Skip to content
Snippets Groups Projects
LoadEventPreNexus2.cpp 50.6 KiB
Newer Older




The LoadEventPreNeXus algorithm stores data from the pre-nexus neutron event data file in an [[EventWorkspace]]. The default histogram bin boundaries consist of a single bin able to hold all events (in all pixels), and will have their [[units]] set to time-of-flight. Since it is an [[EventWorkspace]], it can be rebinned to finer bins with no loss of data.

=== Optional properties ===
Specific pulse ID and mapping files can be specified if needed; these are guessed at automatically from the neutron filename, if not specified.

A specific list of pixel ids can be specified, in which case only events relating to these pixels will appear in the output.
The ChunkNumber and TotalChunks properties can be used to load only a section of the file; e.g. if these are 1 and 10 respectively only the first 10% of the events will be loaded.

*WIKI*/

#include "MantidDataHandling/LoadEventPreNexus2.h"
#include <algorithm>
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iostream>
#include <set>
#include <vector>
#include <Poco/File.h>
#include <Poco/Path.h>
#include <boost/timer.hpp>
#include "MantidAPI/FileFinder.h"
#include "MantidAPI/RegisterFileLoader.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/FileValidator.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidKernel/Glob.h"
#include "MantidAPI/FileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/BinaryFile.h"
#include "MantidKernel/InstrumentInfo.h"
#include "MantidKernel/System.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidGeometry/IDetector.h"
#include "MantidKernel/CPUTimer.h"
#include "MantidKernel/VisibleWhenProperty.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/ListValidator.h"

#include <algorithm>
#include <sstream>
#include "MantidAPI/MemoryManager.h"

namespace Mantid
{
namespace DataHandling
{

  DECLARE_FILELOADER_ALGORITHM(LoadEventPreNexus2)

  using namespace Kernel;
  using namespace API;
  using namespace Geometry;
  using namespace DataObjects;

  using boost::posix_time::ptime;
  using boost::posix_time::time_duration;
  using DataObjects::EventList;
  using DataObjects::EventWorkspace;
  using DataObjects::EventWorkspace_sptr;
  using DataObjects::TofEvent;
  using std::cout;
  using std::endl;
  using std::ifstream;
  using std::runtime_error;
  using std::stringstream;
  using std::string;
  using std::vector;

  //------------------------------------------------------------------------------------------------
  // constants for locating the parameters to use in execution
  //------------------------------------------------------------------------------------------------
  static const string EVENT_PARAM("EventFilename");
  static const string PULSEID_PARAM("PulseidFilename");
  static const string MAP_PARAM("MappingFilename");
  static const string PID_PARAM("SpectrumList");
  static const string PARALLEL_PARAM("UseParallelProcessing");
  static const string BLOCK_SIZE_PARAM("LoadingBlockSize");
  static const string OUT_PARAM("OutputWorkspace");

  /// All pixel ids with matching this mask are errors.
  static const PixelType ERROR_PID = 0x80000000;
  /// The maximum possible tof as native type
  static const uint32_t MAX_TOF_UINT32 = std::numeric_limits<uint32_t>::max();
  /// Conversion factor between 100 nanoseconds and 1 microsecond.
  static const double TOF_CONVERSION = .1;
  /// Conversion factor between picoColumbs and microAmp*hours
  static const double CURRENT_CONVERSION = 1.e-6 / 3600.;
  /// Veto flag: 0xFF00000000000
  static const uint64_t VETOFLAG(72057594037927935);

  static const string  EVENT_EXTS[] = {"_neutron_event.dat",
                                       "_neutron0_event.dat",
                                       "_neutron1_event.dat",
                                       "_neutron2_event.dat",
                                       "_neutron3_event.dat",
                                       "_neutron4_event.dat",
                                       "_live_neutron_event.dat"};
  static const string  PULSE_EXTS[] = {"_pulseid.dat",
                                       "_pulseid0.dat",
                                       "_pulseid1.dat",
                                       "_pulseid2.dat",
                                       "_pulseid3.dat",
                                       "_pulseid4.dat",
                                       "_live_pulseid.dat"};
  static const int NUM_EXT = 7;


  //-----------------------------------------------------------------------------
  //Statistic Functions
  //-----------------------------------------------------------------------------

