Newer
Older
#include "MantidDataHandling/LoadEventPreNexus2.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/Axis.h"
#include "MantidAPI/FileFinder.h"
Federico Montesino Pouzols
committed
#include "MantidAPI/MemoryManager.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/FileValidator.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidKernel/Glob.h"
#include "MantidAPI/FileProperty.h"
#include "MantidKernel/BinaryFile.h"
#include "MantidKernel/System.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidGeometry/IDetector.h"
Federico Montesino Pouzols
committed
#include "MantidGeometry/Instrument.h"
#include "MantidKernel/CPUTimer.h"
#include "MantidKernel/VisibleWhenProperty.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/ConfigService.h"
#include <algorithm>
Federico Montesino Pouzols
committed
#include <functional>
#include <set>
#include <sstream>
Federico Montesino Pouzols
committed
#include <stdexcept>
#include <vector>
#include <boost/timer.hpp>
#include <Poco/File.h>
#include <Poco/Path.h>
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
namespace Mantid {
namespace DataHandling {
DECLARE_FILELOADER_ALGORITHM(LoadEventPreNexus2)
using namespace Kernel;
using namespace API;
using namespace Geometry;
using namespace DataObjects;
using boost::posix_time::ptime;
using boost::posix_time::time_duration;
using DataObjects::EventList;
using DataObjects::EventWorkspace;
using DataObjects::EventWorkspace_sptr;
using DataObjects::TofEvent;
using std::cout;
using std::endl;
using std::ifstream;
using std::runtime_error;
using std::stringstream;
using std::string;
using std::vector;
//------------------------------------------------------------------------------------------------
// constants for locating the parameters to use in execution
//------------------------------------------------------------------------------------------------
static const string EVENT_PARAM("EventFilename");
static const string PULSEID_PARAM("PulseidFilename");
static const string MAP_PARAM("MappingFilename");
static const string PID_PARAM("SpectrumList");
static const string PARALLEL_PARAM("UseParallelProcessing");
static const string BLOCK_SIZE_PARAM("LoadingBlockSize");
static const string OUT_PARAM("OutputWorkspace");
/// All pixel ids with matching this mask are errors.
static const PixelType ERROR_PID = 0x80000000;
/// The maximum possible tof as native type
static const uint32_t MAX_TOF_UINT32 = std::numeric_limits<uint32_t>::max();
/// Conversion factor between 100 nanoseconds and 1 microsecond.
static const double TOF_CONVERSION = .1;
/// Conversion factor between picoColumbs and microAmp*hours
static const double CURRENT_CONVERSION = 1.e-6 / 3600.;
/// Veto flag: 0xFF00000000000
static const uint64_t VETOFLAG(72057594037927935);
static const string EVENT_EXTS[] = {
"_neutron_event.dat", "_neutron0_event.dat", "_neutron1_event.dat",
"_neutron2_event.dat", "_neutron3_event.dat", "_neutron4_event.dat",
"_live_neutron_event.dat"};
static const string PULSE_EXTS[] = {
"_pulseid.dat", "_pulseid0.dat", "_pulseid1.dat", "_pulseid2.dat",
"_pulseid3.dat", "_pulseid4.dat", "_live_pulseid.dat"};
static const int NUM_EXT = 7;
//-----------------------------------------------------------------------------
// Statistic Functions
//-----------------------------------------------------------------------------
//----------------------------------------------------------------------------------------------
/** Parse preNexus file name to get run number
*/
static string getRunnumber(const string &filename) {
// start by trimming the filename
string runnumber(Poco::Path(filename).getBaseName());
if (runnumber.find("neutron") >= string::npos)
return "0";
std::size_t left = runnumber.find("_");
std::size_t right = runnumber.find("_", left + 1);
return runnumber.substr(left + 1, right - left - 1);
}
//----------------------------------------------------------------------------------------------
/** Generate Pulse ID file name from preNexus event file's name
*/
static string generatePulseidName(string eventfile) {
// initialize vector of endings and put live at the beginning
vector<string> eventExts(EVENT_EXTS, EVENT_EXTS + NUM_EXT);
std::reverse(eventExts.begin(), eventExts.end());
vector<string> pulseExts(PULSE_EXTS, PULSE_EXTS + NUM_EXT);
std::reverse(pulseExts.begin(), pulseExts.end());
// look for the correct ending
for (std::size_t i = 0; i < eventExts.size(); ++i) {
size_t start = eventfile.find(eventExts[i]);
if (start != string::npos)
return eventfile.replace(start, eventExts[i].size(), pulseExts[i]);
// give up and return nothing
return "";
}
//----------------------------------------------------------------------------------------------
/** Generate mapping file name from Event workspace's instrument
*/
static string generateMappingfileName(EventWorkspace_sptr &wksp) {
// get the name of the mapping file as set in the parameter files
std::vector<string> temp =
wksp->getInstrument()->getStringParameter("TS_mapping_file");
if (temp.empty())
return "";
string mapping = temp[0];
// Try to get it from the working directory
Poco::File localmap(mapping);
if (localmap.exists())
return mapping;
// Try to get it from the data directories
string dataversion = Mantid::API::FileFinder::Instance().getFullPath(mapping);
if (!dataversion.empty())
return dataversion;
// get a list of all proposal directories
string instrument = wksp->getInstrument()->getName();
Poco::File base("/SNS/" + instrument + "/");
// try short instrument name
if (!base.exists()) {
instrument =
Kernel::ConfigService::Instance().getInstrument(instrument).shortName();
base = Poco::File("/SNS/" + instrument + "/");
if (!base.exists())
return "";
}
vector<string> dirs; // poco won't let me reuse temp
base.list(dirs);
// check all of the proposals for the mapping file in the canonical place
const string CAL("_CAL");
const size_t CAL_LEN = CAL.length(); // cache to make life easier
vector<string> files;
for (auto &dir : dirs) {
if ((dir.length() > CAL_LEN) &&
(dir.compare(dir.length() - CAL.length(), CAL.length(), CAL) == 0)) {
if (Poco::File(base.path() + "/" + dir + "/calibrations/" + mapping)
files.push_back(base.path() + "/" + dir + "/calibrations/" + mapping);
if (files.empty())
return "";
else if (files.size() == 1)
return files[0];
else // just assume that the last one is the right one, this should never be
// fired
return *(files.rbegin());
}
//----------------------------------------------------------------------------------------------
/** Return the confidence with with this algorithm can load the file
* @param descriptor A descriptor for the file
* @returns An integer specifying the confidence level. 0 indicates it will not
* be used
*/
int LoadEventPreNexus2::confidence(Kernel::FileDescriptor &descriptor) const {
if (descriptor.extension().rfind("dat") == std::string::npos)
return 0;
// If this looks like a binary file where the exact file length is a multiple
// of the DasEvent struct then we're probably okay.
