Newer
Older
//------------------------------------------------------------------------------
// Includes
//------------------------------------------------------------------------------
#include "MantidAlgorithms/MonteCarloAbsorption.h"
#include "MantidAPI/InstrumentValidator.h"
#include "MantidAPI/SampleEnvironment.h"
#include "MantidAPI/WorkspaceProperty.h"
#include "MantidAPI/WorkspaceUnitValidator.h"
#include "MantidGeometry/IDetector.h"
#include "MantidGeometry/Objects/Track.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/CompositeValidator.h"
Federico Montesino Pouzols
committed
#include "MantidKernel/Material.h"
#include "MantidKernel/VectorHelper.h"
#include <boost/random/uniform_int.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
namespace {
/// Number of attempts to choose a random point within the object before it
/// gives up
const int MaxRandPointAttempts(500);
/// Element size in mm
const double ELEMENT_SIZE = 1.0;
namespace Mantid {
namespace Algorithms {
DECLARE_ALGORITHM(MonteCarloAbsorption)
using namespace API;
using namespace Geometry;
using namespace Kernel;
//------------------------------------------------------------------------------
// Public methods
//------------------------------------------------------------------------------
/**
* Constructor
*/
MonteCarloAbsorption::MonteCarloAbsorption()
Federico Montesino Pouzols
committed
: m_samplePos(), m_sourcePos(), m_numVolumeElements(0), m_blocks(),
m_blkHalfX(0.0), m_blkHalfY(0.0), m_blkHalfZ(0.0), m_rngs(0), m_inputWS(),
m_sampleShape(nullptr), m_sampleMaterial(nullptr), m_container(nullptr),
Federico Montesino Pouzols
committed
m_numberOfPoints(0), m_xStepSize(0), m_numberOfEvents(300) {}
/**
* Destructor
*/
MonteCarloAbsorption::~MonteCarloAbsorption() {}
Russell Taylor
committed
//------------------------------------------------------------------------------
// Private methods
//------------------------------------------------------------------------------
Russell Taylor
committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/**
* Initialize the algorithm
*/
void MonteCarloAbsorption::init() {
// The input workspace must have an instrument and units of wavelength
auto wsValidator = boost::make_shared<CompositeValidator>();
wsValidator->add<WorkspaceUnitValidator>("Wavelength");
wsValidator->add<InstrumentValidator>();
declareProperty(new WorkspaceProperty<>("InputWorkspace", "",
Direction::Input, wsValidator),
"The name of the input workspace. The input workspace must "
"have X units of wavelength.");
declareProperty(
new WorkspaceProperty<>("OutputWorkspace", "", Direction::Output),
"The name to use for the output workspace.");
auto positiveInt = boost::make_shared<Kernel::BoundedValidator<int>>();
positiveInt->setLower(1);
declareProperty("NumberOfWavelengthPoints", EMPTY_INT(), positiveInt,
"The number of wavelength points for which a simulation is "
"atttempted (default: all points)");
declareProperty(
"EventsPerPoint", m_numberOfEvents, positiveInt,
"The number of \"neutron\" events to generate per simulated point");
declareProperty("SeedValue", 123456789, positiveInt,
"Seed the random number generator with this value");
}
/**
* Execution code
*/
void MonteCarloAbsorption::exec() {
retrieveInput();
initCaches();
g_log.debug() << "Creating output workspace\n";
MatrixWorkspace_sptr correctionFactors =
WorkspaceFactory::Instance().create(m_inputWS);
correctionFactors->isDistribution(
true); // The output of this is a distribution
correctionFactors->setYUnit(""); // Need to explicitly set YUnit to nothing
correctionFactors->setYUnitLabel("Attenuation factor");
const bool isHistogram = m_inputWS->isHistogramData();
const int numHists = static_cast<int>(m_inputWS->getNumberHistograms());
const int numBins = static_cast<int>(m_inputWS->blocksize());
// Compute the step size
m_xStepSize = numBins / m_numberOfPoints;
g_log.information() << "Simulation performed every " << m_xStepSize
<< " wavelength points" << std::endl;
Progress prog(this, 0.0, 1.0, numHists * numBins / m_xStepSize);
PARALLEL_FOR1(correctionFactors)
for (int i = 0; i < numHists; ++i) {
PARALLEL_START_INTERUPT_REGION
// Copy over the X-values
const MantidVec &xValues = m_inputWS->readX(i);
correctionFactors->dataX(i) = xValues;
// Final detector position
IDetector_const_sptr detector;
try {
detector = m_inputWS->getDetector(i);
} catch (Kernel::Exception::NotFoundError &) {
// intel compiler hangs with continue statements inside a catch
// block that is within an omp loop...
