Skip to content
Snippets Groups Projects
LoadEventPreNexus2.cpp 47.2 KiB
Newer Older




The LoadEventPreNeXus algorithm stores data from the pre-nexus neutron event data file in an [[EventWorkspace]]. The default histogram bin boundaries consist of a single bin able to hold all events (in all pixels), and will have their [[units]] set to time-of-flight. Since it is an [[EventWorkspace]], it can be rebinned to finer bins with no loss of data.

=== Optional properties ===
Specific pulse ID and mapping files can be specified if needed; these are guessed at automatically from the neutron filename, if not specified.

A specific list of pixel ids can be specified, in which case only events relating to these pixels will appear in the output.
The ChunkNumber and TotalChunks properties can be used to load only a section of the file; e.g. if these are 1 and 10 respectively only the first 10% of the events will be loaded.

*WIKI*/

#include "MantidDataHandling/LoadEventPreNexus2.h"
#include <algorithm>
#include <sstream>
#include <stdexcept>
#include <functional>
#include <iostream>
#include <set>
#include <vector>
#include <Poco/File.h>
#include <Poco/Path.h>
#include <boost/timer.hpp>
#include "MantidAPI/FileFinder.h"
#include "MantidAPI/LoadAlgorithmFactory.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/FileValidator.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidKernel/Glob.h"
#include "MantidAPI/FileProperty.h"
#include "MantidKernel/ConfigService.h"
#include "MantidKernel/BinaryFile.h"
#include "MantidKernel/System.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/DateAndTime.h"
#include "MantidGeometry/IDetector.h"
#include "MantidKernel/CPUTimer.h"
#include "MantidKernel/VisibleWhenProperty.h"
#include "MantidDataObjects/Workspace2D.h"

#include <algorithm>
#include <sstream>
#include "MantidAPI/MemoryManager.h"

namespace Mantid
{
namespace DataHandling
{
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(LoadEventPreNexus2)
DECLARE_LOADALGORITHM(LoadEventPreNexus2)

using namespace Kernel;
using namespace API;
using namespace Geometry;
using boost::posix_time::ptime;
using boost::posix_time::time_duration;
using DataObjects::EventList;
using DataObjects::EventWorkspace;
using DataObjects::EventWorkspace_sptr;
using DataObjects::TofEvent;
using std::cout;
using std::endl;
using std::ifstream;
using std::runtime_error;
using std::stringstream;
using std::string;
using std::vector;

/*
 * constants for locating the parameters to use in execution
 */
static const string EVENT_PARAM("EventFilename");
static const string PULSEID_PARAM("PulseidFilename");
static const string MAP_PARAM("MappingFilename");
static const string PID_PARAM("SpectrumList");
static const string PARALLEL_PARAM("UseParallelProcessing");
static const string BLOCK_SIZE_PARAM("LoadingBlockSize");
static const string OUT_PARAM("OutputWorkspace");
/// Default number of items to read in from any of the files.
static const size_t DEFAULT_BLOCK_SIZE = 1000000; // 100,000
/// All pixel ids with matching this mask are errors.
static const PixelType ERROR_PID = 0x80000000;
/// The maximum possible tof as native type
static const uint32_t MAX_TOF_UINT32 = std::numeric_limits<uint32_t>::max();
/// Conversion factor between 100 nanoseconds and 1 microsecond.
static const double TOF_CONVERSION = .1;
/// Conversion factor between picoColumbs and microAmp*hours
static const double CURRENT_CONVERSION = 1.e-6 / 3600.;


//-----------------------------------------------------------------------------
//Statistic Functions

static string getRunnumber(const string &filename) {
  // start by trimming the filename
  string runnumber(Poco::Path(filename).getBaseName());

  if (runnumber.find("neutron") >= string::npos)
    return "0";

  std::size_t left = runnumber.find("_");
  std::size_t right = runnumber.find("_", left+1);

  return runnumber.substr(left+1, right-left-1);
}

static string generatePulseidName(string eventfile)
{
  size_t start;
  string ending;

  // normal ending
  ending = "neutron_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid.dat");

  // split up event files - yes this is copy and pasted code
  ending = "neutron0_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid0.dat");

  ending = "neutron1_event.dat";
  start = eventfile.find(ending);
  if (start != string::npos)
    return eventfile.replace(start, ending.size(), "pulseid1.dat");

  return "";
}

static string generateMappingfileName(EventWorkspace_sptr &wksp)
{//
  // get the name of the mapping file as set in the parameter files
  std::vector<string> temp = wksp->getInstrument()->getStringParameter("TS_mapping_file");
  if (temp.empty())
    return "";
  string mapping = temp[0];
  // Try to get it from the working directory
  Poco::File localmap(mapping);
  if (localmap.exists())
    return mapping;