if (descriptor.isAscii())
return 0;
const size_t objSize = sizeof(DasEvent);
auto &handle = descriptor.data();
// get the size of the file in bytes and reset the handle back to the
// beginning
handle.seekg(0, std::ios::end);
const size_t filesize = static_cast<size_t>(handle.tellg());
handle.seekg(0, std::ios::beg);
if (filesize % objSize == 0)
return 80;
else
return 0;
}
//----------------------------------------------------------------------------------------------
/** Constructor
*/
LoadEventPreNexus2::LoadEventPreNexus2()
: Mantid::API::IFileLoader<Kernel::FileDescriptor>(), prog(nullptr),
spectra_list(), pulsetimes(), event_indices(), proton_charge(),
proton_charge_tot(0), pixel_to_wkspindex(), pixelmap(), detid_max(),
eventfile(nullptr), num_events(0), num_pulses(0), numpixel(0),
num_good_events(0), num_error_events(0), num_bad_events(0),
num_wrongdetid_events(0), num_ignored_events(0), first_event(0),
max_events(0), using_mapping_file(false), loadOnlySomeSpectra(false),
spectraLoadMap(), longest_tof(0), shortest_tof(0),
parallelProcessing(false), pulsetimesincreasing(false), m_dbOutput(false),
m_dbOpBlockNumber(0), m_dbOpNumEvents(0), m_dbOpNumPulses(0) {}
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
//----------------------------------------------------------------------------------------------
/** Desctructor
*/
LoadEventPreNexus2::~LoadEventPreNexus2() { delete this->eventfile; }
//----------------------------------------------------------------------------------------------
/** Initialize the algorithm, i.e, declare properties
*/
void LoadEventPreNexus2::init() {
// which files to use
vector<string> eventExts(EVENT_EXTS, EVENT_EXTS + NUM_EXT);
declareProperty(
new FileProperty(EVENT_PARAM, "", FileProperty::Load, eventExts),
"The name of the neutron event file to read, including its full or "
"relative path. In most cases, the file typically ends in "
"neutron_event.dat (N.B. case sensitive if running on Linux).");
vector<string> pulseExts(PULSE_EXTS, PULSE_EXTS + NUM_EXT);
declareProperty(new FileProperty(PULSEID_PARAM, "",
FileProperty::OptionalLoad, pulseExts),
"File containing the accelerator pulse information; the "
"filename will be found automatically if not specified.");
declareProperty(
new FileProperty(MAP_PARAM, "", FileProperty::OptionalLoad, ".dat"),
"File containing the pixel mapping (DAS pixels to pixel IDs) file "
"(typically INSTRUMENT_TS_YYYY_MM_DD.dat). The filename will be found "
"automatically if not specified.");
// which pixels to load
declareProperty(new ArrayProperty<int64_t>(PID_PARAM),
"A list of individual spectra (pixel IDs) to read, specified "
"as e.g. 10:20. Only used if set.");
auto mustBePositive = boost::make_shared<BoundedValidator<int>>();
mustBePositive->setLower(1);
declareProperty("ChunkNumber", EMPTY_INT(), mustBePositive,
"If loading the file by sections ('chunks'), this is the "
"section number of this execution of the algorithm.");
declareProperty("TotalChunks", EMPTY_INT(), mustBePositive,
"If loading the file by sections ('chunks'), this is the "
"total number of sections.");
// TotalChunks is only meaningful if ChunkNumber is set
// Would be nice to be able to restrict ChunkNumber to be <= TotalChunks at
// validation
setPropertySettings("TotalChunks",
new VisibleWhenProperty("ChunkNumber", IS_NOT_DEFAULT));
std::vector<std::string> propOptions{"Auto", "Serial", "Parallel"};
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
declareProperty("UseParallelProcessing", "Auto",
boost::make_shared<StringListValidator>(propOptions),
"Use multiple cores for loading the data?\n"
" Auto: Use serial loading for small data sets, parallel "
"for large data sets.\n"
" Serial: Use a single core.\n"
" Parallel: Use all available cores.");
// the output workspace name
declareProperty(
new WorkspaceProperty<IEventWorkspace>(OUT_PARAM, "", Direction::Output),
"The name of the workspace that will be created, filled with the read-in "
"data and stored in the [[Analysis Data Service]].");
declareProperty(new WorkspaceProperty<MatrixWorkspace>(
"EventNumberWorkspace", "", Direction::Output,
PropertyMode::Optional),
"Workspace with number of events per pulse");
// Some debugging options
auto mustBeNonNegative = boost::make_shared<BoundedValidator<int>>();
mustBeNonNegative->setLower(0);
declareProperty("DBOutputBlockNumber", EMPTY_INT(), mustBeNonNegative,
"Index of the loading block for debugging output. ");
declareProperty("DBNumberOutputEvents", 40, mustBePositive,
"Number of output events for debugging purpose. Must be "
"defined with DBOutputBlockNumber.");
declareProperty("DBNumberOutputPulses", EMPTY_INT(), mustBePositive,
"Number of output pulses for debugging purpose. ");
std::string dbgrp = "Investigation Use";
setPropertyGroup("EventNumberWorkspace", dbgrp);
