Newer
Older
Laurent Chapon
committed
#include <stdexcept>
#include <cmath>
#include "MantidKernel/VectorHelper.h"
#include <iostream>
Laurent Chapon
committed
namespace Mantid{
namespace Kernel{
/** Rebins data according to a new output X array
*
* @param xold - old x array of data
* @param xnew - new x array of data
* @param yold - old y array of data
* @param ynew - new y array of data
* @param eold - old error array of data
* @param enew - new error array of data
* @param distribution - flag defining if distribution data (1) or not (0)
* @throw runtime_error Thrown if algorithm cannot execute
* @throw invalid_argument Thrown if input to function is incorrect
**/
Laurent Chapon
committed
void rebin(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew, bool distribution)
{
int size_xold=xold.size();
int size_xnew=xnew.size();
if (size_xold!=static_cast<int>(yold.size()+1) || size_xold!=static_cast<int>(eold.size()+1))
throw std::runtime_error("rebin: x,y, and error vectors should be of same size");
Laurent Chapon
committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
ynew.resize(size_xnew); // Make sure y and e vectors are of correct sizes
enew.resize(size_xnew);
int iold = 0,inew = 0;
double xo_low, xo_high, xn_low, xn_high, delta(0.0), width;
while((inew < size_xnew) && (iold < size_xold))
{
xo_low = xold[iold];
xo_high = xold[iold+1];
xn_low = xnew[inew];
xn_high = xnew[inew+1];
if ( xn_high <= xo_low )
inew++; /* old and new bins do not overlap */
else if ( xo_high <= xn_low )
iold++; /* old and new bins do not overlap */
else
{
// delta is the overlap of the bins on the x axis
//delta = std::min(xo_high, xn_high) - std::max(xo_low, xn_low);
delta = xo_high<xn_high?xo_high:xn_high;
delta -= xo_low>xn_low?xo_low:xn_low;
width = xo_high - xo_low;
if ( (delta <= 0.0) || (width <= 0.0) )
{
throw std::runtime_error("rebin: no bin overlap detected");
}
/*
* yoldp contains counts/unit time, ynew contains counts
* enew contains counts**2
* ynew has been filled with zeros on creation
*/
if(distribution)
{
// yold/eold data is distribution
ynew[inew] += yold[iold]*delta;
// this error is calculated in the same way as opengenie
enew[inew] += eold[iold]*eold[iold]*delta*width;
}
else
{
// yold/eold data is not distribution
// do implicit division of yold by width in summing.... avoiding the need for temporary yold array
// this method is ~7% faster and uses less memory
ynew[inew] += yold[iold]*delta/width; //yold=yold/width
// eold=eold/width, so divide by width**2 compared with distribution calculation
enew[inew] += eold[iold]*eold[iold]*delta/width;
}
if ( xn_high > xo_high )
{
iold++;
}
else
{
inew++;
}
}
}
if(distribution)
{
/*
* convert back to counts/unit time
*/
for(int i=0; i<size_xnew; ++i)
{
{
width = xnew[i+1]-xnew[i];
if (width != 0.0)
{
ynew[i] /= width;
enew[i] = sqrt(enew[i]) / width;
}
else
{
throw std::invalid_argument("rebin: Invalid output X array, contains consecutive X values");
}
}
}
}
else
{
//non distribution , just square root final error value
for(int i=0; i<size_xnew;++i)
enew[i]=sqrt(enew[i]);
}
return; //without problems
}
/** Rebins histogram data according to a new output X array. Should be faster than previous one.
* @author Laurent Chapon 10/03/2009
*
* @param xold - old x array of data
* @param xnew - new x array of data
* @param yold - old y array of data
* @param ynew - new y array of data
* @param eold - old error array of data
* @param enew - new error array of data
* @param addition - if true, rebinned values are added to the existing ynew/enew vectors
* @throw runtime_error Thrown if algorithm cannot execute
**/
void rebinHistogram(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew,bool addition)
{
int size_xold=xold.size();
int size_xnew=xnew.size();
if (size_xold!=static_cast<int>(yold.size()+1) || size_xold!=static_cast<int>(eold.size()+1))
throw std::runtime_error("rebin: x,y, and error vectors should be of same size");
if (!addition)
{
ynew.clear();
enew.clear();
ynew.resize(size_xnew-1); // Make sure y and e vectors are of correct sizes
enew.resize(size_xnew-1);
}
// First find the first Xpoint that is bigger than xnew[0]
std::vector<double>::const_iterator it=std::upper_bound(xold.begin(),xold.end(),xnew[0]);
throw std::runtime_error("No overlap, max of X-old < min of X-new");
int iold=std::distance(xold.begin(),it); // Where we are now
int inew=0;
double frac, fracE;
double width;
if (iold==0)
{
frac=0;
fracE=0;
}
else
{
width=(xold[iold]-xold[iold-1]);
frac=yold[iold-1]/width;
fracE=std::pow(eold[iold-1],2)/width;
}
while(xnew[++inew]<xold[iold]) //Upper xlimit of new vector < upper limit of old vector
{
if (iold!=0) // If iold==0, then no counts to add
width=(xnew[inew]-xnew[inew-1]);
ynew[inew-1]+=frac*width; //Increment this
enew[inew-1]+=fracE*width;
if ((inew+1)==size_xnew)
break;
}
if (iold!=0) // Now upper xlimit of new vector > upper limit of old x vector
{
width=(xold[iold]-xnew[inew-1]);
ynew[inew-1]+=frac*width;
enew[inew-1]+=fracE*width;
}
if ((iold+1)==size_xold) //Reached the end of old vector
break;
while(xold[++iold]<xnew[inew]) // Now increment the upper limit of old vector until it becomes higher than the new one
{
ynew[inew-1]+=yold[iold-1];
enew[inew-1]+=std::pow(eold[iold-1],2);
if ((iold+1)==size_xold)
break;
}
if (iold!=0)
{
width=(xold[iold]-xold[iold-1]);
frac=yold[iold-1]/width; //Dealing with the new xold
fracE=std::pow(eold[iold-1],2)/width;
}
width=(xnew[inew]-xold[iold-1]);
ynew[inew-1]+=frac*width;
enew[inew-1]+=fracE*width;
}
if (!addition) //If this used to add at the same time then not necessary.
{
//Now take the root-square of the errors
typedef double (*pf)(double);
pf uf=std::sqrt;
std::transform(enew.begin(),enew.end(),enew.begin(),uf);
}
return;
}
} // End namespace Kernel
Laurent Chapon
committed
} // End namespace Mantid