Newer
Older
//------------------------------------------------------------------------------
// Includes
//------------------------------------------------------------------------------
#include "MantidAlgorithms/MonteCarloAbsorption.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/SampleEnvironment.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
Federico Montesino Pouzols
committed
#include "MantidGeometry/Instrument.h"
#include "MantidGeometry/IDetector.h"
#include "MantidGeometry/Objects/Track.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/CompositeValidator.h"
#include "MantidKernel/DeltaEMode.h"
#include "MantidKernel/PhysicalConstants.h"
Federico Montesino Pouzols
committed
#include "MantidKernel/Material.h"
#include "MantidKernel/VectorHelper.h"
#include <boost/random/uniform_int.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
using namespace Mantid::API;
using namespace Mantid::Geometry;
using namespace Mantid::Kernel;
namespace PhysicalConstants = Mantid::PhysicalConstants;
namespace {
/// Number of attempts to choose a random point within the object before it
/// gives up
const int MaxRandPointAttempts(500);
/// Element size in mm
const double ELEMENT_SIZE = 1.0;
/// Energy to wavelength
inline double toWavelength(double energy) {
static const double factor =
1e10 * PhysicalConstants::h /
sqrt(2.0 * PhysicalConstants::NeutronMass * PhysicalConstants::meV);
return factor / sqrt(energy);
}
struct EFixedProvider {
EFixedProvider(const ExperimentInfo &expt)
: m_expt(expt), m_emode(expt.getEMode()), m_value(0.0) {
if (m_emode == DeltaEMode::Direct) {
m_value = m_expt.getEFixed();
}
}
inline DeltaEMode::Type emode() const { return m_emode; }
inline double value(const IDetector_const_sptr &det) const {
if (m_emode != DeltaEMode::Indirect)
return m_value;
else
return m_expt.getEFixed(det);
private:
const ExperimentInfo &m_expt;
const DeltaEMode::Type m_emode;
double m_value;
};
namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(MonteCarloAbsorption)
//------------------------------------------------------------------------------
// Public methods
//------------------------------------------------------------------------------
/**
* Constructor
*/
MonteCarloAbsorption::MonteCarloAbsorption()
Federico Montesino Pouzols
committed
: m_samplePos(), m_sourcePos(), m_numVolumeElements(0), m_blocks(),
m_blkHalfX(0.0), m_blkHalfY(0.0), m_blkHalfZ(0.0), m_rngs(0), m_inputWS(),
m_sampleShape(nullptr), m_sampleMaterial(nullptr), m_container(nullptr),
Federico Montesino Pouzols
committed
m_numberOfPoints(0), m_xStepSize(0), m_numberOfEvents(300) {}
/**
* Destructor
*/
MonteCarloAbsorption::~MonteCarloAbsorption() {}
Russell Taylor
committed
//------------------------------------------------------------------------------
// Private methods
//------------------------------------------------------------------------------
Russell Taylor
committed
/**
* Initialize the algorithm
*/
void MonteCarloAbsorption::init() {
// The input workspace must have an instrument and units of wavelength
auto wsValidator = boost::make_shared<CompositeValidator>();
wsValidator->add<WorkspaceUnitValidator>("Wavelength");
wsValidator->add<InstrumentValidator>();
declareProperty(make_unique<WorkspaceProperty<>>(
"InputWorkspace", "", Direction::Input, wsValidator),
"The name of the input workspace. The input workspace must "
"have X units of wavelength.");
declareProperty(make_unique<WorkspaceProperty<>>("OutputWorkspace", "",
Direction::Output),
"The name to use for the output workspace.");
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
auto positiveInt = boost::make_shared<Kernel::BoundedValidator<int>>();
