Newer
Older
Laurent Chapon
committed
#include <stdexcept>
#include <cmath>
#include "MantidKernel/VectorHelper.h"
Janik Zikovsky
committed
#include <vector>
Gigg, Martyn Anthony
committed
#include <numeric>
Steve Williams
committed
#include <limits>
#include <iostream>
Janik Zikovsky
committed
#include <sstream>
#include <boost/algorithm/string.hpp>
Laurent Chapon
committed
Peterson, Peter
committed
using std::size_t;
namespace Mantid
{
namespace Kernel
{
namespace VectorHelper
{
Russell Taylor
committed
/** Creates a new output X array given a 'standard' set of rebinning parameters.
* @param[in] params Rebin parameters input [x_1, delta_1,x_2, ... ,x_n-1,delta_n-1,x_n]
* @param[out] xnew The newly created axis resulting from the input params
* @return The number of bin boundaries in the new axis
**/
int DLLExport createAxisFromRebinParams(const std::vector<double>& params, std::vector<double>& xnew)
{
Russell Taylor
committed
double xs;
Russell Taylor
committed
int ibound(2), istep(1), inew(1);
int ibounds = static_cast<int>(params.size()); //highest index in params array containing a bin boundary
Russell Taylor
committed
int isteps = ibounds - 1; // highest index in params array containing a step
xnew.clear();
Russell Taylor
committed
double xcurr = params[0];
Russell Taylor
committed
xnew.push_back(xcurr);
while ((ibound <= ibounds) && (istep <= isteps))
{
// if step is negative then it is logarithmic step
if (params[istep] >= 0.0)
xs = params[istep];
else
xs = xcurr * fabs(params[istep]);
if (fabs(xs) == 0.0)
{
//Someone gave a 0-sized step! What a dope.
throw std::runtime_error("Invalid binning step provided! Can't creating binning axis.");
}
Russell Taylor
committed
/* continue stepping unless we get to almost where we want to */
Russell Taylor
committed
// Ensure that last bin in a range is not smaller than 25% of previous bin
if ( (xcurr + xs*1.25) <= params[ibound] )
Russell Taylor
committed
{
xcurr += xs;
}
else
{
xcurr = params[ibound];
ibound += 2;
istep += 2;
}
xnew.push_back(xcurr);
inew++;
// if (xnew.size() > 10000000)
// {
// //Max out at 1 million bins
// throw std::runtime_error("Over ten million binning steps created. Exiting to avoid infinite loops.");
// return inew;
// }
Russell Taylor
committed
}
return inew;
}
/** Rebins data according to a new output X array
*
Russell Taylor
committed
* @param[in] xold Old X array of data.
* @param[in] yold Old Y array of data. Must be 1 element shorter than xold.
* @param[in] eold Old error array of data. Must be same length as yold.
* @param[in] xnew X array of data to rebin to.
* @param[out] ynew Rebinned data. Must be 1 element shorter than xnew.
* @param[out] enew Rebinned errors. Must be same length as ynew.
* @param[in] distribution Flag defining if distribution data (true) or not (false).
* @param[in] addition If true, rebinned values are added to the existing ynew/enew vectors.
* NOTE THAT, IN THIS CASE THE RESULTING enew WILL BE THE SQUARED ERRORS
* AND THE ynew WILL NOT HAVE THE BIN WIDTH DIVISION PUT IN!
Russell Taylor
committed
* @throw runtime_error Thrown if algorithm cannot execute.
* @throw invalid_argument Thrown if input to function is incorrect.