  // Try to get it from the data directories
  string dataversion = Mantid::API::FileFinder::Instance().getFullPath(mapping);
  if (!dataversion.empty())
    return dataversion;

  // get a list of all proposal directories
  string instrument = wksp->getInstrument()->getName();
  Poco::File base("/SNS/" + instrument + "/");
  // try short instrument name
  if (!base.exists())
  {
    instrument = Kernel::ConfigService::Instance().getInstrument(instrument).shortName();
    base = Poco::File("/SNS/" + instrument + "/");
    if (!base.exists())
      return "";
  }
  vector<string> dirs; // poco won't let me reuse temp
  base.list(dirs);

  // check all of the proposals for the mapping file in the canonical place
  const string CAL("_CAL");
  const size_t CAL_LEN = CAL.length(); // cache to make life easier
  vector<string> files;
  for (size_t i = 0; i < dirs.size(); ++i) {
    if ( (dirs[i].length() > CAL_LEN)
         && (dirs[i].compare(dirs[i].length() - CAL.length(), CAL.length(), CAL) == 0) ) {
      if (Poco::File(base.path() + "/" + dirs[i] + "/calibrations/" + mapping).exists())
        files.push_back(base.path() + "/" + dirs[i] + "/calibrations/" + mapping);
    }
  }

  if (files.empty())
    return "";
  else if (files.size() == 1)
    return files[0];
  else // just assume that the last one is the right one, this should never be fired
    return *(files.rbegin());
}
//-----------------------------------------------------------------------------

/*
 * Constructor
 */
LoadEventPreNexus2::LoadEventPreNexus2() : Mantid::API::IDataFileChecker(), eventfile(NULL), max_events(0)
{
}

/*
 * Desctructor
 */
LoadEventPreNexus2::~LoadEventPreNexus2()
{
  delete this->eventfile;
}

/*
 * Sets documentation strings for this algorithm
 */
void LoadEventPreNexus2::initDocs()
{
  this->setWikiSummary("Loads SNS raw neutron event data format and stores it in a [[workspace]] ([[EventWorkspace]] class). ");
  this->setOptionalMessage("Loads SNS raw neutron event data format and stores it in a workspace (EventWorkspace class).");
}

//-----------------------------------------------------------------------------
/*
 *  Initialize the algorithm
 */
void LoadEventPreNexus2::init()
{
  // which files to use
  vector<string> eventExts;
  eventExts.push_back("_neutron_event.dat");
  eventExts.push_back("_neutron0_event.dat");
  eventExts.push_back("_neutron1_event.dat");
  eventExts.push_back("_neutron2_event.dat");
  eventExts.push_back("_neutron3_event.dat");
  declareProperty(new FileProperty(EVENT_PARAM, "", FileProperty::Load, eventExts),
      "The name of the neutron event file to read, including its full or relative path. In most cases, the file typically ends in neutron_event.dat (N.B. case sensitive if running on Linux).");
  vector<string> pulseExts;
  pulseExts.push_back("_pulseid.dat");
  pulseExts.push_back("_pulseid0.dat");
  pulseExts.push_back("_pulseid1.dat");
  pulseExts.push_back("_pulseid2.dat");
  pulseExts.push_back("_pulseid3.dat");
  declareProperty(new FileProperty(PULSEID_PARAM, "", FileProperty::OptionalLoad, pulseExts),
      "File containing the accelerator pulse information; the filename will be found automatically if not specified.");
  declareProperty(new FileProperty(MAP_PARAM, "", FileProperty::OptionalLoad, ".dat"),
      "File containing the pixel mapping (DAS pixels to pixel IDs) file (typically INSTRUMENT_TS_YYYY_MM_DD.dat). The filename will be found automatically if not specified.");

  // which pixels to load
  declareProperty(new ArrayProperty<int64_t>(PID_PARAM),
      "A list of individual spectra (pixel IDs) to read, specified as e.g. 10:20. Only used if set.");

  BoundedValidator<int> *mustBePositive = new BoundedValidator<int>();
  mustBePositive->setLower(1);
  declareProperty("ChunkNumber", EMPTY_INT(), mustBePositive,
      "If loading the file by sections ('chunks'), this is the section number of this execution of the algorithm.");
  declareProperty("TotalChunks", EMPTY_INT(), mustBePositive->clone(),
      "If loading the file by sections ('chunks'), this is the total number of sections.");
  // TotalChunks is only meaningful if ChunkNumber is set
  // Would be nice to be able to restrict ChunkNumber to be <= TotalChunks at validation
  setPropertySettings("TotalChunks", new VisibleWhenProperty(this, "ChunkNumber", IS_NOT_DEFAULT));

  std::vector<std::string> propOptions;
  propOptions.push_back("Auto");
  propOptions.push_back("Serial");
  propOptions.push_back("Parallel");
  declareProperty("UseParallelProcessing", "Auto",new ListValidator(propOptions),
      "Use multiple cores for loading the data?\n"
      "  Auto: Use serial loading for small data sets, parallel for large data sets.\n"
      "  Serial: Use a single core.\n"
      "  Parallel: Use all available cores.");