positiveInt->setLower(1);
declareProperty("NumberOfWavelengthPoints", EMPTY_INT(), positiveInt,
"The number of wavelength points for which a simulation is "
"atttempted (default: all points)");
declareProperty(
"EventsPerPoint", m_numberOfEvents, positiveInt,
"The number of \"neutron\" events to generate per simulated point");
declareProperty("SeedValue", 123456789, positiveInt,
"Seed the random number generator with this value");
}
/**
* Execution code
*/
void MonteCarloAbsorption::exec() {
retrieveInput();
initCaches();
g_log.debug() << "Creating output workspace\n";
MatrixWorkspace_sptr correctionFactors =
WorkspaceFactory::Instance().create(m_inputWS);
correctionFactors->isDistribution(
true); // The output of this is a distribution
correctionFactors->setYUnit(""); // Need to explicitly set YUnit to nothing
correctionFactors->setYUnitLabel("Attenuation factor");
const bool isHistogram = m_inputWS->isHistogramData();
const int numHists = static_cast<int>(m_inputWS->getNumberHistograms());
const int numBins = static_cast<int>(m_inputWS->blocksize());
// Compute the step size
m_xStepSize = numBins / m_numberOfPoints;
g_log.information() << "Simulation performed every " << m_xStepSize
<< " wavelength points" << std::endl;
EFixedProvider efixed(*m_inputWS);
Progress prog(this, 0.0, 1.0, numHists * numBins / m_xStepSize);
prog.setNotifyStep(0.01);
const std::string reportMsg = "Computing corrections";
PARALLEL_FOR1(correctionFactors)
for (int i = 0; i < numHists; ++i) {
PARALLEL_START_INTERUPT_REGION
// Copy over the X-values
const MantidVec &xValues = m_inputWS->readX(i);
correctionFactors->dataX(i) = xValues;
// Final detector position
IDetector_const_sptr detector;
try {
detector = m_inputWS->getDetector(i);
} catch (Kernel::Exception::NotFoundError &) {
continue;
MantidVec &yValues = correctionFactors->dataY(i);
MantidVec &eValues = correctionFactors->dataE(i);
const auto &detPos = detector->getPos();
const double lambdaFixed = toWavelength(efixed.value(detector));
// Simulation for each requested wavelength point
for (int bin = 0; bin < numBins; bin += m_xStepSize) {
prog.report(reportMsg);
const double lambdaStep = isHistogram
? (0.5 * (xValues[bin] + xValues[bin + 1]))
: xValues[bin];
double lambdaIn(lambdaStep), lambdaOut(lambdaStep);
if (efixed.emode() == DeltaEMode::Direct) {
lambdaIn = lambdaFixed;
} else if (efixed.emode() == DeltaEMode::Indirect) {
lambdaOut = lambdaFixed;
} else {
// elastic case already initialized
}
doSimulation(detPos, lambdaIn, lambdaOut, yValues[bin], eValues[bin]);
// Ensure we have the last point for the interpolation
if (m_xStepSize > 1 && bin + m_xStepSize >= numBins &&
bin + 1 != numBins) {
bin = numBins - m_xStepSize - 1;
// Interpolate through points not simulated
if (m_xStepSize > 1) {
Kernel::VectorHelper::linearlyInterpolateY(xValues, yValues, m_xStepSize);
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
// Save the results
setProperty("OutputWorkspace", correctionFactors);
}
* @param detPos :: The final position where the neutron is detected
* @param lambdaIn :: The wavelength value for paths before the scatter point
* @param lambdaOut :: The wavelength value for paths after the scatter point
* @param attenFactor :: [Output] The calculated attenuation factor for this
* wavelength
* @param error :: [Output] The value of the error on the factor
*/
void MonteCarloAbsorption::doSimulation(const Kernel::V3D &detPos,
const double lambdaIn,
const double lambdaOut,
double &attenFactor, double &error) {
/**
Currently, assuming square beam profile to pick start position then randomly
selecting
a point within the sample using it's bounding box.
