Newer
Older
#include "MantidAlgorithms/CalculateIqt.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidKernel/MersenneTwister.h"
#include "MantidHistogramData/HistogramY.h"
#include <math.h>
using namespace Mantid::API;
using namespace Mantid::Kernel;
using namespace Mantid::HistogramData;
namespace {
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
constexpr int DEFAULT_ITERATIONS = 10;
constexpr int DEFAULT_SEED = 23021997;
MatrixWorkspace_sptr rebin(MatrixWorkspace_sptr workspace,
const std::string ¶ms) {
IAlgorithm_sptr rebinAlgorithm = AlgorithmManager::Instance().create("Rebin");
rebinAlgorithm->setChild(true);
rebinAlgorithm->initialize();
rebinAlgorithm->setProperty("InputWorkspace", workspace);
rebinAlgorithm->setProperty("Params", params);
rebinAlgorithm->execute();
return rebinAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr integration(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr integrationAlgorithm =
AlgorithmManager::Instance().create("Integration");
integrationAlgorithm->setChild(true);
integrationAlgorithm->initialize();
integrationAlgorithm->setProperty("InputWorkspace", workspace);
integrationAlgorithm->execute();
return integrationAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr convertToPointData(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr pointDataAlgorithm =
AlgorithmManager::Instance().create("ConvertToPointData");
pointDataAlgorithm->setChild(true);
pointDataAlgorithm->initialize();
pointDataAlgorithm->setProperty("InputWorkspace", workspace);
pointDataAlgorithm->execute();
return pointDataAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr extractFFTSpectrum(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr FFTAlgorithm =
AlgorithmManager::Instance().create("ExtractFFTSpectrum");
FFTAlgorithm->setChild(true);
FFTAlgorithm->initialize();
FFTAlgorithm->setProperty("InputWorkspace", workspace);
FFTAlgorithm->setProperty("FFTPart", 2);
FFTAlgorithm->execute();
return FFTAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr divide(MatrixWorkspace_sptr lhsWorkspace,
MatrixWorkspace_sptr rhsWorkspace) {
IAlgorithm_sptr divideAlgorithm =
AlgorithmManager::Instance().create("Divide");
divideAlgorithm->setChild(true);
divideAlgorithm->initialize();
divideAlgorithm->setProperty("LHSWorkspace", lhsWorkspace);
divideAlgorithm->setProperty("RHSWorkspace", rhsWorkspace);
divideAlgorithm->execute();
return divideAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr cropWorkspace(MatrixWorkspace_sptr workspace,
double xMax) {
IAlgorithm_sptr cropAlgorithm =
AlgorithmManager::Instance().create("CropWorkspace");
cropAlgorithm->setChild(true);
cropAlgorithm->initialize();
cropAlgorithm->setProperty("InputWorkspace", workspace);
cropAlgorithm->setProperty("XMax", xMax);
cropAlgorithm->execute();
return cropAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr replaceSpecialValues(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr specialValuesAlgorithm =
AlgorithmManager::Instance().create("ReplaceSpecialValues");
specialValuesAlgorithm->setChild(true);
specialValuesAlgorithm->initialize();
specialValuesAlgorithm->setProperty("InputWorkspace", workspace);
specialValuesAlgorithm->setProperty("InfinityValue", 0.0);
specialValuesAlgorithm->setProperty("BigNumberThreshold", 1.0001);
specialValuesAlgorithm->setProperty("NaNValue", 0.0);
specialValuesAlgorithm->execute();
return specialValuesAlgorithm->getProperty("OutputWorkspace");
}
std::string createRebinString(double minimum, double maximum, double width) {
std::stringstream rebinStream;
rebinStream.precision(14);
rebinStream << minimum << ", " << width << ", " << maximum;
return rebinStream.str();
}
void randomizeRowWithinError(HistogramY &row, const HistogramE &errors,
std::function<double(double)> rng) {
for (auto i = 0u; i < row.size(); ++i) {
auto randomValue = rng(errors[i]);
row[i] += randomValue;
}
MatrixWorkspace_sptr
randomizeWorkspaceWithinError(MatrixWorkspace_sptr workspace, const int seed) {
MersenneTwister mTwister(seed);
auto rng = [&mTwister](const double error) {
return mTwister.nextValue(-error, error);
};
for (auto i = 0u; i < workspace->getNumberHistograms(); ++i)
randomizeRowWithinError(workspace->mutableY(i), workspace->e(i), rng);
return workspace;
}
double standardDeviation(const std::vector<double> &inputValues) {
double mean = std::accumulate(inputValues.begin(), inputValues.end(), 0.0) /
inputValues.size();
double sumOfXMinusMeanSquared = 0;
for (auto &x : inputValues) {
sumOfXMinusMeanSquared += pow(x - mean, 2);
return sqrt(sumOfXMinusMeanSquared / (inputValues.size() - 1));
}
std::vector<double>
standardDeviationArray(const std::vector<std::vector<double>> &yValues) {
std::vector<double> standardDeviations;
auto outputSize = yValues[0].size();
standardDeviations.reserve(outputSize);
std::vector<double> currentRow;
currentRow.reserve(yValues.size());
for (auto i = 0u; i < outputSize; ++i) {
currentRow.clear();
for (auto &yValueArray : yValues)
currentRow.emplace_back(yValueArray[i]);
standardDeviations.emplace_back(standardDeviation(currentRow));
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
return standardDeviations;
}
MatrixWorkspace_sptr cleanOutput(MatrixWorkspace_sptr workspace) {