  // the output workspace name
  declareProperty(new WorkspaceProperty<IEventWorkspace>(OUT_PARAM,"",Direction::Output),
      "The name of the workspace that will be created, filled with the read-in data and stored in the [[Analysis Data Service]].");

  return;
}


/*
 * Execute the algorithm
 * 1. check all the inputs
 * 2. create an EventWorkspace object
 * 3. process events
 * 4. set out output
 */
void LoadEventPreNexus2::exec()
{
  // 1. Check!
  // a. Check 'chunk' properties are valid, if set
  const int chunks = getProperty("TotalChunks");
  if ( !isEmpty(chunks) && int(getProperty("ChunkNumber")) > chunks )
  {
    throw std::out_of_range("ChunkNumber cannot be larger than TotalChunks");
  }

  prog = new Progress(this,0.0,1.0,100);

  // b. what spectra (pixel ID's) to load
  this->spectra_list = this->getProperty(PID_PARAM);

  // c. the event file is needed in case the pulseid fileanme is empty
  string event_filename = this->getPropertyValue(EVENT_PARAM);
  string pulseid_filename = this->getPropertyValue(PULSEID_PARAM);
  bool throwError = true;
  if (pulseid_filename.empty())
  {
    pulseid_filename = generatePulseidName(event_filename);
    if (!pulseid_filename.empty())
    {
      if (Poco::File(pulseid_filename).exists())
      {
        this->g_log.information() << "Found pulseid file " << pulseid_filename << std::endl;
        throwError = false;
      }
      else
      {
        pulseid_filename = "";
      }

    }
  }

  // 2. Read input files
  prog->report("Loading Pulse ID file");
  this->readPulseidFile(pulseid_filename, throwError);
  prog->report("Loading Event File");
  this->openEventFile(event_filename);

  // 3. Create otuput Workspace
  prog->report("Creating output workspace");
  // a. prep the output workspace
  localWorkspace = EventWorkspace_sptr(new EventWorkspace());
  // b. Make sure to initialize. We can use dummy numbers for arguments, for event workspace it doesn't matter
  localWorkspace->initialize(1,1,1);
  // c. Set the units
  localWorkspace->getAxis(0)->unit() = UnitFactory::Instance().create("TOF");
  localWorkspace->setYUnit("Counts");
  // d. Set title
  localWorkspace->setTitle("Dummy Title");

  // 4. Properties:
  // a. Add the run_start property (Use the first pulse as the run_start time)
  if (this->num_pulses > 0)
  {
    // add the start of the run as a ISO8601 date/time string. The start = the first pulse.
    // (this is used in LoadInstrument to find the right instrument file to use).
    localWorkspace->mutableRun().addProperty("run_start", pulsetimes[0].toISO8601String(), true );
  }

  // b. determine the run number and add it to the run object
  localWorkspace->mutableRun().addProperty("run_number", getRunnumber(event_filename));

  // 5. Get the instrument!
  prog->report("Loading Instrument");
  this->runLoadInstrument(event_filename, localWorkspace);

  // 6. load the mapping file
  prog->report("Loading Mapping File");
  string mapping_filename = this->getPropertyValue(MAP_PARAM);
  if (mapping_filename.empty()) {
    mapping_filename = generateMappingfileName(localWorkspace);
    if (!mapping_filename.empty())
      this->g_log.information() << "Found mapping file \"" << mapping_filename << "\"" << std::endl;
  }
  this->loadPixelMap(mapping_filename);

  // 7. Process the events into pixels
  this->procEvents(localWorkspace);

  // set that the sort order on the event lists
  if (this->num_pulses > 0 && this->pulsetimesincreasing)
  {
    const int64_t numberOfSpectra = localWorkspace->getNumberHistograms();
    PARALLEL_FOR_NO_WSP_CHECK()
    for (int64_t i = 0; i < numberOfSpectra; i++)
    {
      PARALLEL_START_INTERUPT_REGION
      localWorkspace->getEventListPtr(i)->setSortOrder(DataObjects::PULSETIME_SORT);
      PARALLEL_END_INTERUPT_REGION
    }
    PARALLEL_CHECK_INTERUPT_REGION
  }

  // 8. Save output
  this->setProperty<IEventWorkspace_sptr>(OUT_PARAM, localWorkspace);

  // 9. Fast frequency sample environment data
  this->processImbedLogs();