This point defines the single scattering point and hence the attenuation path
lengths and final
directional vector to the detector
*/
int numDetected(0);
attenFactor = 0.0;
error = 0.0;
while (numDetected < m_numberOfEvents) {
V3D startPos = sampleBeamProfile();
V3D scatterPoint = selectScatterPoint();
double eventFactor(0.0);
if (attenuationFactor(startPos, scatterPoint, detPos, lambdaIn, lambdaOut,
eventFactor)) {
attenFactor += eventFactor;
++numDetected;
if (0 == numDetected)
throw std::runtime_error(
"Unexpected inconsistency found while running simulation: the number "
"of events detected is 0.");
// Attenuation factor is simply the average value
attenFactor /= numDetected;
// Error is 1/sqrt(nevents)
error = 1. / sqrt(static_cast<double>(numDetected));
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
/**
* Sample the beam profile for a random start location, assigning a weight
* to the given point
* @returns The starting location
*/
V3D MonteCarloAbsorption::sampleBeamProfile() const { return m_sourcePos; }
/**
* Selects a random location within the sample + container environment. The
* bounding box is
* used as an approximation to generate a point and this is then tested for its
* validity within
* the shape.
* @returns Selected position as V3D object
*/
V3D MonteCarloAbsorption::selectScatterPoint() const {
// Randomly select a block from the subdivided set and then randomly select a
// point
// within that block and test if it inside the sample/container. If yes then
// accept, else
// keep trying.
boost::uniform_int<size_t> uniIntDist(0, m_blocks.size() - 1);
boost::variate_generator<boost::mt19937 &, boost::uniform_int<size_t>> uniInt(
rgen(), uniIntDist);
boost::uniform_real<> uniRealDist(0, 1.0);
boost::variate_generator<boost::mt19937 &, boost::uniform_real<>> uniReal(
rgen(), uniRealDist);
V3D scatterPoint;
int nattempts(0);
while (nattempts < MaxRandPointAttempts) {
size_t index = uniInt();
const auto &block = m_blocks[index];
const double x = m_blkHalfX * (2.0 * uniReal() - 1.0) + block.xMin();
const double y = m_blkHalfY * (2.0 * uniReal() - 1.0) + block.yMin();
const double z = m_blkHalfZ * (2.0 * uniReal() - 1.0) + block.zMin();
scatterPoint(x, y, z);
++nattempts;
if (ptIntersectsSample(scatterPoint)) {
scatterPoint += m_samplePos;
return scatterPoint;
}
// If we got here then the shape is too strange for the bounding box to be of
// any use.
g_log.error() << "Attempts to generate a random point with the sample/can "
<< "have exceeded the allowed number of tries.\n";
throw std::runtime_error(
"Attempts to produce random scatter point failed. Check sample shape.");
}
/**
* Return the attenuation factor for the given track
* @param startPos :: The origin of the track
* @param scatterPoint :: The point of scatter
* @param finalPos :: The end point of the track
* @param lambdaIn :: The wavelength of the neutron before scattering
* @param lambdaOut :: The wavelength of the neutron after scattering
* @param factor :: Output parameter storing the attenuation factor
* @returns True if the track was valid, false otherwise
*/
bool MonteCarloAbsorption::attenuationFactor(
const V3D &startPos, const V3D &scatterPoint, const V3D &finalPos,
const double lambdaIn, const double lambdaOut, double &factor) {
// Start at one
factor = 1.0;
// Define two tracks, before and after scatter, and trace check their
// intersections with the the environment and sample
Track beforeScatter(scatterPoint, (startPos - scatterPoint));
Track afterScatter(scatterPoint, (finalPos - scatterPoint));
// Theoretically this should never happen as there should always be an
// intersection
// but do to precision limitations points very close to the surface give
// zero intersection, so just reject
if (m_sampleShape->interceptSurface(beforeScatter) == 0 ||
m_sampleShape->interceptSurface(afterScatter) == 0) {
return false;
}
Hahn, Steven
committed
double length = beforeScatter.cbegin()->distInsideObject;
factor *= attenuation(length, *m_sampleMaterial, lambdaIn);
beforeScatter.clearIntersectionResults();
if (m_container) {
m_container->interceptSurfaces(beforeScatter);
}
// Attenuation factor is product of factor for each material
for (const auto &citr : beforeScatter) {
length = citr.distInsideObject;
factor *= attenuation(length, citr.object->material(), lambdaIn);
Hahn, Steven
committed
length = afterScatter.cbegin()->distInsideObject;