}
if (!detector)
continue;
MantidVec &yValues = correctionFactors->dataY(i);
MantidVec &eValues = correctionFactors->dataE(i);
// Simulation for each requested wavelength point
for (int bin = 0; bin < numBins; bin += m_xStepSize) {
prog.report("Computing corrections for bin " +
boost::lexical_cast<std::string>(bin));
const double lambda = isHistogram
? (0.5 * (xValues[bin] + xValues[bin + 1]))
: xValues[bin];
doSimulation(detector.get(), lambda, yValues[bin], eValues[bin]);
// Ensure we have the last point for the interpolation
if (m_xStepSize > 1 && bin + m_xStepSize >= numBins &&
bin + 1 != numBins) {
bin = numBins - m_xStepSize - 1;
// Interpolate through points not simulated
if (m_xStepSize > 1) {
prog.report("Interpolating unsimulated points");
Kernel::VectorHelper::linearlyInterpolateY(xValues, yValues, m_xStepSize);
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
// Save the results
setProperty("OutputWorkspace", correctionFactors);
}
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
/**
* Perform the simulation
* @param detector :: A pointer to the current detector
* @param lambda :: The chosen wavelength
* @param attenFactor :: [Output] The calculated attenuation factor for this
* wavelength
* @param error :: [Output] The value of the error on the factor
*/
void MonteCarloAbsorption::doSimulation(const IDetector *const detector,
const double lambda,
double &attenFactor, double &error) {
/**
Currently, assuming square beam profile to pick start position then randomly
selecting
a point within the sample using it's bounding box.
This point defines the single scattering point and hence the attenuation path
lengths and final
directional vector to the detector
*/
// Absolute detector position
const V3D detectorPos(detector->getPos());
int numDetected(0);
attenFactor = 0.0;
error = 0.0;
while (numDetected < m_numberOfEvents) {
V3D startPos = sampleBeamProfile();
V3D scatterPoint = selectScatterPoint();
double eventFactor(0.0);
if (attenuationFactor(startPos, scatterPoint, detectorPos, lambda,
eventFactor)) {
attenFactor += eventFactor;
++numDetected;
if (0 == numDetected)
throw std::runtime_error(
"Unexpected inconsistency found while running simulation: the number "
"of events detected is 0.");
// Attenuation factor is simply the average value
attenFactor /= numDetected;
// Error is 1/sqrt(nevents)
error = 1. / sqrt(static_cast<double>(numDetected));
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
/**
* Sample the beam profile for a random start location, assigning a weight
* to the given point
* @returns The starting location
*/
V3D MonteCarloAbsorption::sampleBeamProfile() const { return m_sourcePos; }
/**
* Selects a random location within the sample + container environment. The
* bounding box is
* used as an approximation to generate a point and this is then tested for its
* validity within
* the shape.
* @returns Selected position as V3D object
*/
V3D MonteCarloAbsorption::selectScatterPoint() const {
// Randomly select a block from the subdivided set and then randomly select a
// point
// within that block and test if it inside the sample/container. If yes then
// accept, else
// keep trying.
boost::uniform_int<size_t> uniIntDist(0, m_blocks.size() - 1);
boost::variate_generator<boost::mt19937 &, boost::uniform_int<size_t>> uniInt(
rgen(), uniIntDist);
boost::uniform_real<> uniRealDist(0, 1.0);
boost::variate_generator<boost::mt19937 &, boost::uniform_real<>> uniReal(
rgen(), uniRealDist);
V3D scatterPoint;
int nattempts(0);
while (nattempts < MaxRandPointAttempts) {
size_t index = uniInt();
const auto &block = m_blocks[index];
const double x = m_blkHalfX * (2.0 * uniReal() - 1.0) + block.xMin();
const double y = m_blkHalfY * (2.0 * uniReal() - 1.0) + block.yMin();
const double z = m_blkHalfZ * (2.0 * uniReal() - 1.0) + block.zMin();
scatterPoint(x, y, z);
++nattempts;
if (ptIntersectsSample(scatterPoint)) {
scatterPoint += m_samplePos;
return scatterPoint;
}
// If we got here then the shape is too strange for the bounding box to be of
// any use.