  // -1. Cleanup
  delete prog;

  return;
} // exec()

/*
 * Process imbed logs (marked by bad pixel IDs)
 */
void LoadEventPreNexus2::processImbedLogs(){

  std::vector<size_t> numpixels;
  std::set<PixelType>::iterator pit;
  std::map<PixelType, size_t>::iterator mit;
  for (pit=this->wrongdetids.begin(); pit!=this->wrongdetids.end(); ++pit){
    // a. pixel ID -> index
    PixelType pid = *pit;
    mit = this->wrongdetidmap.find(pid);
    size_t mindex = mit->second;
    if (mindex > this->wrongdetid_pulsetimes.size())
    {
      g_log.error() << "Wrong Index " << mindex << " for Pixel " << pid << std::endl;
      throw std::invalid_argument("Wrong array index for pixel from map");
    }
    else
    {
      g_log.information() << "Processing imbed log marked by Pixel " << pid <<
          " with size = " << this->wrongdetid_pulsetimes[mindex].size() << std::endl;
    }

    std::stringstream ssname;
    ssname << "Pixel" << pid;
    std::string wsname = ssname.str();
    // b. Create output workspace2D
    // i. Output information in workspaces
    size_t nbins = this->wrongdetid_pulsetimes[mindex].size();
    if (this->wrongdetid_tofs[mindex].size() != nbins)
    {
      g_log.error() << "For index " << mindex << ", pulse time vector and TOF vector have different length" << std::endl;
      throw std::runtime_error("Fatal programming error");
    }

    // ii.Create workspace
    DataObjects::Workspace2D_sptr ws2d = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
        API::WorkspaceFactory::Instance().create("Workspace2D", 1, nbins, nbins));
    // iii. set data
    double y0 = 1.0;
    size_t numzerodiffs = 0;
    size_t numlessdiffs = 0;
    size_t index = 0;
    for (size_t k = 0; k < nbins; k ++){
      if (this->wrongdetid_abstimes[mindex][k] > this->wrongdetid_abstimes[mindex][k-1]){
        y0 = 1.0;
        ws2d->dataX(0)[index] = static_cast<double>(this->wrongdetid_abstimes[mindex][k]);
        ws2d->dataY(0)[index] = y0;

        if (ws2d->dataX(0)[index] < 1.0E-9){
          g_log.error() << "Bad cast @ point " << k << " = " << ws2d->dataX(0)[k] << " / " <<
              this->wrongdetid_abstimes[mindex][k] << std::endl;
        }
        index ++;

      } else if (this->wrongdetid_abstimes[mindex][k] == this->wrongdetid_abstimes[mindex][k-1]) {
        numzerodiffs ++;
      } else {
        numlessdiffs ++;
      }
    } // ENDFOR: k

    // c. Set up output Workspace2D
    std::stringstream ssws;
    ssws << "OutputPixel" << pid << "Workspace";
    std::string outputtitle = ssws.str();
    g_log.notice() << "Pixel " << pid << ": OutputWorkspace(" << outputtitle << ") <-- " << wsname << std::endl;
    this->declareProperty(new WorkspaceProperty<DataObjects::Workspace2D>(outputtitle, wsname, Direction::Output),
        "Set the output sample environment data record");
    this->setProperty(outputtitle, ws2d);
    // d. Add this to log
    this->addToWorkspaceLog(wsname, mindex);

    g_log.notice() << "For log @ " << wsname << ":  " << (nbins-numzerodiffs) << " events are individual" << std::endl;
    g_log.notice() << "For log @ " << wsname << ":  " << numzerodiffs << " events have same pulse time" << std::endl;
    g_log.notice() << "For log @ " << wsname << ":  " << numlessdiffs << " events are earlier than previous one" << std::endl;

    g_log.notice() << "End of Processing This Log " << std::endl << std::endl;

  } //ENDFOR pit


}


/*
 * Add absolute time series to log
 * @params
 * - mindex:  index of the the series in the list
 */
void LoadEventPreNexus2::addToWorkspaceLog(std::string logtitle, size_t mindex){

  // 1. Set data structure and constants
  size_t nbins = this->wrongdetid_pulsetimes[mindex].size();
  TimeSeriesProperty<double>* property = new TimeSeriesProperty<double>(logtitle);

  // 2. Set data
  // double y0 = 1.0;
  // int msize = property->size();
  for (size_t k = 0; k < nbins; k ++){
    // a) Add log
    property->addValue(this->wrongdetid_pulsetimes[mindex][k], this->wrongdetid_tofs[mindex][k]);

    /* Diabled

    if (this->wrongdetid_abstimes[mindex][k] > this->wrongdetid_abstimes[mindex][k-1]){
      property->addValue(Kernel::DateAndTime(this->wrongdetid_abstimes[mindex][k]), y0);
    }