setPropertyGroup("DBOutputBlockNumber", dbgrp);
setPropertyGroup("DBNumberOutputEvents", dbgrp);
setPropertyGroup("DBNumberOutputPulses", dbgrp);
return;
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm
* Procedure:
* 1. check all the inputs
* 2. create an EventWorkspace object
* 3. process events
* 4. set out output
void LoadEventPreNexus2::exec() {
g_log.information("Executing LoadEventPreNexus Ver 2.0");
// Process input properties
// a. Check 'chunk' properties are valid, if set
const int chunks = getProperty("TotalChunks");
if (!isEmpty(chunks) && int(getProperty("ChunkNumber")) > chunks) {
throw std::out_of_range("ChunkNumber cannot be larger than TotalChunks");
prog = new Progress(this, 0.0, 1.0, 100);
// b. what spectra (pixel ID's) to load
this->spectra_list = this->getProperty(PID_PARAM);
// c. the event file is needed in case the pulseid fileanme is empty
string event_filename = this->getPropertyValue(EVENT_PARAM);
string pulseid_filename = this->getPropertyValue(PULSEID_PARAM);
bool throwError = true;
if (pulseid_filename.empty()) {
pulseid_filename = generatePulseidName(event_filename);
if (!pulseid_filename.empty()) {
if (Poco::File(pulseid_filename).exists()) {
this->g_log.information() << "Found pulseid file " << pulseid_filename
<< std::endl;
throwError = false;
} else {
pulseid_filename = "";
// Read input files
prog->report("Loading Pulse ID file");
this->readPulseidFile(pulseid_filename, throwError);
prog->report("Loading Event File");
this->openEventFile(event_filename);
// Correct event indexes mased by veto flag
unmaskVetoEventIndex();
// Optinally output event number / pulse file
std::string diswsname = getPropertyValue("EventNumberWorkspace");
if (!diswsname.empty()) {
MatrixWorkspace_sptr disws = generateEventDistribtionWorkspace();
setProperty("EventNumberWorkspace", disws);
}
// Create otuput Workspace
prog->report("Creating output workspace");
createOutputWorkspace(event_filename);
// Process the events into pixels
procEvents(localWorkspace);
// Set output
this->setProperty<IEventWorkspace_sptr>(OUT_PARAM, localWorkspace);
// Fast frequency sample environment data
this->processImbedLogs();
//------------------------------------------------------------------------------------------------
/** Create and set up output Event Workspace
*/
void LoadEventPreNexus2::createOutputWorkspace(
const std::string event_filename) {
// Create the output workspace
localWorkspace = EventWorkspace_sptr(new EventWorkspace());
// Make sure to initialize. We can use dummy numbers for arguments, for event
// workspace it doesn't matter
localWorkspace->initialize(1, 1, 1);
// Set the units
localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
localWorkspace->setYUnit("Counts");
// Set title
localWorkspace->setTitle("Dummy Title");
// Property run_start
if (this->num_pulses > 0) {
// add the start of the run as a ISO8601 date/time string. The start = the
// first pulse.
// (this is used in LoadInstrument to find the right instrument file to
// use).
localWorkspace->mutableRun().addProperty(
"run_start", pulsetimes[0].toISO8601String(), true);
}
// Property run_number
localWorkspace->mutableRun().addProperty("run_number",
getRunnumber(event_filename));
// Get the instrument!
prog->report("Loading Instrument");
this->runLoadInstrument(event_filename, localWorkspace);
// load the mapping file
prog->report("Loading Mapping File");
string mapping_filename = this->getPropertyValue(MAP_PARAM);
if (mapping_filename.empty()) {
mapping_filename = generateMappingfileName(localWorkspace);
if (!mapping_filename.empty())
this->g_log.information() << "Found mapping file \"" << mapping_filename
<< "\"" << std::endl;
}
this->loadPixelMap(mapping_filename);
//------------------------------------------------------------------------------------------------
/** Some Pulse ID and event indexes might be wrong. Remove them.
*/
void LoadEventPreNexus2::unmaskVetoEventIndex() {
// Unmask veto bit from vetoed events
PARALLEL_FOR_NO_WSP_CHECK()
for (int i = 0; i < static_cast<int>(event_indices.size()); ++i) {
PARALLEL_START_INTERUPT_REGION
uint64_t eventindex = event_indices[i];
if (eventindex > static_cast<uint64_t>(max_events)) {
// Is veto, use the unmasked event index
uint64_t realeventindex = eventindex & VETOFLAG;
event_indices[i] = realeventindex;
// Check
uint64_t eventindexcheck = event_indices[i];
if (eventindexcheck > static_cast<uint64_t>(max_events)) {
g_log.information() << "Check: Pulse " << i
<< ": unphysical event index = " << eventindexcheck
<< "\n";
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
//------------------------------------------------------------------------------------------------
/** Generate a workspace with distribution of events with pulse
* Workspace has 2 spectrum. spectrum 0 is the number of events in one pulse.
