include <functional>
using namespace Mantid::API;
using namespace Mantid::Kernel;
using namespace Mantid::HistogramData;
namespace {
constexpr int DEFAULT_ITERATIONS = 100;
constexpr int DEFAULT_SEED = 89631139;
MatrixWorkspace_sptr rebin(MatrixWorkspace_sptr workspace,
const std::string ¶ms) {
IAlgorithm_sptr rebinAlgorithm = AlgorithmManager::Instance().create("Rebin");
rebinAlgorithm->setChild(true);
rebinAlgorithm->initialize();
rebinAlgorithm->setProperty("InputWorkspace", workspace);
rebinAlgorithm->setProperty("OutputWorkspace", "_");
rebinAlgorithm->setProperty("Params", params);
rebinAlgorithm->execute();
return rebinAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr integration(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr integrationAlgorithm =
AlgorithmManager::Instance().create("Integration");
integrationAlgorithm->setChild(true);
integrationAlgorithm->initialize();
integrationAlgorithm->setProperty("InputWorkspace", workspace);
integrationAlgorithm->setProperty("OutputWorkspace", "_");
integrationAlgorithm->execute();
return integrationAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr convertToPointData(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr pointDataAlgorithm =
AlgorithmManager::Instance().create("ConvertToPointData");
pointDataAlgorithm->setChild(true);
pointDataAlgorithm->initialize();
pointDataAlgorithm->setProperty("InputWorkspace", workspace);
pointDataAlgorithm->setProperty("OutputWorkspace", "_");
pointDataAlgorithm->execute();
return pointDataAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr extractFFTSpectrum(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr FFTAlgorithm =
AlgorithmManager::Instance().create("ExtractFFTSpectrum");
FFTAlgorithm->setChild(true);
FFTAlgorithm->initialize();
FFTAlgorithm->setProperty("InputWorkspace", workspace);
FFTAlgorithm->setProperty("OutputWorkspace", "_");
FFTAlgorithm->setProperty("FFTPart", 2);
FFTAlgorithm->execute();
return FFTAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr divide(MatrixWorkspace_sptr lhsWorkspace,
MatrixWorkspace_sptr rhsWorkspace) {
IAlgorithm_sptr divideAlgorithm =
AlgorithmManager::Instance().create("Divide");
divideAlgorithm->setChild(true);
divideAlgorithm->initialize();
divideAlgorithm->setProperty("LHSWorkspace", lhsWorkspace);
divideAlgorithm->setProperty("RHSWorkspace", rhsWorkspace);
divideAlgorithm->setProperty("OutputWorkspace", "_");
divideAlgorithm->execute();
return divideAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr cropWorkspace(MatrixWorkspace_sptr workspace,
double xMax) {
IAlgorithm_sptr cropAlgorithm =
AlgorithmManager::Instance().create("CropWorkspace");
cropAlgorithm->setChild(true);
cropAlgorithm->initialize();
cropAlgorithm->setProperty("InputWorkspace", workspace);
cropAlgorithm->setProperty("OutputWorkspace", "_");
cropAlgorithm->setProperty("XMax", xMax);
cropAlgorithm->execute();
return cropAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr replaceSpecialValues(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr specialValuesAlgorithm =
AlgorithmManager::Instance().create("ReplaceSpecialValues");
specialValuesAlgorithm->setChild(true);
specialValuesAlgorithm->initialize();
