Newer
Older
#include "MantidAlgorithms/CalculateIqt.h"
#include "MantidAPI/AlgorithmManager.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidAPI/MatrixWorkspace.h"
#include "MantidKernel/MersenneTwister.h"
#include "MantidHistogramData\HistogramY.h"
#include <math.h>
using namespace Mantid::API;
using namespace Mantid::Kernel;
using namespace Mantid::HistogramData;
namespace {
constexpr int DEFAULT_ITERATIONS = 10;
constexpr int DEFAULT_SEED = 23021997;
MatrixWorkspace_sptr rebin(MatrixWorkspace_sptr workspace, const std::string ¶ms) {
IAlgorithm_sptr rebinAlgorithm = AlgorithmManager::Instance().create("Rebin");
rebinAlgorithm->setChild(true);
rebinAlgorithm->initialize();
rebinAlgorithm->setProperty("InputWorkspace", workspace);
rebinAlgorithm->setProperty("Params", params);
rebinAlgorithm->execute();
return rebinAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr integration(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr integrationAlgorithm = AlgorithmManager::Instance().create("Integration");
integrationAlgorithm->setChild(true);
integrationAlgorithm->initialize();
integrationAlgorithm->setProperty("InputWorkspace", workspace);
integrationAlgorithm->execute();
return integrationAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr convertToPointData(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr pointDataAlgorithm = AlgorithmManager::Instance().create("ConvertToPointData");
pointDataAlgorithm->setChild(true);
pointDataAlgorithm->initialize();
pointDataAlgorithm->setProperty("InputWorkspace", workspace);
pointDataAlgorithm->execute();
return pointDataAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr extractFFTSpectrum(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr FFTAlgorithm = AlgorithmManager::Instance().create("ExtractFFTSpectrum");
FFTAlgorithm->setChild(true);
FFTAlgorithm->initialize();
FFTAlgorithm->setProperty("InputWorkspace", workspace);
FFTAlgorithm->setProperty("FFTPart", 2);
FFTAlgorithm->execute();
return FFTAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr divide(MatrixWorkspace_sptr lhsWorkspace, MatrixWorkspace_sptr rhsWorkspace) {
IAlgorithm_sptr divideAlgorithm = AlgorithmManager::Instance().create("Divide");
divideAlgorithm->setChild(true);
divideAlgorithm->initialize();
divideAlgorithm->setProperty("LHSWorkspace", lhsWorkspace);
divideAlgorithm->setProperty("RHSWorkspace", rhsWorkspace);
divideAlgorithm->execute();
return divideAlgorithm->getProperty("OutputWorkspace");
MatrixWorkspace_sptr cropWorkspace(MatrixWorkspace_sptr workspace, double xMax) {
IAlgorithm_sptr cropAlgorithm = AlgorithmManager::Instance().create("CropWorkspace");
cropAlgorithm->setChild(true);
cropAlgorithm->initialize();
cropAlgorithm->setProperty("InputWorkspace", workspace);
cropAlgorithm->setProperty("XMax", xMax);
cropAlgorithm->execute();
return cropAlgorithm->getProperty("OutputWorkspace");
}
MatrixWorkspace_sptr replaceSpecialValues(MatrixWorkspace_sptr workspace) {
IAlgorithm_sptr specialValuesAlgorithm = AlgorithmManager::Instance().create("ReplaceSpecialValues");
specialValuesAlgorithm->setChild(true);
specialValuesAlgorithm->initialize();
specialValuesAlgorithm->setProperty("InputWorkspace", workspace);
specialValuesAlgorithm->setProperty("InfinityValue", 0.0);
specialValuesAlgorithm->setProperty("BigNumberThreshold", 1.0001);
specialValuesAlgorithm->setProperty("NaNValue", 0.0);
specialValuesAlgorithm->execute();
return specialValuesAlgorithm->getProperty("OutputWorkspace");