    // b) Figure whether it is a good add or not
    if (property->size() <= msize){
      g_log.error() << "Cannot add entry " << k << ": Time = " <<
          this->wrongdetid_abstimes[mindex][k] << ", ";
      if (k > 0){
        g_log.error() << " Previous time = " << this->wrongdetid_abstimes[mindex][k-1] << std::endl;
        g_log.error() << " This is the first entry to add to log!" << std::endl;
    */
    // msize = property->size();
    // y0 = 1.0 - y0;
  this->localWorkspace->mutableRun().addProperty(property, false);

  g_log.information() << "Size of Property " << property->name() << " = " << property->size() <<
      " vs Original Log Size = " << nbins << std::endl;
 * Some output for debug purpose --- Disabled
void LoadEventPreNexus2::debugOutput(bool doit, size_t mindex){

  if (!doit){
    return;
  }

  size_t nbins = this->wrongdetid_abstimes[mindex].size();
  size_t maxcounts = 3;
  size_t counts = 0;
  std::set<int64_t> deltas;
  // i.  do statistic
  size_t numzerodeltat = 0;
  size_t numfreq = 0;
  int64_t sumdeltat = 0;
  for (size_t k = 1; k < nbins; k ++){
    int64_t deltat = this->wrongdetid_abstimes[mindex][k]-this->wrongdetid_abstimes[mindex][k-1];
    deltas.insert(deltat);
    if (deltat == 0){
      numzerodeltat ++;
      if (counts < maxcounts)
      {
        g_log.error() << "Delta T = 0:  T = " << this->wrongdetid_abstimes[mindex][k] << std::endl;
        counts ++;
      }
    } else {
      numfreq ++;
      sumdeltat += deltat;
    }
  }
  double frequency = 1.0/(static_cast<double>(sumdeltat)/static_cast<double>(numfreq)*1.0E-9);
  size_t numpt = this->wrongdetid_abstimes[mindex].size();
  g_log.notice() << "Frequency = " << frequency << "  Number of pixels with zero Delta T = " << numzerodeltat << std::endl;
  int64_t t0 = this->wrongdetid_abstimes[mindex][0];
  int64_t tf = this->wrongdetid_abstimes[mindex][numpt-1];
  g_log.notice() << "T0 = " << t0 << ", Tf = " << tf << "  Delta T = " << tf-t0 << " ns"<< std::endl;
  g_log.notice() << "Theoretical number of events = " << static_cast<double>(tf-t0)*frequency*1.0E-9 << std::endl;
  g_log.notice() << "Number of various delta T = " << deltas.size() << std::endl;
  std::set<int64_t>::iterator dtit;
  for (dtit=deltas.begin(); dtit!=deltas.end(); ++dtit){
    g_log.notice() << *dtit <<", ";
  }
  g_log.notice() << std::endl;

  return;
}

/**
 * Returns the name of the property to be considered as the Filename for Load
 * @returns A character string containing the file property's name
 */
const char * LoadEventPreNexus2::filePropertyName() const
{
  return EVENT_PARAM.c_str();
}

/**
 * Do a quick file type check by looking at the first 100 bytes of the file
 *  @param filePath :: path of the file including name.
 *  @param nread :: no.of bytes read
 *  @param header :: The first 100 bytes of the file as a union
 *  @return true if the given file is of type which can be loaded by this algorithm
 */
bool LoadEventPreNexus2::quickFileCheck(const std::string& filePath,size_t,const file_header&)
{
  std::string ext = extension(filePath);
  return (ext.rfind("dat") != std::string::npos);
}

/**
 * Checks the file by opening it and reading few lines
 *  @param filePath :: name of the file inluding its path
 *  @return an integer value how much this algorithm can load the file
 */
int LoadEventPreNexus2::fileCheck(const std::string& filePath)
{
  int confidence(0);
  try
  {
    // If this looks like a binary file where the exact file length is a multiple
    // of the DasEvent struct then we're probably okay.
    // NOTE: Putting this on the stack gives a segfault on Windows when for some reason
    // the BinaryFile destructor is called twice! I'm sure there is something I don't understand there
    // but heap allocation seems to work so go for that.
    BinaryFile<DasEvent> *event_file = new BinaryFile<DasEvent>(filePath);
    confidence = 80;
    delete event_file;
  }
  catch(std::runtime_error &)
  {
    // This BinaryFile constructor throws if the file does not contain an
    // exact multiple of the sizeof(DasEvent) objects.
  }
  return confidence;
}