  //----------------------------------------------------------------------------------------------
  /** Parse preNexus file name to get run number
    */
  static string getRunnumber(const string &filename)
    // start by trimming the filename
    string runnumber(Poco::Path(filename).getBaseName());

    if (runnumber.find("neutron") >= string::npos)
      return "0";

    std::size_t left = runnumber.find("_");
    std::size_t right = runnumber.find("_", left+1);

    return runnumber.substr(left+1, right-left-1);
  //----------------------------------------------------------------------------------------------
  /** Generate Pulse ID file name from preNexus event file's name
    */
  static string generatePulseidName(string eventfile)
  {
    // initialize vector of endings and put live at the beginning
    vector<string> eventExts(EVENT_EXTS, EVENT_EXTS+NUM_EXT);
    std::reverse(eventExts.begin(), eventExts.end());
    vector<string> pulseExts(PULSE_EXTS, PULSE_EXTS+NUM_EXT);
    std::reverse(pulseExts.begin(), pulseExts.end());

    // look for the correct ending
    for (std::size_t i = 0; i < eventExts.size(); ++i)
    {
      size_t start = eventfile.find(eventExts[i]);
      if (start != string::npos)
        return eventfile.replace(start, eventExts[i].size(), pulseExts[i]);
    }
    // give up and return nothing
  }

  //----------------------------------------------------------------------------------------------
  /** Generate mapping file name from Event workspace's instrument
    */
  static string generateMappingfileName(EventWorkspace_sptr &wksp)
    // get the name of the mapping file as set in the parameter files
    std::vector<string> temp = wksp->getInstrument()->getStringParameter("TS_mapping_file");
    if (temp.empty())
    string mapping = temp[0];
    // Try to get it from the working directory
    Poco::File localmap(mapping);
    if (localmap.exists())
      return mapping;

    // Try to get it from the data directories
    string dataversion = Mantid::API::FileFinder::Instance().getFullPath(mapping);
    if (!dataversion.empty())
      return dataversion;

    // get a list of all proposal directories
    string instrument = wksp->getInstrument()->getName();
    Poco::File base("/SNS/" + instrument + "/");
    // try short instrument name
    if (!base.exists())
    {
      instrument = Kernel::ConfigService::Instance().getInstrument(instrument).shortName();
      base = Poco::File("/SNS/" + instrument + "/");
      if (!base.exists())
        return "";
    vector<string> dirs; // poco won't let me reuse temp
    base.list(dirs);

    // check all of the proposals for the mapping file in the canonical place
    const string CAL("_CAL");
    const size_t CAL_LEN = CAL.length(); // cache to make life easier
    vector<string> files;
    for (size_t i = 0; i < dirs.size(); ++i) {
      if ( (dirs[i].length() > CAL_LEN)
           && (dirs[i].compare(dirs[i].length() - CAL.length(), CAL.length(), CAL) == 0) ) {
        if (Poco::File(base.path() + "/" + dirs[i] + "/calibrations/" + mapping).exists())
          files.push_back(base.path() + "/" + dirs[i] + "/calibrations/" + mapping);
      }
    }

    if (files.empty())
      return "";
    else if (files.size() == 1)
      return files[0];
    else // just assume that the last one is the right one, this should never be fired
      return *(files.rbegin());
  //----------------------------------------------------------------------------------------------
  /** Return the confidence with with this algorithm can load the file
   *  @param descriptor A descriptor for the file
   *  @returns An integer specifying the confidence level. 0 indicates it will not be used
   */
  int LoadEventPreNexus2::confidence(Kernel::FileDescriptor & descriptor) const
  {
    if(descriptor.extension().rfind("dat") == std::string::npos) return 0;
    // If this looks like a binary file where the exact file length is a multiple
    // of the DasEvent struct then we're probably okay.
    if(descriptor.isAscii()) return 0;
    const size_t objSize = sizeof(DasEvent);
    auto &handle = descriptor.data();
    // get the size of the file in bytes and reset the handle back to the beginning
    handle.seekg(0, std::ios::end);
    const size_t filesize = static_cast<size_t>(handle.tellg());
    handle.seekg(0, std::ios::beg);
    if (filesize % objSize == 0) return 80;
    else return 0;
  //----------------------------------------------------------------------------------------------
  /** Constructor
   */
  LoadEventPreNexus2::LoadEventPreNexus2() :
    Mantid::API::IFileLoader<Kernel::FileDescriptor>(), eventfile(NULL), max_events(0)