Laurent Chapon
committed
void rebin(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
Russell Taylor
committed
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew,
bool distribution, bool addition)
Laurent Chapon
committed
{
Russell Taylor
committed
// Make sure y and e vectors are of correct sizes
const size_t size_xold = xold.size();
if (size_xold != (yold.size() + 1) || size_xold != (eold.size() + 1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
const size_t size_xnew = xnew.size();
if (size_xnew != (ynew.size() + 1) || size_xnew != (enew.size() + 1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
Laurent Chapon
committed
size_t size_yold = yold.size();
size_t size_ynew = ynew.size();
Russell Taylor
committed
if (!addition)
{
// Make sure ynew & enew contain zeroes
std::fill(ynew.begin(), ynew.end(), 0.0);
std::fill(enew.begin(), enew.end(), 0.0);
Russell Taylor
committed
}
Laurent Chapon
committed
Russell Taylor
committed
size_t iold = 0, inew = 0;
double xo_low, xo_high, xn_low, xn_high, delta(0.0), width;
Laurent Chapon
committed
while ((inew < size_ynew) && (iold < size_yold))
{
xo_low = xold[iold];
xo_high = xold[iold + 1];
xn_low = xnew[inew];
xn_high = xnew[inew + 1];
if (xn_high <= xo_low)
inew++; /* old and new bins do not overlap */
else if (xo_high <= xn_low)
iold++; /* old and new bins do not overlap */
else
{
// delta is the overlap of the bins on the x axis
//delta = std::min(xo_high, xn_high) - std::max(xo_low, xn_low);
delta = xo_high < xn_high ? xo_high : xn_high;
delta -= xo_low > xn_low ? xo_low : xn_low;
width = xo_high - xo_low;
if ((delta <= 0.0) || (width <= 0.0))
Laurent Chapon
committed
{
Russell Taylor
committed
// No need to throw here, just return (ynew & enew will be empty)
//throw std::runtime_error("rebin: no bin overlap detected");
return;
Laurent Chapon
committed
}
/*
* yoldp contains counts/unit time, ynew contains counts
* enew contains counts**2
* ynew has been filled with zeros on creation
*/
if (distribution)
Laurent Chapon
committed
{
// yold/eold data is distribution
ynew[inew] += yold[iold] * delta;
// this error is calculated in the same way as opengenie
enew[inew] += eold[iold] * eold[iold] * delta * width;
Laurent Chapon
committed
}
else
{
// yold/eold data is not distribution
// do implicit division of yold by width in summing.... avoiding the need for temporary yold array
// this method is ~7% faster and uses less memory
ynew[inew] += yold[iold] * delta / width; //yold=yold/width
// eold=eold/width, so divide by width**2 compared with distribution calculation
enew[inew] += eold[iold] * eold[iold] * delta / width;
}
if (xn_high > xo_high)
{
iold++;
}
else
{
inew++;
Laurent Chapon
committed
}
}
}
Russell Taylor
committed
if (!addition) // If using the addition facility, have to do bin width and sqrt errors externally
Russell Taylor
committed
if (distribution)
Russell Taylor
committed
/*
* convert back to counts/unit time
*/
Peterson, Peter
committed
for (size_t i = 0; i < size_ynew; ++i)
{
{
Russell Taylor
committed
width = xnew[i + 1] - xnew[i];
if (width != 0.0)
{
ynew[i] /= width;
enew[i] = sqrt(enew[i]) / width;
}
else
{
throw std::invalid_argument("rebin: Invalid output X array, contains consecutive X values");
}
}
}
}
Russell Taylor
committed
else
{
// non-distribution, just square root final error value
typedef double (*pf)(double);
pf uf = std::sqrt;
std::transform(enew.begin(), enew.end(), enew.begin(), uf);
}
Russell Taylor
committed
return; //without problems
}
Janik Zikovsky
committed
//-------------------------------------------------------------------------------------------------
/** Rebins histogram data according to a new output X array. Should be faster than previous one.
* @author Laurent Chapon 10/03/2009
*
* @param[in] xold Old X array of data.
* @param[in] yold Old Y array of data. Must be 1 element shorter than xold.
* @param[in] eold Old error array of data. Must be same length as yold.
* @param[in] xnew X array of data to rebin to.
* @param[out] ynew Rebinned data. Must be 1 element shorter than xnew.
* @param[out] enew Rebinned errors. Must be same length as ynew.
* @param[in] addition If true, rebinned values are added to the existing ynew/enew vectors.
Russell Taylor
committed
* NOTE THAT, IN THIS CASE THE RESULTING enew WILL BE THE SQUARED ERRORS!