//-----------------------------------------------------------------------------
/** Load the instrument geometry File
 *  @param eventfilename :: Used to pick the instrument.
 *  @param localWorkspace :: MatrixWorkspace in which to put the instrument geometry
 */
void LoadEventPreNexus2::runLoadInstrument(const std::string &eventfilename, MatrixWorkspace_sptr localWorkspace)
{
  // determine the instrument parameter file
  string instrument = Poco::Path(eventfilename).getFileName();
  size_t pos = instrument.rfind("_"); // get rid of 'event.dat'
  pos = instrument.rfind("_", pos-1); // get rid of 'neutron'
  pos = instrument.rfind("_", pos-1); // get rid of the run number
  instrument = instrument.substr(0, pos);

  // do the actual work
  IAlgorithm_sptr loadInst= createSubAlgorithm("LoadInstrument");

  // Now execute the sub-algorithm. Catch and log any error, but don't stop.
  loadInst->setPropertyValue("InstrumentName", instrument);
  loadInst->setProperty<MatrixWorkspace_sptr> ("Workspace", localWorkspace);
  loadInst->setProperty("RewriteSpectraMap", false);
  loadInst->executeAsSubAlg();

  // Populate the instrument parameters in this workspace - this works around a bug
  localWorkspace->populateInstrumentParameters();
}



//-----------------------------------------------------------------------------
/** Turn a pixel id into a "corrected" pixelid and period.
 *
 */
inline void LoadEventPreNexus2::fixPixelId(PixelType &pixel, uint32_t &period) const
{
  if (!this->using_mapping_file) { // nothing to do here
    period = 0;
    return;
  }

  PixelType unmapped_pid = pixel % this->numpixel;
  period = (pixel - unmapped_pid) / this->numpixel;
  pixel = this->pixelmap[unmapped_pid];
}

//-----------------------------------------------------------------------------
/** Process the event file properly.
 * @param workspace :: EventWorkspace to write to.
 */
void LoadEventPreNexus2::procEvents(DataObjects::EventWorkspace_sptr & workspace)
{
  this->num_error_events = 0;
  this->num_good_events = 0;
  this->num_ignored_events = 0;
  this->num_bad_events = 0;
  this->num_wrongdetid_events = 0;

  //Default values in the case of no parallel
  size_t loadBlockSize = Mantid::Kernel::DEFAULT_BLOCK_SIZE * 2;

  shortest_tof = static_cast<double>(MAX_TOF_UINT32) * TOF_CONVERSION;
  longest_tof = 0.;

  //Initialize progress reporting.
  size_t numBlocks = (max_events + loadBlockSize - 1) / loadBlockSize;

  // We want to pad out empty pixels.
  detid2det_map detector_map;
  workspace->getInstrument()->getDetectors(detector_map);

  // -------------- Determine processing mode
  std::string procMode = getProperty("UseParallelProcessing");
  if (procMode == "Serial")
    parallelProcessing = false;
  else if (procMode == "Parallel")
    parallelProcessing = true;
  else
  {
    // Automatic determination. Loading serially (for me) is about 3 million events per second,
    // (which is sped up by ~ x 3 with parallel processing, say 10 million per second, e.g. 7 million events more per seconds).
    // compared to a setup time/merging time of about 10 seconds per million detectors.
    double setUpTime = double(detector_map.size()) * 10e-6;
    parallelProcessing = ((double(max_events) / 7e6) > setUpTime);
    g_log.debug() << (parallelProcessing ? "Using" : "Not using") << " parallel processing." << std::endl;
  }

  // determine maximum pixel id
  detid2det_map::iterator it;
  detid_max = 0; // seems like a safe lower bound
  for (it = detector_map.begin(); it != detector_map.end(); it++)
    if (it->first > detid_max)
      detid_max = it->first;

  // Pad all the pixels
  prog->report("Padding Pixels");
  this->pixel_to_wkspindex.reserve(detid_max+1); //starting at zero up to and including detid_max
  // Set to zero
  this->pixel_to_wkspindex.assign(detid_max+1, 0);
  size_t workspaceIndex = 0;
  for (it = detector_map.begin(); it != detector_map.end(); it++)
  {
    if (!it->second->isMonitor())
    {
      this->pixel_to_wkspindex[it->first] = workspaceIndex;
      EventList & spec = workspace->getOrAddEventList(workspaceIndex);
      spec.addDetectorID(it->first);
      // Start the spectrum number at 1
      spec.setSpectrumNo(specid_t(workspaceIndex+1));
      workspaceIndex += 1;
    }
  }
  workspace->doneAddingEventLists();

  //For slight speed up
  loadOnlySomeSpectra = (this->spectra_list.size() > 0);

  //Turn the spectra list into a map, for speed of access
  for (std::vector<int64_t>::iterator it = spectra_list.begin(); it != spectra_list.end(); it++)
    spectraLoadMap[*it] = true;