  //----------------------------------------------------------------------------------------------
  /** Desctructor
   */
  LoadEventPreNexus2::~LoadEventPreNexus2()
  {
    delete this->eventfile;
  //----------------------------------------------------------------------------------------------
  /** Sets documentation strings for this algorithm
   */
  void LoadEventPreNexus2::initDocs()
    this->setWikiSummary("Loads SNS raw neutron event data format and stores it in a [[workspace]] "
                         "([[EventWorkspace]] class). ");
    this->setOptionalMessage("Loads SNS raw neutron event data format and stores it in a workspace "
                             "(EventWorkspace class).");
  //----------------------------------------------------------------------------------------------
  /** Initialize the algorithm, i.e, declare properties
  */
  void LoadEventPreNexus2::init()
  {
    // which files to use
    vector<string> eventExts(EVENT_EXTS, EVENT_EXTS+NUM_EXT);
    declareProperty(new FileProperty(EVENT_PARAM, "", FileProperty::Load, eventExts),
        "The name of the neutron event file to read, including its full or relative path. In most cases, the file typically ends in neutron_event.dat (N.B. case sensitive if running on Linux).");
    vector<string> pulseExts(PULSE_EXTS, PULSE_EXTS+NUM_EXT);
    declareProperty(new FileProperty(PULSEID_PARAM, "", FileProperty::OptionalLoad, pulseExts),
        "File containing the accelerator pulse information; the filename will be found automatically if not specified.");
    declareProperty(new FileProperty(MAP_PARAM, "", FileProperty::OptionalLoad, ".dat"),
        "File containing the pixel mapping (DAS pixels to pixel IDs) file (typically INSTRUMENT_TS_YYYY_MM_DD.dat). The filename will be found automatically if not specified.");

    // which pixels to load
    declareProperty(new ArrayProperty<int64_t>(PID_PARAM),
        "A list of individual spectra (pixel IDs) to read, specified as e.g. 10:20. Only used if set.");

    auto mustBePositive = boost::make_shared<BoundedValidator<int> >();
    mustBePositive->setLower(1);
    declareProperty("ChunkNumber", EMPTY_INT(), mustBePositive,
        "If loading the file by sections ('chunks'), this is the section number of this execution of the algorithm.");
    declareProperty("TotalChunks", EMPTY_INT(), mustBePositive,
        "If loading the file by sections ('chunks'), this is the total number of sections.");
    // TotalChunks is only meaningful if ChunkNumber is set
    // Would be nice to be able to restrict ChunkNumber to be <= TotalChunks at validation
    setPropertySettings("TotalChunks", new VisibleWhenProperty("ChunkNumber", IS_NOT_DEFAULT));

    std::vector<std::string> propOptions;
    propOptions.push_back("Auto");
    propOptions.push_back("Serial");
    propOptions.push_back("Parallel");
    declareProperty("UseParallelProcessing", "Auto", boost::make_shared<StringListValidator>(propOptions),
        "Use multiple cores for loading the data?\n"
        "  Auto: Use serial loading for small data sets, parallel for large data sets.\n"
        "  Serial: Use a single core.\n"
        "  Parallel: Use all available cores.");

    // the output workspace name
    declareProperty(new WorkspaceProperty<IEventWorkspace>(OUT_PARAM,"",Direction::Output),
        "The name of the workspace that will be created, filled with the read-in data and stored in the [[Analysis Data Service]].");

    declareProperty(new WorkspaceProperty<MatrixWorkspace>("EventNumberWorkspace", "", Direction::Output, PropertyMode::Optional),
                    "Workspace with number of events per pulse");
  //----------------------------------------------------------------------------------------------
  /** Execute the algorithm
    * Procedure:
    * 1. check all the inputs
    * 2. create an EventWorkspace object
    * 3. process events
    * 4. set out output
    */
  void LoadEventPreNexus2::exec()
    g_log.information() << "Executing LoadEventPreNexus Ver 2.0" << std::endl;