Russell Taylor
committed
* @throw runtime_error Thrown if vector sizes are inconsistent
**/
void rebinHistogram(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew,bool addition)
{
// Make sure y and e vectors are of correct sizes
Russell Taylor
committed
const size_t size_yold = yold.size();
if ( xold.size() != (size_yold+ 1) || size_yold != eold.size() )
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
const size_t size_ynew = ynew.size();
if ( xnew.size() != (size_ynew + 1) || size_ynew != enew.size() )
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
// If not adding to existing vectors, make sure ynew & enew contain zeroes
Russell Taylor
committed
ynew.assign(size_ynew, 0.0);
enew.assign(size_ynew, 0.0);
Russell Taylor
committed
// Find the starting points to avoid wasting time processing irrelevant bins
size_t iold = 0, inew = 0; // iold/inew is the bin number under consideration (counting from 1, so index+1)
if (xnew.front() > xold.front())
Russell Taylor
committed
std::vector<double>::const_iterator it = std::upper_bound(xold.begin(), xold.end(), xnew.front());
Russell Taylor
committed
if (it == xold.end()) return;
// throw std::runtime_error("No overlap: max of X-old < min of X-new");
Russell Taylor
committed
iold = std::distance(xold.begin(), it) - 1; // Old bin to start at (counting from 0)
Russell Taylor
committed
std::vector<double>::const_iterator it = std::upper_bound(xnew.begin(), xnew.end(), xold.front());
Russell Taylor
committed
if (it == xnew.end()) return;
// throw std::runtime_error("No overlap: max of X-new < min of X-old");
Russell Taylor
committed
inew = std::distance(xnew.begin(), it) - 1; // New bin to start at (counting from 0)
Russell Taylor
committed
double frac, fracE;
double oneOverWidth, overlap;
double temp, xold_of_iold, xold_of_iold_p_1;
Russell Taylor
committed
//loop over old vector from starting point calculated above
for ( ; iold<size_yold; ++iold )
xold_of_iold_p_1 = xold[iold+1]; // cache for speed
Russell Taylor
committed
// If current old bin is fully enclosed by new bin, just unload the counts
if ( xold_of_iold_p_1 <= xnew[inew+1] )
Russell Taylor
committed
ynew[inew] += yold[iold];
temp = eold[iold];
enew[inew] += temp*temp;
Russell Taylor
committed
// If the upper bin boundaries were equal, then increment inew
if ( xold_of_iold_p_1 == xnew[inew+1] ) inew++;
Russell Taylor
committed
else
xold_of_iold = xold[iold]; // cache for speed
Russell Taylor
committed
// This is the counts per unit X in current old bin
oneOverWidth = 1. / (xold_of_iold_p_1 - xold_of_iold); // cache 1/width to speed things up
frac = yold[iold] * oneOverWidth;
temp = eold[iold];
fracE = temp * temp * oneOverWidth;
Russell Taylor
committed
// Now loop over bins in new vector overlapping with current 'old' bin
while ( inew<size_ynew && xnew[inew+1] <= xold_of_iold_p_1 )
Russell Taylor
committed
{
overlap = xnew[inew+1] - std::max(xnew[inew],xold_of_iold);
Russell Taylor
committed
ynew[inew] += frac * overlap;
enew[inew] += fracE * overlap;
++inew;
}
// Stop if at end of new X range
if (inew==size_ynew) break;
// Unload the rest of the current old bin into the current new bin
overlap = xold_of_iold_p_1 - xnew[inew];
Russell Taylor
committed
ynew[inew] += frac * overlap;
enew[inew] += fracE * overlap;
Russell Taylor
committed
} // loop over old bins
Russell Taylor
committed
if (!addition) //If this used to add at the same time then not necessary (should be done externally)
//Now take the root-square of the errors
typedef double (*pf)(double);
pf uf = std::sqrt;
std::transform(enew.begin(), enew.end(), enew.begin(), uf);
}
Russell Taylor
committed
return;
}
Janik Zikovsky
committed
//-------------------------------------------------------------------------------------------------
Gigg, Martyn Anthony
committed
/**
* Convert the given set of bin boundaries into bin centre values
Janik Zikovsky
committed
* @param bin_edges :: A vector of values specifying bin boundaries
* @param bin_centres :: An output vector of bin centre values.
Gigg, Martyn Anthony
committed
*/
void convertToBinCentre(const std::vector<double> & bin_edges, std::vector<double> & bin_centres)
{
const std::vector<double>::size_type npoints = bin_edges.size();
if( bin_centres.size() != npoints )
{
bin_centres.resize(npoints);
}
// The custom binary function modifies the behaviour of the algorithm to compute the average of
// two adjacent bin boundaries
std::adjacent_difference(bin_edges.begin(), bin_edges.end(), bin_centres.begin(), SimpleAverage<double>());
// The algorithm copies the first element of the input to the first element of the output so we need to
// remove the first element of the output
bin_centres.erase(bin_centres.begin());
}
Janik Zikovsky
committed
//-------------------------------------------------------------------------------------------------
Steve Williams
committed
/** Assess if all the values in the vector are equal or if there are some different values
* @param[in] arra the vector to examine
*/
Steve Williams
committed
bool isConstantValue(const std::vector<double> &arra)
Steve Williams
committed
{
//make comparisons with the first value
std::vector<double>::const_iterator i = arra.begin();
if ( i == arra.end() )
{//empty array
return true;
}
Steve Williams
committed
double val(*i);
Steve Williams
committed
//this loop can be entered! NAN values make comparisons difficult because nan != nan, deal with these first
Steve Williams
committed
for ( ; val != val ; )
Steve Williams
committed
{
++i;
if ( i == arra.end() )
{
//all values are contant (NAN)
return true;
}
val = *i;
}
for ( ; i != arra.end() ; ++i )
{
if ( *i != val )
{
return false;
}
}
//no different value was found and so every must be equal to c
return true;
}
Janik Zikovsky
committed
//-------------------------------------------------------------------------------------------------
/** Take a string of comma or space-separated values, and splits it into
* a vector of doubles.