factor *= attenuation(length, *m_sampleMaterial, lambdaOut);
afterScatter.clearIntersectionResults();
if (m_container) {
m_container->interceptSurfaces(afterScatter);
}
// Attenuation factor is product of factor for each material
for (const auto &citr : afterScatter) {
length = citr.distInsideObject;
factor *= attenuation(length, citr.object->material(), lambdaOut);
/**
* Calculate the attenuation for a given length, material and wavelength
* @param length :: Distance through the material
* @param material :: A reference to the Material
* @param lambda :: The wavelength
* @returns The attenuation factor
*/
double MonteCarloAbsorption::attenuation(const double length,
const Kernel::Material &material,
const double lambda) const {
const double rho = material.numberDensity() * 100.0;
const double sigma_s = material.totalScatterXSection(lambda);
const double sigma_t = sigma_s + material.absorbXSection(lambda);
return exp(-rho * sigma_t * length);
}
/**
* Gather the input values and check validity
* @throw std::invalid_argument If the input is invalid. Currently if there is
* no defined sample shape
*/
void MonteCarloAbsorption::retrieveInput() {
m_inputWS = getProperty("InputWorkspace");
m_sampleShape = &(m_inputWS->sample().getShape());
m_sampleMaterial = &(m_inputWS->sample().getMaterial());
if (!m_sampleShape->hasValidShape()) {
g_log.debug() << "Invalid shape defined on workspace. TopRule = "
<< m_sampleShape->topRule() << ", No. of surfaces: "
<< m_sampleShape->getSurfacePtr().size() << "\n";
throw std::invalid_argument("Input workspace has an invalid sample shape.");
}
if (m_sampleMaterial->totalScatterXSection(1.0) == 0.0) {
g_log.warning() << "The sample material appears to have zero scattering "
"cross section.\n"
<< "Result will most likely be nonsensical.\n";
}
try {
m_container = &(m_inputWS->sample().getEnvironment());
} catch (std::runtime_error &) {
m_container = nullptr;
g_log.information()
<< "No environment has been defined, continuing with only sample.\n";
}
m_numberOfPoints = getProperty("NumberOfWavelengthPoints");
if (isEmpty(m_numberOfPoints) ||
m_numberOfPoints > static_cast<int>(m_inputWS->blocksize())) {
m_numberOfPoints = static_cast<int>(m_inputWS->blocksize());
if (!isEmpty(m_numberOfPoints)) {
g_log.warning() << "The requested number of wavelength points is larger "
"than the spectra size. "
<< "Defaulting to spectra size.\n";
m_numberOfEvents = getProperty("EventsPerPoint");
}
/**
* Initialise the caches used here including setting up the random
* number generator
*/
void MonteCarloAbsorption::initCaches() {
g_log.debug() << "Caching input\n";
// Setup random number generators for parallel execution
initRNG();
m_samplePos = m_inputWS->getInstrument()->getSample()->getPos();
m_sourcePos = m_inputWS->getInstrument()->getSource()->getPos();
BoundingBox box(m_sampleShape->getBoundingBox());
if (m_container) {
box.grow(m_container->boundingBox());
}
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// Chop the bounding box up into a set of small boxes. This will be used
// as a first guess for generating a random scatter point
const double cubeSide = ELEMENT_SIZE * 1e-3;
const double xLength = box.width().X();
const double yLength = box.width().Y();
const double zLength = box.width().Z();
const int numXSlices = static_cast<int>(xLength / cubeSide);
const int numYSlices = static_cast<int>(yLength / cubeSide);
const int numZSlices = static_cast<int>(zLength / cubeSide);
const double xThick = xLength / numXSlices;
const double yThick = yLength / numYSlices;
const double zThick = zLength / numZSlices;
m_blkHalfX = 0.5 * xThick;
m_blkHalfY = 0.5 * yThick;
m_blkHalfZ = 0.5 * zThick;
const size_t numPossibleVolElements = numXSlices * numYSlices * numZSlices;
g_log.debug() << "Attempting to divide sample + container into "
<< numPossibleVolElements << " blocks.\n";
try {
m_blocks.clear();
m_blocks.reserve(numPossibleVolElements / 2);
} catch (std::exception &) {
// Typically get here if the number of volume elements is too large
// Provide a bit more information
g_log.error("Too many volume elements requested - try increasing the value "
"of the ElementSize property.");
throw;
}
const auto boxCentre = box.centrePoint();
const double x0 = boxCentre.X() - 0.5 * xLength;
const double y0 = boxCentre.Y() - 0.5 * yLength;
const double z0 = boxCentre.Z() - 0.5 * zLength;
// Store a chunk as a BoundingBox object.