g_log.error() << "Attempts to generate a random point with the sample/can "
<< "have exceeded the allowed number of tries.\n";
throw std::runtime_error(
"Attempts to produce random scatter point failed. Check sample shape.");
}
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
/**
* Return the attenuation factor for the given track
* @param startPos :: The origin of the track
* @param scatterPoint :: The point of scatter
* @param finalPos :: The end point of the track
* @param lambda :: The wavelength of the neutron
* @param factor :: Output parameter storing the attenuation factor
* @returns True if the track was valid, false otherwise
*/
bool MonteCarloAbsorption::attenuationFactor(const V3D &startPos,
const V3D &scatterPoint,
const V3D &finalPos,
const double lambda,
double &factor) {
// Start at one
factor = 1.0;
// Define two tracks, before and after scatter, and trace check their
// intersections with the the environment and sample
Track beforeScatter(scatterPoint, (startPos - scatterPoint));
Track afterScatter(scatterPoint, (finalPos - scatterPoint));
// Theoretically this should never happen as there should always be an
// intersection
// but do to precision limitations points very close to the surface give
// zero intersection, so just reject
if (m_sampleShape->interceptSurface(beforeScatter) == 0 ||
m_sampleShape->interceptSurface(afterScatter) == 0) {
return false;
}
Hahn, Steven
committed
double length = beforeScatter.cbegin()->distInsideObject;
factor *= attenuation(length, *m_sampleMaterial, lambda);
beforeScatter.clearIntersectionResults();
if (m_container) {
m_container->interceptSurfaces(beforeScatter);
}
// Attenuation factor is product of factor for each material
for (const auto &citr : beforeScatter) {
length = citr.distInsideObject;
factor *= attenuation(length, citr.object->material(), lambda);
Hahn, Steven
committed
length = afterScatter.cbegin()->distInsideObject;
factor *= attenuation(length, *m_sampleMaterial, lambda);
afterScatter.clearIntersectionResults();
if (m_container) {
m_container->interceptSurfaces(afterScatter);
}
// Attenuation factor is product of factor for each material
for (const auto &citr : afterScatter) {
length = citr.distInsideObject;
factor *= attenuation(length, citr.object->material(), lambda);
/**
* Calculate the attenuation for a given length, material and wavelength
* @param length :: Distance through the material
* @param material :: A reference to the Material
* @param lambda :: The wavelength
* @returns The attenuation factor
*/
double MonteCarloAbsorption::attenuation(const double length,
const Kernel::Material &material,
const double lambda) const {
const double rho = material.numberDensity() * 100.0;
const double sigma_s = material.totalScatterXSection(lambda);
const double sigma_t = sigma_s + material.absorbXSection(lambda);
return exp(-rho * sigma_t * length);
}
/**
* Gather the input values and check validity
* @throw std::invalid_argument If the input is invalid. Currently if there is
* no defined sample shape
*/
void MonteCarloAbsorption::retrieveInput() {
m_inputWS = getProperty("InputWorkspace");
m_sampleShape = &(m_inputWS->sample().getShape());
m_sampleMaterial = &(m_inputWS->sample().getMaterial());
if (!m_sampleShape->hasValidShape()) {
g_log.debug() << "Invalid shape defined on workspace. TopRule = "
<< m_sampleShape->topRule() << ", No. of surfaces: "
<< m_sampleShape->getSurfacePtr().size() << "\n";
throw std::invalid_argument("Input workspace has an invalid sample shape.");
}
if (m_sampleMaterial->totalScatterXSection(1.0) == 0.0) {
g_log.warning() << "The sample material appears to have zero scattering "
"cross section.\n"
<< "Result will most likely be nonsensical.\n";
}
try {
m_container = &(m_inputWS->sample().getEnvironment());
} catch (std::runtime_error &) {
m_container = nullptr;
g_log.information()
<< "No environment has been defined, continuing with only sample.\n";
}
m_numberOfPoints = getProperty("NumberOfWavelengthPoints");
if (isEmpty(m_numberOfPoints) ||
m_numberOfPoints > static_cast<int>(m_inputWS->blocksize())) {
m_numberOfPoints = static_cast<int>(m_inputWS->blocksize());
if (!isEmpty(m_numberOfPoints)) {
g_log.warning() << "The requested number of wavelength points is larger "
"than the spectra size. "
<< "Defaulting to spectra size.\n";
m_numberOfEvents = getProperty("EventsPerPoint");
}
/**
* Initialise the caches used here including setting up the random
* number generator
*/
void MonteCarloAbsorption::initCaches() {
g_log.debug() << "Caching input\n";
// Setup random number generators for parallel execution
initRNG();
m_samplePos = m_inputWS->getInstrument()->getSample()->getPos();
m_sourcePos = m_inputWS->getInstrument()->getSource()->getPos();
BoundingBox box(m_sampleShape->getBoundingBox());
if (m_container) {
box.grow(m_container->boundingBox());
}
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
// Chop the bounding box up into a set of small boxes. This will be used
// as a first guess for generating a random scatter point
const double cubeSide = ELEMENT_SIZE * 1e-3;
const double xLength = box.width().X();
const double yLength = box.width().Y();
const double zLength = box.width().Z();
const int numXSlices = static_cast<int>(xLength / cubeSide);
const int numYSlices = static_cast<int>(yLength / cubeSide);
const int numZSlices = static_cast<int>(zLength / cubeSide);
const double xThick = xLength / numXSlices;
const double yThick = yLength / numYSlices;
const double zThick = zLength / numZSlices;
m_blkHalfX = 0.5 * xThick;
m_blkHalfY = 0.5 * yThick;
m_blkHalfZ = 0.5 * zThick;
const size_t numPossibleVolElements = numXSlices * numYSlices * numZSlices;
g_log.debug() << "Attempting to divide sample + container into "
<< numPossibleVolElements << " blocks.\n";
try {
m_blocks.clear();
m_blocks.reserve(numPossibleVolElements / 2);
} catch (std::exception &) {
// Typically get here if the number of volume elements is too large
// Provide a bit more information
g_log.error("Too many volume elements requested - try increasing the value "
"of the ElementSize property.");
throw;
}
const auto boxCentre = box.centrePoint();
const double x0 = boxCentre.X() - 0.5 * xLength;
const double y0 = boxCentre.Y() - 0.5 * yLength;
const double z0 = boxCentre.Z() - 0.5 * zLength;
// Store a chunk as a BoundingBox object.