std::string createRebinString(double minimum, double maximum, double width) {
std::stringstream rebinStream;
rebinStream.precision(14);
rebinStream << minimum << ", " << width << ", " << maximum;
return rebinStream.str();
}
void randomizeRowWithinError(HistogramY &row, const HistogramE &errors, std::function<double(double)> rng) {
for (auto i = 0u; i < row.size(); ++i)
{
auto randomValue = rng(errors[i]);
row[i] += randomValue;
}
}
MatrixWorkspace_sptr randomizeWorkspaceWithinError(MatrixWorkspace_sptr workspace,
const int seed) {
MersenneTwister mTwister(seed);
auto rng = [&mTwister](const double error) {
return mTwister.nextValue(-error, error);
};
for (auto i = 0u; i < workspace->getNumberHistograms(); ++i)
randomizeRowWithinError(workspace->mutableY(i), workspace->e(i), rng);
return workspace;
double standardDeviation(const std::vector<double> &inputValues) {
double mean = std::accumulate(inputValues.begin(), inputValues.end(), 0.0) / inputValues.size();
double sumOfXMinusMeanSquared = 0;
for (auto &x : inputValues) {
sumOfXMinusMeanSquared += pow(x - mean, 2);
return sqrt(sumOfXMinusMeanSquared / (inputValues.size() - 1));
std::vector<double> standardDeviationArray(const std::vector<std::vector<double>> &yValues) {
std::vector<double> standardDeviations;
auto outputSize = yValues[0].size();
standardDeviations.reserve(outputSize);
std::vector<double> currentRow;
currentRow.reserve(yValues.size());
for (auto i = 0u; i < outputSize; ++i) {
currentRow.clear();
for (auto &yValueArray : yValues)
currentRow.emplace_back(yValueArray[i]);
standardDeviations.emplace_back(standardDeviation(currentRow));
}
return standardDeviations;
}
MatrixWorkspace_sptr cleanOutput(MatrixWorkspace_sptr workspace) {
auto binning = static_cast<int>(std::ceil(workspace->blocksize() / 2));
auto binV = workspace->x(0)[binning];
workspace = cropWorkspace(workspace, binV);
workspace = replaceSpecialValues(workspace);
return workspace;
}
MatrixWorkspace_sptr normalizedFourierTransform(MatrixWorkspace_sptr workspace, const std::string &rebinParams) {
workspace = rebin(workspace, rebinParams);
auto workspace_int = integration(workspace);
workspace = convertToPointData(workspace);
workspace = extractFFTSpectrum(workspace);
workspace = divide(workspace, workspace_int);
return workspace;
}
MatrixWorkspace_sptr calculateIqt(MatrixWorkspace_sptr workspace,
MatrixWorkspace_sptr resolutionWorkspace, const std::string &rebinParams) {
workspace = normalizedFourierTransform(workspace, rebinParams);
return divide(workspace, resolutionWorkspace);
}
} // namespace
namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(CalculateIqt)
const std::string CalculateIqt::name() const { return "CalculateIqt"; }
int CalculateIqt::version() const { return 1; }
const std::vector<std::string> CalculateIqt::seeAlso() const { return{ "TransformToIqt" }; }
const std::string CalculateIqt::category() const { return "Inelastic\\Indirect"; }
const std::string CalculateIqt::summary() const {
return "Calculates I(Q,t) from S(Q,w) and computes the errors using a monte-carlo routine.";
}
void CalculateIqt::init() {
declareProperty(make_unique<WorkspaceProperty<>>("InputWorkspace", "", Direction::Input),
"The name of the sample workspace.");
declareProperty(make_unique<WorkspaceProperty<>>("ResolutionWorkspace", "", Direction::Input),
"The name of the resolution workspace.");
declareProperty("EnergyMin", -0.5, "Minimum energy for fit. Default = -.0.5.");
declareProperty("EnergyMax", 0.5, "Maximum energy for fit. Default = 0.5.");