// Only cache blocks that have some intersection with the
// sample or container.
for (int i = 0; i < numZSlices; ++i) {
const double zmin = z0 + i * zThick;
const double zmax = zmin + zThick;
for (int j = 0; j < numYSlices; ++j) {
const double ymin = y0 + j * yThick;
const double ymax = ymin + yThick;
for (int k = 0; k < numXSlices; ++k) {
const double xmin = x0 + k * xThick;
const double xmax = xmin + xThick;
if (boxIntersectsSample(xmax, ymax, zmax, xmin, ymin, zmin)) {
#if !(defined(__INTEL_COMPILER)) && !(defined(__clang__))
m_blocks.emplace_back(xmax, ymax, zmax, xmin, ymin, zmin);
m_blocks.push_back(BoundingBox(xmax, ymax, zmax, xmin, ymin, zmin));
}
}
m_numVolumeElements = m_blocks.size();
g_log.debug() << "Sample + container divided into " << m_numVolumeElements
if (m_numVolumeElements == 0) {
throw std::runtime_error("No intersection with sample + container.");
}
g_log.debug()
<< " Skipped " << (numPossibleVolElements - m_numVolumeElements)
<< " blocks that do not intersect with the sample + container\n";
}
/**
*/
void MonteCarloAbsorption::initRNG() {
const int baseSeed = getProperty("SeedValue");
// For parallel execution use a vector of RNG, each with a seed one higher
// that the previous
m_rngs.resize(PARALLEL_GET_MAX_THREADS);
// Set the seeds
for (int i = 0; i < static_cast<int>(m_rngs.size()); ++i) {
m_rngs[i].seed(baseSeed + i);
}
}
/**
* @return A reference to a boost::random::mt19937 object
*/
boost::mt19937 &MonteCarloAbsorption::rgen() const {
// Const from point of view of caller
return const_cast<MonteCarloAbsorption *>(this)
->m_rngs[PARALLEL_THREAD_NUMBER];
}
/**
* @param xmax max x-coordinate of cuboid point
* @param ymax max y-coordinate of cuboid point
* @param zmax max z-coordinate of cuboid point
* @param xmin min z-coordinate of cuboid point
* @param ymin min z-coordinate of cuboid point
* @param zmin min z-coordinate of cuboid point
* @return True if any of the vertices intersect the sample or container
*/
bool MonteCarloAbsorption::boxIntersectsSample(
const double xmax, const double ymax, const double zmax, const double xmin,
const double ymin, const double zmin) const {
return ptIntersectsSample(V3D(xmax, ymin, zmin)) || // left-front-bottom
ptIntersectsSample(V3D(xmax, ymax, zmin)) || // left-front-top
ptIntersectsSample(V3D(xmin, ymax, zmin)) || // right-front-top
ptIntersectsSample(V3D(xmin, ymin, zmin)) || // right-front-bottom
ptIntersectsSample(V3D(xmax, ymin, zmax)) || // left-back-bottom
ptIntersectsSample(V3D(xmax, ymax, zmax)) || // left-back-top
ptIntersectsSample(V3D(xmin, ymax, zmax)) || // right-back-top
ptIntersectsSample(V3D(xmin, ymin, zmax)); // right-back-bottom;
/**
*
* @param pt A V3D giving a point to test
* @return True if point is inside sample or container, false otherwise
*/
bool MonteCarloAbsorption::ptIntersectsSample(const V3D &pt) const {
return m_sampleShape->isValid(pt) ||
(m_container && m_container->isValid(pt));
}
}