auto binning = static_cast<int>(std::ceil(workspace->blocksize() / 2));
auto binV = workspace->x(0)[binning];
workspace = cropWorkspace(workspace, binV);
workspace = replaceSpecialValues(workspace);
return workspace;
}
MatrixWorkspace_sptr
normalizedFourierTransform(MatrixWorkspace_sptr workspace,
const std::string &rebinParams) {
workspace = rebin(workspace, rebinParams);
auto workspace_int = integration(workspace);
workspace = convertToPointData(workspace);
workspace = extractFFTSpectrum(workspace);
workspace = divide(workspace, workspace_int);
return workspace;
}
MatrixWorkspace_sptr calculateIqt(MatrixWorkspace_sptr workspace,
MatrixWorkspace_sptr resolutionWorkspace,
const std::string &rebinParams) {
workspace = normalizedFourierTransform(workspace, rebinParams);
return divide(workspace, resolutionWorkspace);
}
} // namespace
namespace Mantid {
const std::string CalculateIqt::name() const { return "CalculateIqt"; }
const std::vector<std::string> CalculateIqt::seeAlso() const {
return {"TransformToIqt"};
}
const std::string CalculateIqt::category() const {
return "Inelastic\\Indirect";
}
const std::string CalculateIqt::summary() const {
return "Calculates I(Q,t) from S(Q,w) and computes the errors using a "
"monte-carlo routine.";
}
declareProperty(
make_unique<WorkspaceProperty<>>("InputWorkspace", "", Direction::Input),
"The name of the sample workspace.");
declareProperty(make_unique<WorkspaceProperty<>>("ResolutionWorkspace", "",
Direction::Input),
"The name of the resolution workspace.");
declareProperty("EnergyMin", -0.5,
"Minimum energy for fit. Default = -.0.5.");
declareProperty("EnergyMax", 0.5, "Maximum energy for fit. Default = 0.5.");
declareProperty("EnergyWidth", 0.1, "Width of energy bins for fit.");
auto positiveInt = boost::make_shared<Kernel::BoundedValidator<int>>();
positiveInt->setLower(1);
declareProperty("NumberOfIterations", DEFAULT_ITERATIONS, positiveInt,
"Number of randomised simulations within error to run.");
declareProperty(
"SeedValue", DEFAULT_SEED, positiveInt,
"Seed the random number generator for monte-carlo error calculation.");
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output),
"The name to use for the output workspace.");
}
void CalculateIqt::exec() {
const auto rebinParams = rebinParamsAsString();
const MatrixWorkspace_sptr sampleWorkspace = getProperty("InputWorkspace");
MatrixWorkspace_sptr resolution = getProperty("ResolutionWorkspace");
resolution = normalizedFourierTransform(resolution, rebinParams);
// create function which only needs sampleWorkspace as input so it can be
// easily repeated in simulations
auto calculateIqtFunction =
[resolution, &rebinParams](MatrixWorkspace_sptr sample) {
return calculateIqt(sample, resolution, rebinParams);
};
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
auto outputWorkspace = monteCarloErrorCalculation(sampleWorkspace, resolution,
calculateIqtFunction);
outputWorkspace = cleanOutput(outputWorkspace);
setProperty("OutputWorkspace", outputWorkspace);
}
std::string CalculateIqt::rebinParamsAsString() {
const double e_min = getProperty("EnergyMin");
const double e_max = getProperty("EnergyMax");
const double e_width = getProperty("EnergyWidth");
return createRebinString(e_min, e_max, e_width);
}
MatrixWorkspace_sptr CalculateIqt::monteCarloErrorCalculation(
MatrixWorkspace_sptr sample, MatrixWorkspace_sptr resolution,
const std::function<MatrixWorkspace_sptr(MatrixWorkspace_sptr)> &
calculateIqtFunction) {
auto outputWorkspace = calculateIqtFunction(sample);
const unsigned int nIterations = getProperty("NumberOfIterations");
const unsigned int seed = getProperty("SeedValue");
std::vector<MatrixWorkspace_sptr> simulatedWorkspaces;
simulatedWorkspaces.reserve(nIterations);
simulatedWorkspaces.emplace_back(outputWorkspace);
PARALLEL_FOR_IF(Kernel::threadSafe(*sample, *resolution))
for (auto i = 0; i < nIterations - 1; ++i) {
PARALLEL_START_INTERUPT_REGION
auto simulatedWorkspace =
randomizeWorkspaceWithinError(sample->clone(), seed);
simulatedWorkspace = calculateIqtFunction(simulatedWorkspace);
simulatedWorkspaces.emplace_back(simulatedWorkspace);
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
return setErrorsToStandardDeviation(nIterations, simulatedWorkspaces,
outputWorkspace);
}
MatrixWorkspace_sptr CalculateIqt::setErrorsToStandardDeviation(
int nIterations,
const std::vector<MatrixWorkspace_sptr> simulatedWorkspaces,
MatrixWorkspace_sptr outputWorkspace) {
// set errors to standard deviation of y values across simulations
std::vector<std::vector<double>> allSimY;
allSimY.reserve(nIterations);
for (auto i = 0u; i < outputWorkspace->getNumberHistograms(); ++i) {
auto &outputError = outputWorkspace->mutableE(i);
for (auto &simWorkspace : simulatedWorkspaces)
allSimY.emplace_back(simWorkspace->y(i).rawData());
outputError = standardDeviationArray(allSimY);
}
return outputWorkspace;
}
std::map<std::string, std::string> CalculateIqt::validateInputs() {
std::map<std::string, std::string> issues;
const double eMin = getProperty("EnergyMin");
const double eMax = getProperty("EnergyMax");
if (eMin > eMax) {
auto energy_swapped = "EnergyMin is greater than EnergyMax";
issues["EnergyMin"] = energy_swapped;
issues["EnergyMax"] = energy_swapped;
}
return issues;
}
} // namespace Algorithms
} // namespace Mantid