Newer
Older
Laurent Chapon
committed
#include <stdexcept>
#include <cmath>
#include "MantidKernel/VectorHelper.h"
#include <iostream>
Laurent Chapon
committed
namespace Mantid
{
namespace Kernel
{
namespace VectorHelper
{
/** Rebins data according to a new output X array
*
Russell Taylor
committed
* @param xold Old X array of data.
* @param yold Old Y array of data. Must be 1 element shorter than xold.
* @param eold Old error array of data. Must be same length as yold.
* @param xnew X array of data to rebin to.
* @param ynew Rebinned data. Must be 1 element shorter than xnew.
* @param enew Rebinned errors. Must be same length as ynew.
* @param distribution Flag defining if distribution data (true) or not (false).
* @throw runtime_error Thrown if algorithm cannot execute.
* @throw invalid_argument Thrown if input to function is incorrect.
Laurent Chapon
committed
void rebin(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew, bool distribution)
{
Russell Taylor
committed
// Make sure y and e vectors are of correct sizes
const size_t size_xold = xold.size();
if (size_xold != (yold.size() + 1) || size_xold != (eold.size() + 1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
const size_t size_xnew = xnew.size();
if (size_xnew != (ynew.size() + 1) || size_xnew != (enew.size() + 1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
Laurent Chapon
committed
Russell Taylor
committed
// Make sure ynew & enew contain zeroes
ynew.assign(size_xnew - 1, 0.0);
enew.assign(size_xnew - 1, 0.0);
Laurent Chapon
committed
int iold = 0, inew = 0;
double xo_low, xo_high, xn_low, xn_high, delta(0.0), width;
int size_yold = yold.size();
int size_ynew = ynew.size();
Laurent Chapon
committed
while ((inew < size_ynew) && (iold < size_yold))
{
xo_low = xold[iold];
xo_high = xold[iold + 1];
xn_low = xnew[inew];
xn_high = xnew[inew + 1];
if (xn_high <= xo_low)
inew++; /* old and new bins do not overlap */
else if (xo_high <= xn_low)
iold++; /* old and new bins do not overlap */
else
{
// delta is the overlap of the bins on the x axis
//delta = std::min(xo_high, xn_high) - std::max(xo_low, xn_low);
delta = xo_high < xn_high ? xo_high : xn_high;
delta -= xo_low > xn_low ? xo_low : xn_low;
width = xo_high - xo_low;
if ((delta <= 0.0) || (width <= 0.0))
Laurent Chapon
committed
{
throw std::runtime_error("rebin: no bin overlap detected");
Laurent Chapon
committed
}
/*
* yoldp contains counts/unit time, ynew contains counts
* enew contains counts**2
* ynew has been filled with zeros on creation
*/
if (distribution)
Laurent Chapon
committed
{
// yold/eold data is distribution
ynew[inew] += yold[iold] * delta;
// this error is calculated in the same way as opengenie
enew[inew] += eold[iold] * eold[iold] * delta * width;
Laurent Chapon
committed
}
else
{
// yold/eold data is not distribution
// do implicit division of yold by width in summing.... avoiding the need for temporary yold array
// this method is ~7% faster and uses less memory
ynew[inew] += yold[iold] * delta / width; //yold=yold/width
// eold=eold/width, so divide by width**2 compared with distribution calculation
enew[inew] += eold[iold] * eold[iold] * delta / width;
}
if (xn_high > xo_high)
{
iold++;
}
else
{
inew++;
Laurent Chapon
committed
}
}
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
}
if (distribution)
{
/*
* convert back to counts/unit time
*/
for (int i = 0; i < size_ynew; ++i)
{
{
width = xnew[i + 1] - xnew[i];
if (width != 0.0)
{
ynew[i] /= width;
enew[i] = sqrt(enew[i]) / width;
}
else
{
throw std::invalid_argument("rebin: Invalid output X array, contains consecutive X values");
}
}
}
}
else
{
//non distribution , just square root final error value
for (int i = 0; i < size_ynew; ++i)
enew[i] = sqrt(enew[i]);
}
return; //without problems
}
/** Rebins histogram data according to a new output X array. Should be faster than previous one.
* @author Laurent Chapon 10/03/2009
*
Russell Taylor
committed
* @param xold Old X array of data.
* @param yold Old Y array of data. Must be 1 element shorter than xold.
* @param eold Old error array of data. Must be same length as yold.
* @param xnew X array of data to rebin to.
* @param ynew Rebinned data. Must be 1 element shorter than xnew.
* @param enew Rebinned errors. Must be same length as ynew.
* @param addition If true, rebinned values are added to the existing ynew/enew vectors.