* specrum 1 is the accumulated number of events
*/
API::MatrixWorkspace_sptr
LoadEventPreNexus2::generateEventDistribtionWorkspace() {
// Generate workspace of 2 spectrum
size_t nspec = 2;
size_t sizex = event_indices.size();
size_t sizey = sizex;
MatrixWorkspace_sptr disws = boost::dynamic_pointer_cast<MatrixWorkspace>(
WorkspaceFactory::Instance().create("Workspace2D", nspec, sizex, sizey));
g_log.debug() << "Event indexes size = " << event_indices.size() << ", "
<< "Number of pulses = " << pulsetimes.size() << "\n";
// Put x-values
for (size_t i = 0; i < 2; ++i) {
MantidVec &dataX = disws->dataX(i);
dataX[0] = 0;
for (size_t j = 0; j < sizex; ++j) {
int64_t time =
pulsetimes[j].totalNanoseconds() - pulsetimes[0].totalNanoseconds();
dataX[j] = static_cast<double>(time) * 1.0E-9;
// dataX[j] = static_cast<double>(j);
// Put y-values
MantidVec &dataY0 = disws->dataY(0);
MantidVec &dataY1 = disws->dataY(1);
dataY0[0] = 0;
dataY1[1] = static_cast<double>(event_indices[0]);
for (size_t i = 1; i < sizey; ++i) {
dataY0[i] = static_cast<double>(event_indices[i] - event_indices[i - 1]);
dataY1[i] = static_cast<double>(event_indices[i]);
return disws;
}
//----------------------------------------------------------------------------------------------
/** Process imbed logs (marked by bad pixel IDs)
*/
void LoadEventPreNexus2::processImbedLogs() {
std::set<PixelType>::iterator pit;
std::map<PixelType, size_t>::iterator mit;
for (pit = this->wrongdetids.begin(); pit != this->wrongdetids.end(); ++pit) {
// a. pixel ID -> index
PixelType pid = *pit;
mit = this->wrongdetidmap.find(pid);
size_t mindex = mit->second;
if (mindex > this->wrongdetid_pulsetimes.size()) {
g_log.error() << "Wrong Index " << mindex << " for Pixel " << pid
<< std::endl;
throw std::invalid_argument("Wrong array index for pixel from map");
} else {
g_log.information() << "Processing imbed log marked by Pixel " << pid
<< " with size = "
<< this->wrongdetid_pulsetimes[mindex].size()
<< std::endl;
}
std::stringstream ssname;
ssname << "Pixel" << pid;
std::string logname = ssname.str();
// d. Add this to log
this->addToWorkspaceLog(logname, mindex);
g_log.notice() << "Processed imbedded log " << logname << "\n";
//----------------------------------------------------------------------------------------------
/** Add absolute time series to log. Use TOF as log value for this type of
* events
* @param logtitle :: name of the log
* @param mindex :: index of the log in pulse time ...
* - mindex: index of the the series in the list
*/
void LoadEventPreNexus2::addToWorkspaceLog(std::string logtitle,
size_t mindex) {
// Create TimeSeriesProperty
auto property = new TimeSeriesProperty<double>(logtitle);
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// Add entries
size_t nbins = this->wrongdetid_pulsetimes[mindex].size();
for (size_t k = 0; k < nbins; k++) {
double tof = this->wrongdetid_tofs[mindex][k];
DateAndTime pulsetime = wrongdetid_pulsetimes[mindex][k];
int64_t abstime_ns =
pulsetime.totalNanoseconds() + static_cast<int64_t>(tof * 1000);
DateAndTime abstime(abstime_ns);
property->addValue(abstime, tof);
} // ENDFOR
// Add property to workspace
localWorkspace->mutableRun().addProperty(property, false);
g_log.information() << "Size of Property " << property->name() << " = "
<< property->size() << " vs Original Log Size = " << nbins
<< "\n";
return;
}
//----------------------------------------------------------------------------------------------
/** Load the instrument geometry File
* @param eventfilename :: Used to pick the instrument.
* @param localWorkspace :: MatrixWorkspace in which to put the instrument
* geometry
*/
void LoadEventPreNexus2::runLoadInstrument(
const std::string &eventfilename, MatrixWorkspace_sptr localWorkspace) {
// start by getting just the filename
string instrument = Poco::Path(eventfilename).getFileName();
// initialize vector of endings and put live at the beginning
vector<string> eventExts(EVENT_EXTS, EVENT_EXTS + NUM_EXT);
std::reverse(eventExts.begin(), eventExts.end());
for (auto &eventExt : eventExts) {
size_t pos = instrument.find(eventExt);
if (pos != string::npos) {
instrument = instrument.substr(0, pos);
break;
}
// determine the instrument parameter file
size_t pos = instrument.rfind("_"); // get rid of the run number
instrument = instrument.substr(0, pos);
// do the actual work
IAlgorithm_sptr loadInst = createChildAlgorithm("LoadInstrument");
// Now execute the Child Algorithm. Catch and log any error, but don't stop.
loadInst->setPropertyValue("InstrumentName", instrument);
loadInst->setProperty<MatrixWorkspace_sptr>("Workspace", localWorkspace);
loadInst->setProperty("RewriteSpectraMap",
Mantid::Kernel::OptionalBool(false));
// Populate the instrument parameters in this workspace - this works around a
// bug
localWorkspace->populateInstrumentParameters();
}
//----------------------------------------------------------------------------------------------
/** Turn a pixel id into a "corrected" pixelid and period.
*
*/
inline void LoadEventPreNexus2::fixPixelId(PixelType &pixel,
uint32_t &period) const {
if (!this->using_mapping_file) { // nothing to do here
period = 0;
return;
PixelType unmapped_pid = pixel % this->numpixel;
period = (pixel - unmapped_pid) / this->numpixel;
pixel = this->pixelmap[unmapped_pid];
}
//----------------------------------------------------------------------------------------------
/** Process the event file properly in parallel
* @param workspace :: EventWorkspace to write to.
*/
void LoadEventPreNexus2::procEvents(
DataObjects::EventWorkspace_sptr &workspace) {
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
//-------------------------------------------------------------------------
// Initialize statistic counters
//-------------------------------------------------------------------------
this->num_error_events = 0;
this->num_good_events = 0;
this->num_ignored_events = 0;
this->num_bad_events = 0;
this->num_wrongdetid_events = 0;
shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
longest_tof = 0.;
// Set up loading parameters
size_t loadBlockSize = Mantid::Kernel::DEFAULT_BLOCK_SIZE * 2;
size_t numBlocks = (max_events + loadBlockSize - 1) / loadBlockSize;
// We want to pad out empty pixels.
detid2det_map detector_map;
workspace->getInstrument()->getDetectors(detector_map);
// Determine processing mode
std::string procMode = getProperty("UseParallelProcessing");
if (procMode == "Serial")
parallelProcessing = false;
else if (procMode == "Parallel")
parallelProcessing = true;
else {
// Automatic determination. Loading serially (for me) is about 3 million
// events per second,
// (which is sped up by ~ x 3 with parallel processing, say 10 million per
// second, e.g. 7 million events more per seconds).