Janik Zikovsky
committed
* @param listString :: a string like "0.0 1.2" or "2.4, 5.67, 88"
Janik Zikovsky
committed
* @return a vector of doubles
* @throw an error if there was a string that could not convert to a double.
*/
Janik Zikovsky
committed
template<typename NumT>
std::vector<NumT> splitStringIntoVector(std::string listString)
Janik Zikovsky
committed
{
//Split the string and turn it into a vector.
Janik Zikovsky
committed
std::vector<NumT> values;
typedef std::vector<std::string> split_vector_type;
split_vector_type strs;
Janik Zikovsky
committed
boost::split(strs, listString, boost::is_any_of(", "));
for (std::vector<std::string>::iterator it= strs.begin(); it != strs.end(); it++)
{
Janik Zikovsky
committed
if (it->size() > 0)
{
// String not empty
std::stringstream oneNumber(*it);
NumT num;
oneNumber >> num;
values.push_back(num);
}
Janik Zikovsky
committed
}
return values;
}
//-------------------------------------------------------------------------------------------------
/** Return the index into a vector of bin boundaries for a particular X value.
* The index returned is the one left edge of the bin.
* If beyond the range of the vector, it will return either 0 or bins.size()-2.
*/
int getBinIndex(std::vector<double>& bins, const double X )
{
int index = 0;
//If X is below the min value
if (X < bins[0])
return 0;
int nBins = static_cast<int>(bins.size());
Janik Zikovsky
committed
for (index = 0; index < nBins-1; index++)
{
if ((X >= bins[index]) && (X < bins[index+1]))
return index;
}
//If X is beyond the max value
return index;
}
Gigg, Martyn Anthony
committed
//-------------------------------------------------------------------------------------------------
/**
* Linearly interpolates between Y points separated by the given step size.
Janik Zikovsky
committed
* @param x :: The X array
* @param y :: The Y array with end points and values at stepSize intervals calculated
* @param stepSize :: The distance between each pre-calculated point
Gigg, Martyn Anthony
committed
*/
void linearlyInterpolateY(const std::vector<double> & x, std::vector<double> & y, const double stepSize)
{
int specSize = static_cast<int>(y.size());
int xSize = static_cast<int>(x.size());
bool isHistogram(xSize == specSize + 1);
int step(static_cast<int>(stepSize)), index2(0);
Gigg, Martyn Anthony
committed
double x1 = 0, x2 = 0, y1 = 0, y2 = 0, xp = 0, overgap = 0;
for (int i = 0; i < specSize - 1; ++i) // Last point has been calculated
Gigg, Martyn Anthony
committed
{
if(step == stepSize) //Point numerically integrated, does not need interpolation
{
x1 = (isHistogram ? (0.5 * (x[i] + x[i + 1])) : x[i]);
index2 = static_cast<int>(((i + stepSize) >= specSize ? specSize - 1 : (i + stepSize)));
Gigg, Martyn Anthony
committed
x2 = (isHistogram ? (0.5 * (x[index2] + x[index2 + 1])) : x[index2]);
overgap = 1.0 / (x2 - x1);
y1 = y[i];
y2 = y[index2];
step = 1;
continue;
}
xp = (isHistogram ? (0.5 * (x[i] + x[i + 1])) : x[i]);
// Linear interpolation
y[i] = (xp - x1) * y2 + (x2 - xp) * y1;
y[i] *= overgap;
step++;
}
}
Janik Zikovsky
committed
/// Declare all version of this
template DLLExport std::vector<int32_t> splitStringIntoVector<int32_t>(std::string listString);
template DLLExport std::vector<int64_t> splitStringIntoVector<int64_t>(std::string listString);
template DLLExport std::vector<size_t> splitStringIntoVector<size_t>(std::string listString);
template DLLExport std::vector<float> splitStringIntoVector<float>(std::string listString);
template DLLExport std::vector<double> splitStringIntoVector<double>(std::string listString);
template DLLExport std::vector<std::string> splitStringIntoVector<std::string>(std::string listString);
Steve Williams
committed
} // End namespace VectorHelper
Laurent Chapon
committed
} // End namespace Mantid