* @throw runtime_error Thrown if vector sizes are inconsistent or if the X vectors do no overlap
**/
void rebinHistogram(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew,bool addition)
{
// Make sure y and e vectors are of correct sizes
Russell Taylor
committed
const size_t size_yold = yold.size();
if ( xold.size() != (size_yold+ 1) || size_yold != eold.size() )
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
const size_t size_ynew = ynew.size();
if ( xnew.size() != (size_ynew + 1) || size_ynew != enew.size() )
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 shorter than x");
// If not adding to existing vectors, make sure ynew & enew contain zeroes
Russell Taylor
committed
ynew.assign(size_ynew, 0.0);
enew.assign(size_ynew, 0.0);
Russell Taylor
committed
// Find the starting points to avoid wasting time processing irrelevant bins
size_t iold = 0, inew = 0; // iold/inew is the bin number under consideration (counting from 1, so index+1)
if (xnew.front() > xold.front())
Russell Taylor
committed
std::vector<double>::const_iterator it = std::upper_bound(xold.begin(), xold.end(), xnew.front());
if (it == xold.end())
throw std::runtime_error("No overlap: max of X-old < min of X-new");
iold = std::distance(xold.begin(), it) - 1; // Old bin to start at (counting from 0)
Russell Taylor
committed
std::vector<double>::const_iterator it = std::upper_bound(xnew.begin(), xnew.end(), xold.front());
if (it == xnew.end())
throw std::runtime_error("No overlap: max of X-new < min of X-old");
inew = std::distance(xnew.begin(), it) - 1; // New bin to start at (counting from 0)
Russell Taylor
committed
double frac, fracE;
double width, overlap;
//loop over old vector from starting point calculated above
for ( ; iold<size_yold; ++iold )
Russell Taylor
committed
// If current old bin is fully enclosed by new bin, just unload the counts
if ( xold[iold+1] <= xnew[inew+1] )
Russell Taylor
committed
ynew[inew] += yold[iold];
enew[inew] += std::pow(eold[iold], 2);
// If the upper bin boundaries were equal, then increment inew
if ( xold[iold+1] == xnew[inew+1] ) inew++;
Russell Taylor
committed
else
Russell Taylor
committed
// This is the counts per unit X in current old bin
width = (xold[iold+1] - xold[iold]);
frac = yold[iold] / width;
fracE = std::pow(eold[iold], 2) / width;
// Now loop over bins in new vector overlapping with current 'old' bin
while ( inew<size_ynew && xnew[inew+1] <= xold[iold+1] )
{
overlap = xnew[inew+1] - std::max(xnew[inew],xold[iold]);
ynew[inew] += frac * overlap;
enew[inew] += fracE * overlap;
++inew;
}
// Stop if at end of new X range
if (inew==size_ynew) break;
// Unload the rest of the current old bin into the current new bin
overlap = xold[iold+1] - xnew[inew];
ynew[inew] += frac * overlap;
enew[inew] += fracE * overlap;
Russell Taylor
committed
} // loop over old bins
Russell Taylor
committed
if (!addition) //If this used to add at the same time then not necessary (should be done externally)
//Now take the root-square of the errors
typedef double (*pf)(double);
pf uf = std::sqrt;
std::transform(enew.begin(), enew.end(), enew.begin(), uf);
}
Russell Taylor
committed
return;
}
/** Rebins the data according to new output X array.
* Values in the input vectors are placed in the new vector as follows:
* <UL>
* <LI> No overlap between old and new bins: 0 (as regular rebin). </LI>
* <LI> New bin entirely within old bin range: Full value of input bin copied. </LI>
* <LI> New bin partially covered by old bin: Old value scaled according to fraction of new bin covered by old bin. </LI>
* </UL>
*
Russell Taylor
committed
* @param xold Old X array of data
* @param yold Old Y array of data
* @param eold Old error array of data
* @param xnew X array of data to rebin to.
* @param ynew Rebinned data. Must be 1 element shorter than xnew.
* @param enew Rebinned errors. Must be same length as ynew.
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
* @param addition - if true, rebinned values are added to the existing ynew/enew vectors
* @throw std::runtime_error If the vector sizes are inconsistent
**/
void rebinNonDispersive(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew, bool addition)
{
// Make sure y and e vectors are of correct sizes
const size_t size_xold=xold.size();
if (size_xold!=(yold.size()+1) || size_xold!=(eold.size()+1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 longer than x");
const size_t size_xnew=xnew.size();
if (size_xnew!=(ynew.size()+1) || size_xnew!=(enew.size()+1))
throw std::runtime_error("rebin: y and error vectors should be of same size & 1 longer than x");
// If not adding to existing vectors, make sure ynew & enew contain zeroes
if (!addition)
{
ynew.assign(size_xnew-1,0.0);
enew.assign(size_xnew-1,0.0);
}
int iold = 0,inew = 0;
double xo_low, xo_high, xn_low, xn_high;
int size_yold=yold.size();
int size_ynew=ynew.size();
while((inew < size_ynew) && (iold < size_yold))
{
xo_low = xold[iold];
xo_high = xold[iold+1];
xn_low = xnew[inew];
xn_high = xnew[inew+1];
if ( xn_high <= xo_low )
{
inew++; /* old and new bins do not overlap */
}
else if ( xo_high <= xn_low )
{
iold++; /* old and new bins do not overlap */
}
else if ( xn_low < xo_low && xo_low < xn_high )
{
// If the new bin is partially overlapped by the old then scale the value
const double delta = (xn_high-xo_low)/(xn_high-xn_low);
ynew[inew] += yold[iold]*delta;
enew[inew] += eold[iold]*delta;
++inew;
}
else if ( xn_low < xo_high && xo_high < xn_high )
{
// If the new bin is partially overlapped by the old then scale the value
const double delta = (xo_high-xn_low)/(xn_high-xn_low);
ynew[inew] += yold[iold]*delta;
enew[inew] += eold[iold]*delta;
++iold;
}
else
{
// Other wise the new bin is entirely within the old one and we just copy the value
ynew[inew] += yold[iold];
enew[inew] += eold[iold];
if ( xn_high > xo_high )
{
iold++;
}
inew++;
}
}
return; //without problems
} // End namespace VectorHelper
Laurent Chapon
committed
} // End namespace Mantid