// compared to a setup time/merging time of about 10 seconds per million
// detectors.
double setUpTime = double(detector_map.size()) * 10e-6;
parallelProcessing = ((double(max_events) / 7e6) > setUpTime);
g_log.debug() << (parallelProcessing ? "Using" : "Not using")
<< " parallel processing." << std::endl;
// determine maximum pixel id
detid2det_map::iterator it;
detid_max = 0; // seems like a safe lower bound
for (it = detector_map.begin(); it != detector_map.end(); it++)
if (it->first > detid_max)
detid_max = it->first;
// Pad all the pixels
prog->report("Padding Pixels");
this->pixel_to_wkspindex.reserve(
detid_max + 1); // starting at zero up to and including detid_max
// Set to zero
this->pixel_to_wkspindex.assign(detid_max + 1, 0);
size_t workspaceIndex = 0;
for (it = detector_map.begin(); it != detector_map.end(); it++) {
if (!it->second->isMonitor()) {
this->pixel_to_wkspindex[it->first] = workspaceIndex;
EventList &spec = workspace->getOrAddEventList(workspaceIndex);
spec.addDetectorID(it->first);
// Start the spectrum number at 1
spec.setSpectrumNo(specid_t(workspaceIndex + 1));
workspaceIndex += 1;
// For slight speed up
loadOnlySomeSpectra = (this->spectra_list.size() > 0);
// Turn the spectra list into a map, for speed of access
for (auto &spectrum : spectra_list)
spectraLoadMap[spectrum] = true;
//-------------------------------------------------------------------------
// Create the partial workspaces
//-------------------------------------------------------------------------
// Vector of partial workspaces, for parallel processing.
std::vector<EventWorkspace_sptr> partWorkspaces;
std::vector<DasEvent *> buffers;
/// Pointer to the vector of events
typedef std::vector<TofEvent> *EventVector_pt;
/// Bare array of arrays of pointers to the EventVectors
EventVector_pt **eventVectors;
/// How many threads will we use?
size_t numThreads = 1;
if (parallelProcessing)
numThreads = size_t(PARALLEL_GET_MAX_THREADS);
partWorkspaces.resize(numThreads);
buffers.resize(numThreads);
eventVectors = new EventVector_pt *[numThreads];
PRAGMA_OMP( parallel for if (parallelProcessing) )
for (int i = 0; i < int(numThreads); i++) {
// This is the partial workspace we are about to create (if in parallel)
EventWorkspace_sptr partWS;
prog->report("Creating Partial Workspace");
// Create a partial workspace
partWS = EventWorkspace_sptr(new EventWorkspace());
// Make sure to initialize.
partWS->initialize(1, 1, 1);
// Copy all the spectra numbers and stuff (no actual events to copy
// though).
partWS->copyDataFrom(*workspace);
// Push it in the array
partWorkspaces[i] = partWS;
buffers[i] = new DasEvent[loadBlockSize];
// For each partial workspace, make an array where index = detector ID and
// value = pointer to the events vector
eventVectors[i] = new EventVector_pt[detid_max + 1];
EventVector_pt *theseEventVectors = eventVectors[i];
for (detid_t j = 0; j < detid_max + 1; j++) {
size_t wi = pixel_to_wkspindex[j];
// Save a POINTER to the vector<tofEvent>
theseEventVectors[j] = &partWS->getEventList(wi).getEvents();
}
}
g_log.information()
<< tim << " to create " << partWorkspaces.size()
<< " workspaces (same as number of threads) for parallel loading "
<< numBlocks << " blocks. "
<< "\n";
prog->resetNumSteps(numBlocks, 0.1, 0.8);
//-------------------------------------------------------------------------
// LOAD THE DATA
//-------------------------------------------------------------------------
PRAGMA_OMP( parallel for schedule(dynamic, 1) if (parallelProcessing) )
for (int blockNum = 0; blockNum < int(numBlocks); blockNum++) {
// Find the workspace for this particular thread
EventWorkspace_sptr ws;
size_t threadNum = 0;
threadNum = PARALLEL_THREAD_NUMBER;
ws = partWorkspaces[threadNum];
ws = workspace;
// Get the buffer (for this thread)
DasEvent *event_buffer = buffers[threadNum];
// Get the speeding-up array of vector<tofEvent> where index = detid.
EventVector_pt *theseEventVectors = eventVectors[threadNum];
// Where to start in the file?
size_t fileOffset = first_event + (loadBlockSize * blockNum);
// May need to reduce size of last (or only) block
size_t current_event_buffer_size =
(blockNum == int(numBlocks - 1))
? (max_events - (numBlocks - 1) * loadBlockSize)
: loadBlockSize;
// Load this chunk of event data (critical block)
PARALLEL_CRITICAL(LoadEventPreNexus2_fileAccess) {
current_event_buffer_size = eventfile->loadBlockAt(
event_buffer, fileOffset, current_event_buffer_size);
// This processes the events. Can be done in parallel!
bool dbprint = m_dbOutput && (blockNum == m_dbOpBlockNumber);
procEventsLinear(ws, theseEventVectors, event_buffer,
current_event_buffer_size, fileOffset, dbprint);
// Report progress
prog->report("Load Event PreNeXus");
PARALLEL_END_INTERUPT_REGION
g_log.debug() << tim << " to load the data." << std::endl;
//-------------------------------------------------------------------------
// MERGE WORKSPACES BACK TOGETHER
//-------------------------------------------------------------------------
prog->resetNumSteps(workspace->getNumberHistograms(), 0.8, 0.95);
size_t memoryCleared = 0;
MemoryManager::Instance().releaseFreeMemory();
// Merge all workspaces, index by index.