specialValuesAlgorithm->setProperty("InputWorkspace", workspace);
specialValuesAlgorithm->setProperty("OutputWorkspace", "_");
specialValuesAlgorithm->setProperty("InfinityValue", 0.0);
specialValuesAlgorithm->setProperty("BigNumberThreshold", 1.0001);
specialValuesAlgorithm->setProperty("NaNValue", 0.0);
specialValuesAlgorithm->execute();
return specialValuesAlgorithm->getProperty("OutputWorkspace");
}
std::string createRebinString(double minimum, double maximum, double width) {
std::stringstream rebinStream;
rebinStream.precision(14);
rebinStream << minimum << ", " << width << ", " << maximum;
return rebinStream.str();
}
template <typename Generator>
void randomizeHistogramWithinError(HistogramY &row, const HistogramE &errors,
for (auto i = 0u; i < row.size(); ++i)
row[i] += generator(errors[i]);
}
MatrixWorkspace_sptr
randomizeWorkspaceWithinError(MatrixWorkspace_sptr workspace, const int seed) {
MersenneTwister mTwister(seed);
auto randomNumberGenerator = [&mTwister](const double error) {
return mTwister.nextValue(-error, error);
};
for (auto i = 0u; i < workspace->getNumberHistograms(); ++i)
randomizeHistogramWithinError(workspace->mutableY(i), workspace->e(i),
randomNumberGenerator);
return workspace;
}
double standardDeviation(const std::vector<double> &inputValues) {
const auto inputSize = boost::numeric_cast<double>(inputValues.size());
std::accumulate(inputValues.begin(), inputValues.end(), 0.0) / inputSize;
for (auto &&x : inputValues)
sumOfXMinusMeanSquared += (x - mean) * (x - mean);
return sqrt(sumOfXMinusMeanSquared / (inputSize - 1));
}
std::vector<double>
standardDeviationArray(const std::vector<std::vector<double>> &yValues) {
std::vector<double> standardDeviations;
standardDeviations.reserve(yValues.size());
std::transform(yValues.begin(), yValues.end(),
std::back_inserter(standardDeviations), standardDeviation);
MatrixWorkspace_sptr removeInvalidData(MatrixWorkspace_sptr workspace) {
auto binning = (workspace->blocksize() + 1) / 2;
auto binV = workspace->x(0)[binning];
workspace = cropWorkspace(workspace, binV);
return replaceSpecialValues(workspace);
}
MatrixWorkspace_sptr
normalizedFourierTransform(MatrixWorkspace_sptr workspace,
const std::string &rebinParams) {
workspace = rebin(workspace, rebinParams);
auto workspace_int = integration(workspace);
workspace = convertToPointData(workspace);
workspace = extractFFTSpectrum(workspace);
return divide(workspace, workspace_int);
}
MatrixWorkspace_sptr calculateIqt(MatrixWorkspace_sptr workspace,
MatrixWorkspace_sptr resolutionWorkspace,
const std::string &rebinParams) {
workspace = normalizedFourierTransform(workspace, rebinParams);
return divide(workspace, resolutionWorkspace);
}
MatrixWorkspace_sptr doSimulation(MatrixWorkspace_sptr sample,
MatrixWorkspace_sptr resolution,
const std::string &rebinParams,
const int seed) {
auto simulatedWorkspace = randomizeWorkspaceWithinError(sample, seed);
return calculateIqt(simulatedWorkspace, resolution, rebinParams);
}
/**
Get all histograms at a given index from a set of workspaces. Arranges the
output such that the first vector contains the first value from each workspace,
the second vector contains all the second values, etc.