    // Process input properties
    // a. Check 'chunk' properties are valid, if set
    const int chunks = getProperty("TotalChunks");
    if ( !isEmpty(chunks) && int(getProperty("ChunkNumber")) > chunks )
      throw std::out_of_range("ChunkNumber cannot be larger than TotalChunks");
    prog = new Progress(this,0.0,1.0,100);
    // b. what spectra (pixel ID's) to load
    this->spectra_list = this->getProperty(PID_PARAM);
    // c. the event file is needed in case the pulseid fileanme is empty
    string event_filename = this->getPropertyValue(EVENT_PARAM);
    string pulseid_filename = this->getPropertyValue(PULSEID_PARAM);
    bool throwError = true;
    if (pulseid_filename.empty())
    {
      pulseid_filename = generatePulseidName(event_filename);
      if (!pulseid_filename.empty())
      {
        if (Poco::File(pulseid_filename).exists())
        {
          this->g_log.information() << "Found pulseid file " << pulseid_filename << std::endl;
          throwError = false;
        }
        else
        {
          pulseid_filename = "";
        }
    // Read input files
    prog->report("Loading Pulse ID file");
    this->readPulseidFile(pulseid_filename, throwError);
    prog->report("Loading Event File");
    this->openEventFile(event_filename);
    // Correct event indexes mased by veto flag
    unmaskVetoEventIndex();
    // Optinally output event number / pulse file
    std::string diswsname = getPropertyValue("EventNumberWorkspace");
    if (!diswsname.empty())
      MatrixWorkspace_sptr disws = generateEventDistribtionWorkspace();
      setProperty("EventNumberWorkspace", disws);
    // Create otuput Workspace
    prog->report("Creating output workspace");
    createOutputWorkspace(event_filename);
    // Process the events into pixels
    procEvents(localWorkspace);
    // Set output
    this->setProperty<IEventWorkspace_sptr>(OUT_PARAM, localWorkspace);
    // Fast frequency sample environment data
    this->processImbedLogs();
    // Cleanup
    delete prog;
    return;
  } // exec()
  //------------------------------------------------------------------------------------------------
  /** Create and set up output Event Workspace
    */
  void LoadEventPreNexus2::createOutputWorkspace(const std::string event_filename)
    // Create the output workspace
    localWorkspace = EventWorkspace_sptr(new EventWorkspace());
    // Make sure to initialize. We can use dummy numbers for arguments, for event workspace it doesn't matter
    localWorkspace->initialize(1,1,1);
    // Set the units
    localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
    localWorkspace->setYUnit("Counts");
    // Set title
    localWorkspace->setTitle("Dummy Title");
    // Property run_start
    if (this->num_pulses > 0)
    {
      // add the start of the run as a ISO8601 date/time string. The start = the first pulse.
      // (this is used in LoadInstrument to find the right instrument file to use).
      localWorkspace->mutableRun().addProperty("run_start", pulsetimes[0].toISO8601String(), true );
    }
    // Property run_number
    localWorkspace->mutableRun().addProperty("run_number", getRunnumber(event_filename));
    // Get the instrument!
    prog->report("Loading Instrument");
    this->runLoadInstrument(event_filename, localWorkspace);

    //load the mapping file
    prog->report("Loading Mapping File");
    string mapping_filename = this->getPropertyValue(MAP_PARAM);
    if (mapping_filename.empty())
      mapping_filename = generateMappingfileName(localWorkspace);
      if (!mapping_filename.empty())
        this->g_log.information() << "Found mapping file \"" << mapping_filename << "\"" << std::endl;
    this->loadPixelMap(mapping_filename);
  //------------------------------------------------------------------------------------------------
  /** Some Pulse ID and event indexes might be wrong.  Remove them.
    */
  void LoadEventPreNexus2::unmaskVetoEventIndex()
  {
    // Check pulse ID with events
    size_t numveto = 0;
    size_t numerror = 0;
    for (size_t i = 0; i < event_indices.size(); ++i)
    {
      uint64_t eventindex = event_indices[i];
      if (eventindex > static_cast<uint64_t>(max_events))
      {
        uint64_t realeventindex = eventindex & VETOFLAG;
        // Examine whether it is a veto
        bool isveto = false;
        if (realeventindex <= max_events)
        {
          if (i == 0 || realeventindex >= event_indices[i-1])
          {
            isveto = true;
          }
        }
        if (isveto)
        {
          // Is veto, use the unmasked event index
          event_indices[i] = realeventindex;
          ++ numveto;
          g_log.information() << "[DB Output]" << "Event index " << eventindex
                              << " is corrected to " << realeventindex << "\n";
        }
        else
        {
          event_indices[i] = event_indices[i-1];
          ++ numerror;
          g_log.error() << "EventIndex " << eventindex << " of pulse (indexed as " << i << ") is wrong! "
                        << " Tried to convert them to " << realeventindex << " , still exceeding max event index "
                        << max_events << "\n";
        }
      }
    }
    // Check
    for (size_t i = 0; i < event_indices.size(); ++i)
    {
      uint64_t eventindex = event_indices[i];
      if (eventindex > static_cast<uint64_t>(max_events))
      {
        g_log.information() << "Check: Pulse " << i << ": unphysical event index = " << eventindex << "\n";
      }
    }
    g_log.notice() << "Number of veto pulses = " << numveto << ", Number of error-event-index pulses = "
                   << numerror << "\n";
  //------------------------------------------------------------------------------------------------
  /** Generate a workspace with distribution of events with pulse
    * Workspace has 2 spectrum.  spectrum 0 is the number of events in one pulse.
    * specrum 1 is the accumulated number of events
    */
  API::MatrixWorkspace_sptr LoadEventPreNexus2::generateEventDistribtionWorkspace()
    // Generate workspace of 2 spectrum
    size_t nspec = 2;
    size_t sizex = event_indices.size();
    size_t sizey = sizex;
    MatrixWorkspace_sptr disws = boost::dynamic_pointer_cast<MatrixWorkspace>(
          WorkspaceFactory::Instance().create("Workspace2D", nspec, sizex, sizey));