  CPUTimer tim;

  // --------------- Create the partial workspaces ------------------------------------------
  // Vector of partial workspaces, for parallel processing.
  std::vector<EventWorkspace_sptr> partWorkspaces;
  std::vector<DasEvent *> buffers;

  /// Pointer to the vector of events
  typedef std::vector<TofEvent> * EventVector_pt;
  /// Bare array of arrays of pointers to the EventVectors
  EventVector_pt ** eventVectors;

  /// How many threads will we use?
  size_t numThreads = 1;
  if (parallelProcessing)
    numThreads = size_t(PARALLEL_GET_MAX_THREADS);


  partWorkspaces.resize(numThreads);
  buffers.resize(numThreads);
  eventVectors = new EventVector_pt *[numThreads];

  // cppcheck-suppress syntaxError
  PRAGMA_OMP( parallel for if (parallelProcessing) )
  for (int i=0; i < int(numThreads); i++)
  {
    // This is the partial workspace we are about to create (if in parallel)
    EventWorkspace_sptr partWS;
    if (parallelProcessing)
    {
      prog->report("Creating Partial Workspace");
      // Create a partial workspace
      partWS = EventWorkspace_sptr(new EventWorkspace());
      //Make sure to initialize.
      partWS->initialize(1,1,1);
      // Copy all the spectra numbers and stuff (no actual events to copy though).
      partWS->copyDataFrom(*workspace);
      // Push it in the array
      partWorkspaces[i] = partWS;
    }
    else
      partWS = workspace;

    //Allocate the buffers
    buffers[i] = new DasEvent[loadBlockSize];

    // For each partial workspace, make an array where index = detector ID and value = pointer to the events vector
    eventVectors[i] = new EventVector_pt[detid_max+1];
    EventVector_pt * theseEventVectors = eventVectors[i];
    for (detid_t j=0; j<detid_max+1; j++)
    {
      size_t wi = pixel_to_wkspindex[j];
      // Save a POINTER to the vector<tofEvent>
      theseEventVectors[j] = &partWS->getEventList(wi).getEvents();
    }
  }

  g_log.debug() << tim << " to create " << partWorkspaces.size() << " workspaces for parallel loading." << std::endl;


  prog->resetNumSteps( numBlocks, 0.1, 0.8);

  // ---------------------------------- LOAD THE DATA --------------------------
  PRAGMA_OMP( parallel for schedule(dynamic, 1) if (parallelProcessing) )
  for (int blockNum=0; blockNum<int(numBlocks); blockNum++)
  {
    PARALLEL_START_INTERUPT_REGION

    // Find the workspace for this particular thread
    EventWorkspace_sptr ws;
    size_t threadNum = 0;
    if (parallelProcessing)
    {
      threadNum = PARALLEL_THREAD_NUMBER;
      ws = partWorkspaces[threadNum];
    }
    else
      ws = workspace;

    // Get the buffer (for this thread)
    DasEvent * event_buffer = buffers[threadNum];

    // Get the speeding-up array of vector<tofEvent> where index = detid.
    EventVector_pt * theseEventVectors = eventVectors[threadNum];

    // Where to start in the file?
    size_t fileOffset = first_event + (loadBlockSize * blockNum);
    // May need to reduce size of last (or only) block
    size_t current_event_buffer_size =
        ( blockNum == int(numBlocks-1) ) ? ( max_events - (numBlocks-1)*loadBlockSize ) : loadBlockSize;

    // Load this chunk of event data (critical block)
    PARALLEL_CRITICAL( LoadEventPreNexus2_fileAccess )
    {
      current_event_buffer_size = eventfile->loadBlockAt(event_buffer, fileOffset, current_event_buffer_size);
    }

    // This processes the events. Can be done in parallel!
    procEventsLinear(ws, theseEventVectors, event_buffer, current_event_buffer_size, fileOffset);

    // Report progress
    prog->report("Load Event PreNeXus");

    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  g_log.debug() << tim << " to load the data." << std::endl;


  // ---------------------------------- MERGE WORKSPACES BACK TOGETHER --------------------------
  if (parallelProcessing)
  {
    PARALLEL_START_INTERUPT_REGION
    prog->resetNumSteps( workspace->getNumberHistograms(), 0.8, 0.95);

    size_t memoryCleared = 0;
    MemoryManager::Instance().releaseFreeMemory();

    // Merge all workspaces, index by index.
    PARALLEL_FOR_NO_WSP_CHECK()
    for (int iwi=0; iwi<int(workspace->getNumberHistograms()); iwi++)
    {
      size_t wi = size_t(iwi);

      // The output event list.
      EventList & el = workspace->getEventList(wi);
      el.clear(false);