declareProperty("EnergyWidth", 0.1, "Width of energy bins for fit.");
auto positiveInt = boost::make_shared<Kernel::BoundedValidator<int>>();
positiveInt->setLower(1);
declareProperty("NumberOfIterations", DEFAULT_ITERATIONS, positiveInt, "Number of randomised simulations within error to run.");
declareProperty("SeedValue", DEFAULT_SEED, positiveInt, "Seed the random number generator for monte-carlo error calculation.");
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output), "The name to use for the output workspace.");
}
void CalculateIqt::exec() {
const auto rebinParams = rebinParamsAsString();
const MatrixWorkspace_sptr sampleWorkspace = getProperty("InputWorkspace");
MatrixWorkspace_sptr resolution = getProperty("ResolutionWorkspace");
resolution = normalizedFourierTransform(resolution, rebinParams);
//create function which only needs sampleWorkspace as input so it can be easily repeated in simulations
auto calculateIqtFunction = [resolution, &rebinParams](MatrixWorkspace_sptr sample) {
return calculateIqt(sample, resolution, rebinParams);
};
auto outputWorkspace = monteCarloErrorCalculation(sampleWorkspace, resolution, calculateIqtFunction);
outputWorkspace = cleanOutput(outputWorkspace);
setProperty("OutputWorkspace", outputWorkspace);
std::string CalculateIqt::rebinParamsAsString() {
const double e_min = getProperty("EnergyMin");
const double e_max = getProperty("EnergyMax");
const double e_width = getProperty("EnergyWidth");
return createRebinString(e_min, e_max, e_width);
}
MatrixWorkspace_sptr CalculateIqt::monteCarloErrorCalculation(MatrixWorkspace_sptr sample, MatrixWorkspace_sptr resolution,
const std::function<MatrixWorkspace_sptr(MatrixWorkspace_sptr)> &calculateIqtFunction) {
auto outputWorkspace = calculateIqtFunction(sample);
const unsigned int nIterations = getProperty("NumberOfIterations");
const unsigned int seed = getProperty("SeedValue");
std::vector<MatrixWorkspace_sptr> simulatedWorkspaces;
simulatedWorkspaces.reserve(nIterations);
simulatedWorkspaces.emplace_back(outputWorkspace);
PARALLEL_FOR_IF(Kernel::threadSafe(*sample, *resolution))
for (auto i = 0; i < nIterations - 1; ++i) {
PARALLEL_START_INTERUPT_REGION
auto simulatedWorkspace = randomizeWorkspaceWithinError(sample->clone(), seed);
simulatedWorkspace = calculateIqtFunction(simulatedWorkspace);
simulatedWorkspaces.emplace_back(simulatedWorkspace);
PARALLEL_END_INTERUPT_REGION
PARALLEL_CHECK_INTERUPT_REGION
return setErrorsToStandardDeviation(nIterations, simulatedWorkspaces, outputWorkspace);
}
MatrixWorkspace_sptr CalculateIqt::setErrorsToStandardDeviation(int nIterations,
const std::vector<MatrixWorkspace_sptr> simulatedWorkspaces, MatrixWorkspace_sptr outputWorkspace) {
//set errors to standard deviation of y values across simulations
std::vector<std::vector<double>> allSimY;
allSimY.reserve(nIterations);
for (auto i = 0u; i < outputWorkspace->getNumberHistograms(); ++i) {
auto &outputError = outputWorkspace->mutableE(i);
for (auto &simWorkspace : simulatedWorkspaces)
allSimY.emplace_back(simWorkspace->y(i).rawData());
outputError = standardDeviationArray(allSimY);
return outputWorkspace;
}
std::map<std::string, std::string> CalculateIqt::validateInputs() {
std::map<std::string, std::string> issues;
const double eMin = getProperty("EnergyMin");
const double eMax = getProperty("EnergyMax");
if (eMin > eMax) {
auto energy_swapped = "EnergyMin is greater than EnergyMax";
issues["EnergyMin"] = energy_swapped;
issues["EnergyMax"] = energy_swapped;
}
return issues;
} // namespace Algorithms
} // namespace Mantid