    g_log.debug() << "Event indexes size = " << event_indices.size() << ", "
                  << "Number of pulses = " << pulsetimes.size() << "\n";

    // Put x-values
    for (size_t i = 0; i < 2; ++i)
    {
      MantidVec& dataX = disws->dataX(i);
      dataX[0] = 0;
      for (size_t j = 0; j < sizex; ++j)
      {
        int64_t time = pulsetimes[j].totalNanoseconds() - pulsetimes[0].totalNanoseconds();
        dataX[j] = static_cast<double>(time)*1.0E-9;
        // dataX[j] = static_cast<double>(j);
      }
    }
    // Put y-values
    MantidVec& dataY0 = disws->dataY(0);
    MantidVec& dataY1 = disws->dataY(1);

    dataY0[0] = 0;
    dataY1[1] = static_cast<double>(event_indices[0]);

    for (size_t i = 1; i < sizey; ++i)
      dataY0[i] = static_cast<double>(event_indices[i] - event_indices[i-1]);
      dataY1[i] = static_cast<double>(event_indices[i]);
  //----------------------------------------------------------------------------------------------
  /** Process imbed logs (marked by bad pixel IDs)
   */
  void LoadEventPreNexus2::processImbedLogs()
  {
    std::set<PixelType>::iterator pit;
    std::map<PixelType, size_t>::iterator mit;
    for (pit=this->wrongdetids.begin(); pit!=this->wrongdetids.end(); ++pit)
    {
      // a. pixel ID -> index
      PixelType pid = *pit;
      mit = this->wrongdetidmap.find(pid);
      size_t mindex = mit->second;
      if (mindex > this->wrongdetid_pulsetimes.size())
      {
        g_log.error() << "Wrong Index " << mindex << " for Pixel " << pid << std::endl;
        throw std::invalid_argument("Wrong array index for pixel from map");
      }
      else
      {
        g_log.information() << "Processing imbed log marked by Pixel " << pid <<
            " with size = " << this->wrongdetid_pulsetimes[mindex].size() << std::endl;
      }
      std::stringstream ssname;
      ssname << "Pixel" << pid;
      std::string logname = ssname.str();
      // d. Add this to log
      this->addToWorkspaceLog(logname, mindex);
      g_log.notice() << "End of Processing Log " << logname << std::endl << std::endl;
    } //ENDFOR pit
  //----------------------------------------------------------------------------------------------
  /** Add absolute time series to log
   * @params
   * - mindex:  index of the the series in the list
   */
  void LoadEventPreNexus2::addToWorkspaceLog(std::string logtitle, size_t mindex)
    // 1. Set data structure and constants
    size_t nbins = this->wrongdetid_pulsetimes[mindex].size();
    TimeSeriesProperty<double>* property = new TimeSeriesProperty<double>(logtitle);

    // 2. Set data
    for (size_t k = 0; k < nbins; k ++)
      property->addValue(this->wrongdetid_pulsetimes[mindex][k], this->wrongdetid_tofs[mindex][k]);
    } // ENDFOR

    this->localWorkspace->mutableRun().addProperty(property, false);

    g_log.information() << "Size of Property " << property->name() << " = " << property->size() <<
        " vs Original Log Size = " << nbins << std::endl;

    return;
  }

  //----------------------------------------------------------------------------------------------
  /** Load the instrument geometry File
   *  @param eventfilename :: Used to pick the instrument.
   *  @param localWorkspace :: MatrixWorkspace in which to put the instrument geometry
   */
  void LoadEventPreNexus2::runLoadInstrument(const std::string &eventfilename, MatrixWorkspace_sptr localWorkspace)
  {
    // start by getting just the filename
    string instrument = Poco::Path(eventfilename).getFileName();
    // initialize vector of endings and put live at the beginning
    vector<string> eventExts(EVENT_EXTS, EVENT_EXTS+NUM_EXT);
    std::reverse(eventExts.begin(), eventExts.end());
    for (size_t i = 0; i < eventExts.size(); ++i)
      size_t pos = instrument.find(eventExts[i]);
      if (pos != string::npos)
      {
        instrument = instrument.substr(0, pos);
        break;
      }