PARALLEL_FOR_NO_WSP_CHECK()
for (int iwi = 0; iwi < int(workspace->getNumberHistograms()); iwi++) {
EventList &el = workspace->getEventList(wi);
// How many events will it have?
size_t numEvents = 0;
for (size_t i = 0; i < numThreads; i++)
numEvents += partWorkspaces[i]->getEventList(wi).getNumberEvents();
// This will avoid too much copying.
el.reserve(numEvents);
for (size_t i = 0; i < numThreads; i++) {
EventList &partEl = partWorkspaces[i]->getEventList(wi);
el += partEl.getEvents();
// Free up memory as you go along.
partEl.clear(false);
}
// With TCMalloc, release memory when you accumulate enough to make
// sense
PARALLEL_CRITICAL(LoadEventPreNexus2_trackMemory) {
memoryCleared += numEvents;
if (memoryCleared > 10000000) // ten million events = about 160 MB
{
MemoryManager::Instance().releaseFreeMemory();
memoryCleared = 0;
}
}
prog->report("Merging Workspaces");
}
// Final memory release
MemoryManager::Instance().releaseFreeMemory();
g_log.debug() << tim << " to merge workspaces together." << std::endl;
PARALLEL_END_INTERUPT_REGION
PARALLEL_CHECK_INTERUPT_REGION
//-------------------------------------------------------------------------
// Clean memory
//-------------------------------------------------------------------------
// Delete the buffers for each thread.
for (size_t i = 0; i < numThreads; i++) {
delete[] buffers[i];
delete[] eventVectors[i];
delete[] eventVectors;
// delete [] pulsetimes;
prog->resetNumSteps(3, 0.94, 1.00);
//-------------------------------------------------------------------------
// Finalize loading
//-------------------------------------------------------------------------
prog->report("Deleting Empty Lists");
workspace->deleteEmptyLists();
prog->report("Setting proton charge");
this->setProtonCharge(workspace);
g_log.debug() << tim << " to set the proton charge log."
<< "\n";
// Make sure the MRU is cleared
workspace->clearMRU();
// Now, create a default X-vector for histogramming, with just 2 bins.
Kernel::cow_ptr<MantidVec> axis;
xRef[0] = shortest_tof - 1; // Just to make sure the bins hold it all
xRef[1] = longest_tof + 1;
workspace->setAllX(axis);
this->pixel_to_wkspindex.clear();
/* Disabled! Final process on wrong detector id events
for (size_t vi = 0; vi < this->wrongdetid_abstimes.size(); vi ++){
std::sort(this->wrongdetid_abstimes[vi].begin(),
this->wrongdetid_abstimes[vi].end());
}
*/
//-------------------------------------------------------------------------
// Final message output
//-------------------------------------------------------------------------
g_log.notice() << "Read " << this->num_good_events << " events + "
<< this->num_error_events << " errors"
<< ". Shortest TOF: " << shortest_tof
<< " microsec; longest TOF: " << longest_tof << " microsec."
<< "\n"
<< "Bad Events = " << this->num_bad_events
<< " Events of Wrong Detector = "
<< this->num_wrongdetid_events << ", "
<< "Number of Wrong Detector IDs = "
<< this->wrongdetids.size() << "\n";
std::set<PixelType>::iterator wit;
for (wit = this->wrongdetids.begin(); wit != this->wrongdetids.end();
++wit) {
g_log.notice() << "Wrong Detector ID : " << *wit << std::endl;
}
std::map<PixelType, size_t>::iterator git;
for (git = this->wrongdetidmap.begin(); git != this->wrongdetidmap.end();
++git) {
PixelType tmpid = git->first;
size_t vindex = git->second;
g_log.notice() << "Pixel " << tmpid << ": Total number of events = "
<< this->wrongdetid_pulsetimes[vindex].size() << std::endl;
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
} // End of procEvents
//----------------------------------------------------------------------------------------------
/** Linear-version of the procedure to process the event file properly.
* @param workspace :: EventWorkspace to write to.
* @param arrayOfVectors :: For speed up: this is an array, of size
* detid_max+1, where the
* index is a pixel ID, and the value is a pointer to the
* vector<tofEvent> in the given EventList.
* @param event_buffer :: The buffer containing the DAS events
* @param current_event_buffer_size :: The length of the given DAS buffer
* @param fileOffset :: Value for an offset into the binary file
* @param dbprint :: flag to print out events information
*/
void LoadEventPreNexus2::procEventsLinear(
DataObjects::EventWorkspace_sptr & /*workspace*/,
std::vector<TofEvent> **arrayOfVectors, DasEvent *event_buffer,
size_t current_event_buffer_size, size_t fileOffset, bool dbprint) {
// Starting pulse time
DateAndTime pulsetime;
int64_t pulse_i = 0;
int64_t numPulses = static_cast<int64_t>(num_pulses);
if (event_indices.size() < num_pulses) {
g_log.warning()
<< "Event_indices vector is smaller than the pulsetimes array.\n";
numPulses = static_cast<int64_t>(event_indices.size());
}
// Local stastic parameters
size_t local_num_error_events = 0;
size_t local_num_bad_events = 0;
size_t local_num_wrongdetid_events = 0;
size_t local_num_ignored_events = 0;
size_t local_num_good_events = 0;
double local_shortest_tof =
static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
double local_longest_tof = 0.;
// Storages
std::map<PixelType, size_t> local_pidindexmap;
std::vector<std::vector<Kernel::DateAndTime>> local_pulsetimes;
std::vector<std::vector<double>> local_tofs;
std::set<PixelType> local_wrongdetids;
// process the individual events
std::stringstream dbss;
// size_t numwrongpid = 0;
for (size_t i = 0; i < current_event_buffer_size; i++) {
DasEvent &temp = *(event_buffer + i);
PixelType pid = temp.pid;
bool iswrongdetid = false;
if (dbprint && i < m_dbOpNumEvents)
dbss << i << " \t" << temp.tof << " \t" << temp.pid << "\n";
// Filter out bad event
if ((pid & ERROR_PID) == ERROR_PID) {
local_num_error_events++;
local_num_bad_events++;
continue;
// Covert the pixel ID from DAS pixel to our pixel ID
// downstream monitor pixel for SNAP
if (pid == 1073741843)
pid = 1179648;
else if (this->using_mapping_file) {
PixelType unmapped_pid = pid % this->numpixel;
pid = this->pixelmap[unmapped_pid];
}
// Wrong pixel IDs
if (pid > static_cast<PixelType>(detid_max)) {
iswrongdetid = true;
local_num_error_events++;
local_num_wrongdetid_events++;
local_wrongdetids.insert(pid);
}
// Now check if this pid we want to load.