// Only cache blocks that have some intersection with the
// sample or container.
for (int i = 0; i < numZSlices; ++i) {
const double zmin = z0 + i * zThick;
const double zmax = zmin + zThick;
for (int j = 0; j < numYSlices; ++j) {
const double ymin = y0 + j * yThick;
const double ymax = ymin + yThick;
for (int k = 0; k < numXSlices; ++k) {
const double xmin = x0 + k * xThick;
const double xmax = xmin + xThick;
if (boxIntersectsSample(xmax, ymax, zmax, xmin, ymin, zmin)) {
#if !(defined(__INTEL_COMPILER)) && !(defined(__clang__))
m_blocks.emplace_back(xmax, ymax, zmax, xmin, ymin, zmin);
m_blocks.push_back(BoundingBox(xmax, ymax, zmax, xmin, ymin, zmin));
}
}
m_numVolumeElements = m_blocks.size();
g_log.debug() << "Sample + container divided into " << m_numVolumeElements
if (m_numVolumeElements == 0) {
throw std::runtime_error("No intersection with sample + container.");
}
g_log.debug()
<< " Skipped " << (numPossibleVolElements - m_numVolumeElements)
<< " blocks that do not intersect with the sample + container\n";
}
/**
*/
void MonteCarloAbsorption::initRNG() {
const int baseSeed = getProperty("SeedValue");
// For parallel execution use a vector of RNG, each with a seed one higher
// that the previous
m_rngs.resize(PARALLEL_GET_MAX_THREADS);
// Set the seeds
for (int i = 0; i < static_cast<int>(m_rngs.size()); ++i) {
m_rngs[i].seed(baseSeed + i);
}
}
/**
* @return A reference to a boost::random::mt19937 object
*/
boost::mt19937 &MonteCarloAbsorption::rgen() const {
// Const from point of view of caller
return const_cast<MonteCarloAbsorption *>(this)
->m_rngs[PARALLEL_THREAD_NUMBER];
}
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/**
* @param xmax max x-coordinate of cuboid point
* @param ymax max y-coordinate of cuboid point
* @param zmax max z-coordinate of cuboid point
* @param xmin min z-coordinate of cuboid point
* @param ymin min z-coordinate of cuboid point
* @param zmin min z-coordinate of cuboid point
* @return True if any of the vertices intersect the sample or container
*/
bool MonteCarloAbsorption::boxIntersectsSample(
const double xmax, const double ymax, const double zmax, const double xmin,
const double ymin, const double zmin) const {
// Check all 8 corners for intersection
if (ptIntersectsSample(V3D(xmax, ymin, zmin)) || // left-front-bottom
ptIntersectsSample(V3D(xmax, ymax, zmin)) || // left-front-top
ptIntersectsSample(V3D(xmin, ymax, zmin)) || // right-front-top
ptIntersectsSample(V3D(xmin, ymin, zmin)) || // right-front-bottom
ptIntersectsSample(V3D(xmax, ymin, zmax)) || // left-back-bottom
ptIntersectsSample(V3D(xmax, ymax, zmax)) || // left-back-top
ptIntersectsSample(V3D(xmin, ymax, zmax)) || // right-back-top
ptIntersectsSample(V3D(xmin, ymin, zmax))) // right-back-bottom
{
return true;
} else
return false;
}
/**
*
* @param pt A V3D giving a point to test
* @return True if point is inside sample or container, false otherwise
*/
bool MonteCarloAbsorption::ptIntersectsSample(const V3D &pt) const {
return m_sampleShape->isValid(pt) ||
(m_container && m_container->isValid(pt));
}
}