    // determine the instrument parameter file
    size_t pos = instrument.rfind("_"); // get rid of the run number
    instrument = instrument.substr(0, pos);

    // do the actual work
    IAlgorithm_sptr loadInst= createChildAlgorithm("LoadInstrument");

    // Now execute the Child Algorithm. Catch and log any error, but don't stop.
    loadInst->setPropertyValue("InstrumentName", instrument);
    loadInst->setProperty<MatrixWorkspace_sptr> ("Workspace", localWorkspace);
    loadInst->setProperty("RewriteSpectraMap", false);
    loadInst->executeAsChildAlg();

    // Populate the instrument parameters in this workspace - this works around a bug
    localWorkspace->populateInstrumentParameters();
  //----------------------------------------------------------------------------------------------
  /** Turn a pixel id into a "corrected" pixelid and period.
    *
    */
  inline void LoadEventPreNexus2::fixPixelId(PixelType &pixel, uint32_t &period) const
  {
    if (!this->using_mapping_file) { // nothing to do here
      period = 0;
      return;
    }
    PixelType unmapped_pid = pixel % this->numpixel;
    period = (pixel - unmapped_pid) / this->numpixel;
    pixel = this->pixelmap[unmapped_pid];
  }
  //----------------------------------------------------------------------------------------------
  /** Process the event file properly in parallel
    * @param workspace :: EventWorkspace to write to.
    */
  void LoadEventPreNexus2::procEvents(DataObjects::EventWorkspace_sptr & workspace)
    //-------------------------------------------------------------------------
    // Initialize statistic counters
    //-------------------------------------------------------------------------
    this->num_error_events = 0;
    this->num_good_events = 0;
    this->num_ignored_events = 0;
    this->num_bad_events = 0;
    this->num_wrongdetid_events = 0;

    shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
    longest_tof = 0.;

    // Set up loading parameters
    size_t loadBlockSize = Mantid::Kernel::DEFAULT_BLOCK_SIZE * 2;
    size_t numBlocks = (max_events + loadBlockSize - 1) / loadBlockSize;

    // We want to pad out empty pixels.
    detid2det_map detector_map;
    workspace->getInstrument()->getDetectors(detector_map);

    // Determine processing mode
    std::string procMode = getProperty("UseParallelProcessing");
    if (procMode == "Serial")
      parallelProcessing = false;
    else if (procMode == "Parallel")
      parallelProcessing = true;
    else
    {
      // Automatic determination. Loading serially (for me) is about 3 million events per second,
      // (which is sped up by ~ x 3 with parallel processing, say 10 million per second, e.g. 7 million events more per seconds).
      // compared to a setup time/merging time of about 10 seconds per million detectors.
      double setUpTime = double(detector_map.size()) * 10e-6;
      parallelProcessing = ((double(max_events) / 7e6) > setUpTime);
      g_log.debug() << (parallelProcessing ? "Using" : "Not using") << " parallel processing." << std::endl;
    }
    // determine maximum pixel id
    detid2det_map::iterator it;
    detid_max = 0; // seems like a safe lower bound
    for (it = detector_map.begin(); it != detector_map.end(); it++)
      if (it->first > detid_max)
        detid_max = it->first;