if (loadOnlySomeSpectra && !iswrongdetid) {
std::map<int64_t, bool>::iterator it;
it = spectraLoadMap.find(pid);
if (it == spectraLoadMap.end()) {
// Pixel ID was not found, so the event is being ignored.
local_num_ignored_events++;
continue;
// Upon this point, only 'good' events are left to work on
// Pulse: Find the pulse time for this event index
if (pulse_i < numPulses - 1) {
// This is the total offset into the file
size_t total_i = i + fileOffset;
// Go through event_index until you find where the index increases to
// encompass the current index.
// Your pulse = the one before.
while (!((total_i >= event_indices[pulse_i]) &&
(total_i < event_indices[pulse_i + 1]))) {
pulse_i++;
if (pulse_i >= (numPulses - 1))
break;
// Save the pulse time at this index for creating those events
pulsetime = pulsetimes[pulse_i];
} // Find pulse time
// TOF
double tof = static_cast<double>(temp.tof) * TOF_CONVERSION;
if (!iswrongdetid) {
// Regular event that is belonged to a defined detector
// Find the overall max/min tof
if (tof < local_shortest_tof)
local_shortest_tof = tof;
if (tof > local_longest_tof)
local_longest_tof = tof;
// This is equivalent to
// workspace->getEventList(this->pixel_to_wkspindex[pid]).addEventQuickly(event);
// But should be faster as a bunch of these calls were cached.
#if defined(__GNUC__) && !(defined(__INTEL_COMPILER)) && !(defined(__clang__))
// This avoids a copy constructor call but is only available with GCC
// (requires variadic templates)
arrayOfVectors[pid]->emplace_back(tof, pulsetime);
#else
arrayOfVectors[pid]->push_back(TofEvent(tof, pulsetime));
#endif
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
++local_num_good_events;
} else {
// Special events/Wrong detector id
// i. get/add index of the entry in map
std::map<PixelType, size_t>::iterator it;
it = local_pidindexmap.find(pid);
size_t theindex = 0;
if (it == local_pidindexmap.end()) {
// Initialize it!
size_t newindex = local_pulsetimes.size();
local_pidindexmap[pid] = newindex;
std::vector<Kernel::DateAndTime> tempvectime;
std::vector<double> temptofs;
local_pulsetimes.push_back(tempvectime);
local_tofs.push_back(temptofs);
theindex = newindex;
// ++ numwrongpid;
g_log.debug() << "Find New Wrong Pixel ID = " << pid << "\n";
} else {
// existing
theindex = it->second;
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
// ii. calculate and add absolute time
// int64_t abstime = (pulsetime.totalNanoseconds()+int64_t(tof*1000));
local_pulsetimes[theindex].push_back(pulsetime);
local_tofs[theindex].push_back(tof);
} // END-IF-ELSE: On Event's Pixel's Nature
} // ENDFOR each event
if (dbprint)
g_log.information(dbss.str());
// Update local statistics to their global counterparts
PARALLEL_CRITICAL(LoadEventPreNexus2_global_statistics) {
this->num_good_events += local_num_good_events;
this->num_ignored_events += local_num_ignored_events;
this->num_error_events += local_num_error_events;
this->num_bad_events += local_num_bad_events;
this->num_wrongdetid_events += local_num_wrongdetid_events;
std::set<PixelType>::iterator it;
for (it = local_wrongdetids.begin(); it != local_wrongdetids.end(); ++it) {
PixelType tmpid = *it;
this->wrongdetids.insert(*it);
// Create class map entry if not there
size_t mindex = 0;
auto git = this->wrongdetidmap.find(tmpid);
if (git == this->wrongdetidmap.end()) {
// create entry
size_t newindex = this->wrongdetid_pulsetimes.size();
this->wrongdetidmap[tmpid] = newindex;
std::vector<Kernel::DateAndTime> temppulsetimes;
std::vector<double> temptofs;
this->wrongdetid_pulsetimes.push_back(temppulsetimes);
this->wrongdetid_tofs.push_back(temptofs);
mindex = newindex;
} else {
mindex = git->second;
}
auto lit = local_pidindexmap.find(tmpid);
size_t localindex = lit->second;
for (size_t iv = 0; iv < local_pulsetimes[localindex].size(); iv++) {
this->wrongdetid_pulsetimes[mindex].push_back(
local_pulsetimes[localindex][iv]);
this->wrongdetid_tofs[mindex].push_back(local_tofs[localindex][iv]);
// std::sort(this->wrongdetid_abstimes[mindex].begin(),
// this->wrongdetid_abstimes[mindex].end());
}
if (local_shortest_tof < shortest_tof)
shortest_tof = local_shortest_tof;
if (local_longest_tof > longest_tof)
longest_tof = local_longest_tof;
} // END_CRITICAL
//----------------------------------------------------------------------------------------------
/** Comparator for sorting dasevent lists
*/
bool vzintermediatePixelIDComp(IntermediateEvent x, IntermediateEvent y) {
return (x.pid < y.pid);
}
//-----------------------------------------------------------------------------
/**
* Add a sample environment log for the proton chage (charge of the pulse in
*picoCoulombs)
* and set the scalar value (total proton charge, microAmps*hours, on the
*sample)
*
* @param workspace :: Event workspace to set the proton charge on
*/
void LoadEventPreNexus2::setProtonCharge(
DataObjects::EventWorkspace_sptr &workspace) {
if (this->proton_charge.empty()) // nothing to do
Run &run = workspace->mutableRun();
// Add the proton charge entries.