*/
std::vector<std::vector<double>>
allYValuesAtIndex(const std::vector<MatrixWorkspace_sptr> &workspaces,
const std::size_t index) {
std::vector<std::vector<double>> yValues(
workspaces[0]->getDimension(0)->getNBins());
for (auto &&workspace : workspaces) {
const auto values = workspace->y(index).rawData();
for (auto j = 0u; j < values.size(); ++j)
yValues[j].emplace_back(values[j]);
}
return yValues;
}
MatrixWorkspace_sptr setErrorsToStandardDeviation(
const std::vector<MatrixWorkspace_sptr> &simulatedWorkspaces) {
auto outputWorkspace = simulatedWorkspaces.front();
PARALLEL_FOR_IF(Mantid::Kernel::threadSafe(*outputWorkspace))
for (int i = 0;
i < boost::numeric_cast<int>(outputWorkspace->getNumberHistograms());
++i)
outputWorkspace->mutableE(i) =
standardDeviationArray(allYValuesAtIndex(simulatedWorkspaces, i));
return outputWorkspace;
}
} // namespace
namespace Mantid {
const std::string CalculateIqt::name() const { return "CalculateIqt"; }
const std::vector<std::string> CalculateIqt::seeAlso() const {
return {"TransformToIqt"};
}
const std::string CalculateIqt::category() const {
return "Inelastic\\Indirect";
}
const std::string CalculateIqt::summary() const {
return "Calculates I(Q,t) from S(Q,w) and computes the errors using a "
"monte-carlo routine.";
}
declareProperty(
make_unique<WorkspaceProperty<>>("InputWorkspace", "", Direction::Input),
"The name of the sample workspace.");
declareProperty(make_unique<WorkspaceProperty<>>("ResolutionWorkspace", "",
Direction::Input),
"The name of the resolution workspace.");
declareProperty("EnergyMin", -0.5, "Minimum energy for fit. Default = -0.5.");
declareProperty("EnergyMax", 0.5, "Maximum energy for fit. Default = 0.5.");
declareProperty("EnergyWidth", 0.1, "Width of energy bins for fit.");
auto positiveInt = boost::make_shared<Kernel::BoundedValidator<int>>();
positiveInt->setLower(1);
declareProperty("NumberOfIterations", DEFAULT_ITERATIONS, positiveInt,
"Number of randomised simulations within error to run.");
declareProperty(
"SeedValue", DEFAULT_SEED, positiveInt,
"Seed the random number generator for monte-carlo error calculation.");
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output),
"The name to use for the output workspace.");
}
void CalculateIqt::exec() {
const auto rebinParams = rebinParamsAsString();
const MatrixWorkspace_sptr sampleWorkspace = getProperty("InputWorkspace");
MatrixWorkspace_sptr resolution = getProperty("ResolutionWorkspace");
const int nIterations = getProperty("NumberOfIterations");
const int seed = getProperty("SeedValue");
resolution = normalizedFourierTransform(resolution, rebinParams);
auto outputWorkspace = monteCarloErrorCalculation(
sampleWorkspace, resolution, rebinParams, seed, nIterations);
outputWorkspace = removeInvalidData(outputWorkspace);
setProperty("OutputWorkspace", outputWorkspace);
}
std::string CalculateIqt::rebinParamsAsString() {
const double e_min = getProperty("EnergyMin");
const double e_max = getProperty("EnergyMax");
const double e_width = getProperty("EnergyWidth");
return createRebinString(e_min, e_max, e_width);
}
MatrixWorkspace_sptr CalculateIqt::monteCarloErrorCalculation(
MatrixWorkspace_sptr sample, MatrixWorkspace_sptr resolution,
const std::string &rebinParams, const int seed, const int nIterations) {
auto outputWorkspace = calculateIqt(sample, resolution, rebinParams);
std::vector<MatrixWorkspace_sptr> simulatedWorkspaces;
simulatedWorkspaces.reserve(nIterations);
simulatedWorkspaces.emplace_back(outputWorkspace);
PARALLEL_FOR_IF(Kernel::threadSafe(*sample, *resolution))
for (auto i = 0; i < nIterations - 1; ++i) {
PARALLEL_START_INTERUPT_REGION
auto simulated =
doSimulation(sample->clone(), resolution, rebinParams, seed);
PARALLEL_CRITICAL(emplace_back)
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
return setErrorsToStandardDeviation(simulatedWorkspaces);
}
std::map<std::string, std::string> CalculateIqt::validateInputs() {
std::map<std::string, std::string> issues;
const double eMin = getProperty("EnergyMin");
const double eMax = getProperty("EnergyMax");
if (eMin > eMax) {
auto energy_swapped = "EnergyMin is greater than EnergyMax";
issues["EnergyMin"] = energy_swapped;
issues["EnergyMax"] = energy_swapped;
}
return issues;
}
} // namespace Algorithms
} // namespace Mantid