    // Pad all the pixels
    prog->report("Padding Pixels");
    this->pixel_to_wkspindex.reserve(detid_max+1); //starting at zero up to and including detid_max
    // Set to zero
    this->pixel_to_wkspindex.assign(detid_max+1, 0);
    size_t workspaceIndex = 0;
    for (it = detector_map.begin(); it != detector_map.end(); it++)
      if (!it->second->isMonitor())
      {
        this->pixel_to_wkspindex[it->first] = workspaceIndex;
        EventList & spec = workspace->getOrAddEventList(workspaceIndex);
        spec.addDetectorID(it->first);
        // Start the spectrum number at 1
        spec.setSpectrumNo(specid_t(workspaceIndex+1));
        workspaceIndex += 1;
      }
    // For slight speed up
    loadOnlySomeSpectra = (this->spectra_list.size() > 0);
    // Turn the spectra list into a map, for speed of access
    for (std::vector<int64_t>::iterator it = spectra_list.begin(); it != spectra_list.end(); it++)
      spectraLoadMap[*it] = true;
    CPUTimer tim;
    //-------------------------------------------------------------------------
    // Create the partial workspaces
    //-------------------------------------------------------------------------
    // Vector of partial workspaces, for parallel processing.
    std::vector<EventWorkspace_sptr> partWorkspaces;
    std::vector<DasEvent *> buffers;
    /// Pointer to the vector of events
    typedef std::vector<TofEvent> * EventVector_pt;
    /// Bare array of arrays of pointers to the EventVectors
    EventVector_pt ** eventVectors;
    /// How many threads will we use?
    size_t numThreads = 1;
    if (parallelProcessing)
      numThreads = size_t(PARALLEL_GET_MAX_THREADS);
    partWorkspaces.resize(numThreads);
    buffers.resize(numThreads);
    eventVectors = new EventVector_pt *[numThreads];
    // cppcheck-suppress syntaxError
    PRAGMA_OMP( parallel for if (parallelProcessing) )
    for (int i=0; i < int(numThreads); i++)
    {
      // This is the partial workspace we are about to create (if in parallel)
      EventWorkspace_sptr partWS;
      if (parallelProcessing)
      {
        prog->report("Creating Partial Workspace");
        // Create a partial workspace
        partWS = EventWorkspace_sptr(new EventWorkspace());
        //Make sure to initialize.
        partWS->initialize(1,1,1);
        // Copy all the spectra numbers and stuff (no actual events to copy though).
        partWS->copyDataFrom(*workspace);
        // Push it in the array
        partWorkspaces[i] = partWS;
      }
      else
        partWS = workspace;
      //Allocate the buffers
      buffers[i] = new DasEvent[loadBlockSize];
      // For each partial workspace, make an array where index = detector ID and value = pointer to the events vector
      eventVectors[i] = new EventVector_pt[detid_max+1];
      EventVector_pt * theseEventVectors = eventVectors[i];
      for (detid_t j=0; j<detid_max+1; j++)
      {
        size_t wi = pixel_to_wkspindex[j];
        // Save a POINTER to the vector<tofEvent>
        theseEventVectors[j] = &partWS->getEventList(wi).getEvents();
      }
    }
    g_log.information() << tim << " to create " << partWorkspaces.size()
                        << " workspaces (same as number of threads) for parallel loading "
                        << numBlocks << " blocks. " << "\n";

    prog->resetNumSteps( numBlocks, 0.1, 0.8);
    //-------------------------------------------------------------------------
    // LOAD THE DATA
    //-------------------------------------------------------------------------
    PRAGMA_OMP( parallel for schedule(dynamic, 1) if (parallelProcessing) )
    for (int blockNum=0; blockNum<int(numBlocks); blockNum++)
    {
      PARALLEL_START_INTERUPT_REGION
      // Find the workspace for this particular thread
      EventWorkspace_sptr ws;
      size_t threadNum = 0;
      if (parallelProcessing)
        threadNum = PARALLEL_THREAD_NUMBER;
        ws = partWorkspaces[threadNum];
      else
        ws = workspace;

      // Get the buffer (for this thread)
      DasEvent * event_buffer = buffers[threadNum];

      // Get the speeding-up array of vector<tofEvent> where index = detid.
      EventVector_pt * theseEventVectors = eventVectors[threadNum];
      // Where to start in the file?
      size_t fileOffset = first_event + (loadBlockSize * blockNum);
      // May need to reduce size of last (or only) block
      size_t current_event_buffer_size =
          ( blockNum == int(numBlocks-1) ) ? ( max_events - (numBlocks-1)*loadBlockSize ) : loadBlockSize;

      // Load this chunk of event data (critical block)
      PARALLEL_CRITICAL( LoadEventPreNexus2_fileAccess )
        current_event_buffer_size = eventfile->loadBlockAt(event_buffer, fileOffset, current_event_buffer_size);

      // This processes the events. Can be done in parallel!
      procEventsLinear(ws, theseEventVectors, event_buffer, current_event_buffer_size, fileOffset);

      // Report progress
      prog->report("Load Event PreNeXus");