      // How many events will it have?
      size_t numEvents = 0;
      for (size_t i=0; i<numThreads; i++)
        numEvents += partWorkspaces[i]->getEventList(wi).getNumberEvents();
      // This will avoid too much copying.
      el.reserve(numEvents);

      // Now merge the event lists
      for (size_t i=0; i<numThreads; i++)
      {
        EventList & partEl = partWorkspaces[i]->getEventList(wi);
        el += partEl.getEvents();
        // Free up memory as you go along.
        partEl.clear(false);
      }

      // With TCMalloc, release memory when you accumulate enough to make sense
      PARALLEL_CRITICAL( LoadEventPreNexus2_trackMemory )
      {
        memoryCleared += numEvents;
        if (memoryCleared > 10000000) // ten million events = about 160 MB
        {
          MemoryManager::Instance().releaseFreeMemory();
          memoryCleared = 0;
        }
      }
      prog->report("Merging Workspaces");
    }
    // Final memory release
    MemoryManager::Instance().releaseFreeMemory();
    g_log.debug() << tim << " to merge workspaces together." << std::endl;
    PARALLEL_END_INTERUPT_REGION
  }
  PARALLEL_CHECK_INTERUPT_REGION

  // Delete the buffers for each thread.
  for (size_t i=0; i<numThreads; i++)
  {
    delete [] buffers[i];
    delete [] eventVectors[i];
  }
  delete [] eventVectors;
  //delete [] pulsetimes;

  prog->resetNumSteps( 3, 0.94, 1.00);

  //finalize loading
  prog->report("Deleting Empty Lists");
  if(loadOnlySomeSpectra)
    workspace->deleteEmptyLists();

  prog->report("Setting proton charge");
  this->setProtonCharge(workspace);
  g_log.debug() << tim << " to set the proton charge log." << std::endl;

  //Make sure the MRU is cleared
  workspace->clearMRU();

  //Now, create a default X-vector for histogramming, with just 2 bins.
  Kernel::cow_ptr<MantidVec> axis;
  MantidVec& xRef = axis.access();
  xRef.resize(2);
  xRef[0] = shortest_tof - 1; //Just to make sure the bins hold it all
  xRef[1] = longest_tof + 1;
  workspace->setAllX(axis);
  this->pixel_to_wkspindex.clear();

  /* Disabled! Final process on wrong detector id events
  for (size_t vi = 0; vi < this->wrongdetid_abstimes.size(); vi ++){
    std::sort(this->wrongdetid_abstimes[vi].begin(), this->wrongdetid_abstimes[vi].end());
  }

  // Final message output
  g_log.notice() << "Read " << this->num_good_events << " events + "
      << this->num_error_events << " errors"
      << ". Shortest TOF: " << shortest_tof << " microsec; longest TOF: "
      << longest_tof << " microsec." << std::endl;

  g_log.notice() << "Bad Events = " << this->num_bad_events << "  Events of Wrong Detector = " << this->num_wrongdetid_events << std::endl;
  g_log.notice() << "Number of Wrong Detector IDs = " << this->wrongdetids.size() << std::endl;
  std::set<PixelType>::iterator wit;
  for (wit=this->wrongdetids.begin(); wit!=this->wrongdetids.end(); ++wit){
    g_log.notice() << "Wrong Detector ID : " << *wit << std::endl;
  }
  std::map<PixelType, size_t>::iterator git;
  for (git = this->wrongdetidmap.begin(); git != this->wrongdetidmap.end(); ++git){
    PixelType tmpid = git->first;
    size_t vindex = git->second;
    g_log.notice() << "Pixel " << tmpid << ":  Total number of events = " << this->wrongdetid_pulsetimes[vindex].size() << std::endl;
  }

  return;
} // End of procEvents

//-----------------------------------------------------------------------------
/** Linear-version of the procedure to process the event file properly.
 * @param workspace :: EventWorkspace to write to.
 * @param arrayOfVectors :: For speed up: this is an array, of size detid_max+1, where the
 *        index is a pixel ID, and the value is a pointer to the vector<tofEvent> in the given EventList.
 * @param event_buffer :: The buffer containing the DAS events
 * @param current_event_buffer_size :: The length of the given DAS buffer
 * @param fileOffset :: Value for an offset into the binary file
 */
void LoadEventPreNexus2::procEventsLinear(DataObjects::EventWorkspace_sptr & /*workspace*/,
    std::vector<TofEvent> ** arrayOfVectors, DasEvent * event_buffer,
    size_t current_event_buffer_size, size_t fileOffset)
{

  //Starting pulse time
  DateAndTime pulsetime;
  int64_t pulse_i = 0;
  int64_t numPulses = static_cast<int64_t>(num_pulses);
  if (event_indices.size() < num_pulses)
  {