TimeSeriesProperty<double> *log =
new TimeSeriesProperty<double>("proton_charge");
log->setUnits("picoCoulombs");
// Add the time and associated charge to the log
log->addValues(this->pulsetimes, this->proton_charge);
/// TODO set the units for the log
run.addLogData(log);
// Force re-integration
run.integrateProtonCharge();
double integ = run.getProtonCharge();
g_log.information() << "Total proton charge of " << integ
<< " microAmp*hours found by integrating.\n";
//-----------------------------------------------------------------------------
/** Load a pixel mapping file
* @param filename :: Path to file.
*/
void LoadEventPreNexus2::loadPixelMap(const std::string &filename) {
this->using_mapping_file = false;
this->pixelmap.clear();
// check that there is a mapping file
if (filename.empty()) {
this->g_log.information("NOT using a mapping file");
return;
}
// actually deal with the file
this->g_log.debug("Using mapping file \"" + filename + "\"");
// Open the file; will throw if there is any problem
BinaryFile<PixelType> pixelmapFile(filename);
PixelType max_pid = static_cast<PixelType>(pixelmapFile.getNumElements());
// Load all the data
pixelmapFile.loadAllInto(this->pixelmap);
// Check for funky file
if (std::find_if(pixelmap.begin(), pixelmap.end(),
std::bind2nd(std::greater<PixelType>(), max_pid)) !=
pixelmap.end()) {
this->g_log.warning("Pixel id in mapping file was out of bounds. Loading "
"without mapping file");
this->numpixel = 0;
this->using_mapping_file = false;
return;
// If we got here, the mapping file was loaded correctly and we'll use it
this->using_mapping_file = true;
// Let's assume that the # of pixels in the instrument matches the mapping
// file length.
this->numpixel = static_cast<uint32_t>(pixelmapFile.getNumElements());
}
//-----------------------------------------------------------------------------
/** Open an event file
* @param filename :: file to open.
*/
void LoadEventPreNexus2::openEventFile(const std::string &filename) {
// Open the file
eventfile = new BinaryFile<DasEvent>(filename);
num_events = eventfile->getNumElements();
g_log.debug() << "File contains " << num_events << " event records.\n";
// Check if we are only loading part of the event file
const int chunk = getProperty("ChunkNumber");
if (isEmpty(chunk)) // We are loading the whole file
first_event = 0;
max_events = num_events;
} else // We are loading part - work out the event number range
{
const int totalChunks = getProperty("TotalChunks");
max_events = num_events / totalChunks;
first_event = (chunk - 1) * max_events;
// Need to add any remainder to the final chunk
if (chunk == totalChunks)
max_events += num_events % totalChunks;
}
g_log.information() << "Reading " << max_events << " event records\n";
return;
}
//-----------------------------------------------------------------------------
/** Read a pulse ID file
* @param filename :: file to load.
* @param throwError :: Flag to trigger error throwing instead of just logging
*/
void LoadEventPreNexus2::readPulseidFile(const std::string &filename,
const bool throwError) {
this->proton_charge_tot = 0.;
this->num_pulses = 0;
this->pulsetimesincreasing = true;
// jump out early if there isn't a filename
if (filename.empty()) {
this->g_log.information("NOT using a pulseid file");
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
std::vector<Pulse> *pulses;
// set up for reading
// Open the file; will throw if there is any problem
try {
BinaryFile<Pulse> pulseFile(filename);
// Get the # of pulse
this->num_pulses = pulseFile.getNumElements();
this->g_log.information() << "Using pulseid file \"" << filename
<< "\", with " << num_pulses << " pulses.\n";
// Load all the data
pulses = pulseFile.loadAll();
} catch (runtime_error &e) {
if (throwError) {
throw;
} else {
this->g_log.information()
<< "Encountered error in pulseidfile (ignoring file): " << e.what()
<< "\n";
if (num_pulses > 0) {
double temp;
DateAndTime lastPulseDateTime(0, 0);
this->pulsetimes.reserve(num_pulses);
for (size_t i = 0; i < num_pulses; i++) {
Pulse &it = (*pulses)[i];
DateAndTime pulseDateTime(static_cast<int64_t>(it.seconds),
static_cast<int64_t>(it.nanoseconds));
this->pulsetimes.push_back(pulseDateTime);
this->event_indices.push_back(it.event_index);
if (pulseDateTime < lastPulseDateTime)
this->pulsetimesincreasing = false;
lastPulseDateTime = pulseDateTime;
temp = it.pCurrent;
this->proton_charge.push_back(temp);
if (temp < 0.)
this->g_log.warning("Individual proton charge < 0 being ignored");
else
this->proton_charge_tot += temp;
this->proton_charge_tot = this->proton_charge_tot * CURRENT_CONVERSION;
if (m_dbOpNumPulses > 0) {
std::stringstream dbss;
for (size_t i = 0; i < m_dbOpNumPulses; ++i)
dbss << "[Pulse] " << i << "\t " << event_indices[i] << "\t "
<< pulsetimes[i].totalNanoseconds() << "\n";
g_log.information(dbss.str());
}
// Clear the vector
delete pulses;
}
//----------------------------------------------------------------------------------------------
/** Process input properties for purpose of investigation
*/
void LoadEventPreNexus2::processInvestigationInputs() {
m_dbOpBlockNumber = getProperty("DBOutputBlockNumber");
if (isEmpty(m_dbOpBlockNumber)) {
m_dbOutput = false;
m_dbOpBlockNumber = 0;
} else {
m_dbOutput = true;
int numdbevents = getProperty("DBNumberOutputEvents");
m_dbOpNumEvents = static_cast<size_t>(numdbevents);
int dbnumpulses = getProperty("DBNumberOutputPulses");
if (!isEmpty(dbnumpulses))
m_dbOpNumPulses = static_cast<size_t>(dbnumpulses);
else
m_dbOpNumPulses = 0;
return;
}
} // namespace DataHandling
} // namespace Mantid