      PARALLEL_END_INTERUPT_REGION
    PARALLEL_CHECK_INTERUPT_REGION
    g_log.debug() << tim << " to load the data." << std::endl;
    //-------------------------------------------------------------------------
    // MERGE WORKSPACES BACK TOGETHER
    //-------------------------------------------------------------------------
    if (parallelProcessing)
    {
      PARALLEL_START_INTERUPT_REGION
      prog->resetNumSteps( workspace->getNumberHistograms(), 0.8, 0.95);
      size_t memoryCleared = 0;
      MemoryManager::Instance().releaseFreeMemory();
      // Merge all workspaces, index by index.
      PARALLEL_FOR_NO_WSP_CHECK()
      for (int iwi=0; iwi<int(workspace->getNumberHistograms()); iwi++)
      {
        size_t wi = size_t(iwi);
        // The output event list.
        EventList & el = workspace->getEventList(wi);
        el.clear(false);
        // How many events will it have?
        size_t numEvents = 0;
        for (size_t i=0; i<numThreads; i++)
          numEvents += partWorkspaces[i]->getEventList(wi).getNumberEvents();
        // This will avoid too much copying.
        el.reserve(numEvents);
        // Now merge the event lists
        for (size_t i=0; i<numThreads; i++)
        {
          EventList & partEl = partWorkspaces[i]->getEventList(wi);
          el += partEl.getEvents();
          // Free up memory as you go along.
          partEl.clear(false);
        }
        // With TCMalloc, release memory when you accumulate enough to make sense
        PARALLEL_CRITICAL( LoadEventPreNexus2_trackMemory )
        {
          memoryCleared += numEvents;
          if (memoryCleared > 10000000) // ten million events = about 160 MB
          {
            MemoryManager::Instance().releaseFreeMemory();
            memoryCleared = 0;
          }
        }
        prog->report("Merging Workspaces");
      }
      // Final memory release
      MemoryManager::Instance().releaseFreeMemory();
      g_log.debug() << tim << " to merge workspaces together." << std::endl;
      PARALLEL_END_INTERUPT_REGION
    PARALLEL_CHECK_INTERUPT_REGION

    //-------------------------------------------------------------------------
    // Clean memory
    //-------------------------------------------------------------------------
    // Delete the buffers for each thread.
    for (size_t i=0; i<numThreads; i++)
      delete [] buffers[i];
      delete [] eventVectors[i];
    }
    delete [] eventVectors;
    //delete [] pulsetimes;

    prog->resetNumSteps( 3, 0.94, 1.00);

    //-------------------------------------------------------------------------
    // Finalize loading
    //-------------------------------------------------------------------------
    prog->report("Deleting Empty Lists");

    if(loadOnlySomeSpectra)
      workspace->deleteEmptyLists();

    prog->report("Setting proton charge");
    this->setProtonCharge(workspace);
    g_log.debug() << tim << " to set the proton charge log." << "\n";

    // Make sure the MRU is cleared
    workspace->clearMRU();

    // Now, create a default X-vector for histogramming, with just 2 bins.
    Kernel::cow_ptr<MantidVec> axis;
    MantidVec& xRef = axis.access();
    xRef.resize(2);
    xRef[0] = shortest_tof - 1; //Just to make sure the bins hold it all
    xRef[1] = longest_tof + 1;
    workspace->setAllX(axis);
    this->pixel_to_wkspindex.clear();

    /* Disabled! Final process on wrong detector id events
    for (size_t vi = 0; vi < this->wrongdetid_abstimes.size(); vi ++){
      std::sort(this->wrongdetid_abstimes[vi].begin(), this->wrongdetid_abstimes[vi].end());
    }
    */

    //-------------------------------------------------------------------------
    // Final message output
    //-------------------------------------------------------------------------
    g_log.notice() << "Read " << this->num_good_events << " events + "
                   << this->num_error_events << " errors"
                   << ". Shortest TOF: " << shortest_tof << " microsec; longest TOF: "
                   << longest_tof << " microsec." << "\n"
                   << "Bad Events = " << this->num_bad_events
                   << "  Events of Wrong Detector = " << this->num_wrongdetid_events << ", "
                   << "Number of Wrong Detector IDs = " << this->wrongdetids.size() << "\n";

    std::set<PixelType>::iterator wit;
    for (wit=this->wrongdetids.begin(); wit!=this->wrongdetids.end(); ++wit){
      g_log.notice() << "Wrong Detector ID : " << *wit << std::endl;
    }
    std::map<PixelType, size_t>::iterator git;
    for (git = this->wrongdetidmap.begin(); git != this->wrongdetidmap.end(); ++git){
      PixelType tmpid = git->first;
      size_t vindex = git->second;
      g_log.notice() << "Pixel " << tmpid << ":  Total number of events = " << this->wrongdetid_pulsetimes[vindex].size() << std::endl;
  } // End of procEvents

  //----------------------------------------------------------------------------------------------