Skip to content
Snippets Groups Projects
VectorHelper.cpp 6.91 KiB
Newer Older
#include <stdexcept>
#include <cmath>

#include "MantidKernel/VectorHelper.h"
Laurent Chapon's avatar
Laurent Chapon committed
#include <algorithm>
namespace Kernel{

/** Rebins data according to a new output X array
 *
 * @param xold - old x array of data
 * @param xnew - new x array of data
 * @param yold - old y array of data
 * @param ynew - new y array of data
 * @param eold - old error array of data
 * @param enew - new error array of data
 * @param distribution - flag defining if distribution data (1) or not (0)
 * @throw runtime_error Thrown if algorithm cannot execute
 * @throw invalid_argument Thrown if input to function is incorrect
 **/
void rebin(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
      const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew, bool distribution)
{
	  int size_xold=xold.size();
	  int size_xnew=xnew.size();
	  if (size_xold!=static_cast<int>(yold.size()+1) || size_xold!=static_cast<int>(eold.size()+1))
		  throw std::runtime_error("rebin: x,y, and error vectors should be of same size");

Laurent Chapon's avatar
Laurent Chapon committed
	  ynew.clear();
	  enew.clear();
	  ynew.resize(size_xnew); // Make sure y and e vectors are of correct sizes
	  enew.resize(size_xnew);

      int iold = 0,inew = 0;
      double xo_low, xo_high, xn_low, xn_high, delta(0.0), width;

      while((inew < size_xnew) && (iold < size_xold))
      {
        xo_low = xold[iold];
        xo_high = xold[iold+1];
        xn_low = xnew[inew];
        xn_high = xnew[inew+1];
        if ( xn_high <= xo_low )
          inew++;		/* old and new bins do not overlap */
        else if ( xo_high <= xn_low )
          iold++;		/* old and new bins do not overlap */
        else
        {
          //        delta is the overlap of the bins on the x axis
          //delta = std::min(xo_high, xn_high) - std::max(xo_low, xn_low);
          delta = xo_high<xn_high?xo_high:xn_high;
          delta -= xo_low>xn_low?xo_low:xn_low;
          width = xo_high - xo_low;
          if ( (delta <= 0.0) || (width <= 0.0) )
          {
            throw std::runtime_error("rebin: no bin overlap detected");
          }
          /*
          *        yoldp contains counts/unit time, ynew contains counts
          *	       enew contains counts**2
          *        ynew has been filled with zeros on creation
          */
          if(distribution)
          {
            // yold/eold data is distribution
            ynew[inew] += yold[iold]*delta;
            // this error is calculated in the same way as opengenie
            enew[inew] += eold[iold]*eold[iold]*delta*width;
          }
          else
          {
            // yold/eold data is not distribution
            // do implicit division of yold by width in summing.... avoiding the need for temporary yold array
            // this method is ~7% faster and uses less memory
            ynew[inew] += yold[iold]*delta/width; //yold=yold/width
            // eold=eold/width, so divide by width**2 compared with distribution calculation
            enew[inew] += eold[iold]*eold[iold]*delta/width;
          }
          if ( xn_high > xo_high )
          {
            iold++;
          }
          else
          {
            inew++;
          }
        }
      }

      if(distribution)
      {
        /*
        * convert back to counts/unit time
        */
        for(int i=0; i<size_xnew; ++i)
        {
          {
            width = xnew[i+1]-xnew[i];
            if (width != 0.0)
            {
              ynew[i] /= width;
              enew[i] = sqrt(enew[i]) / width;
            }
            else
            {
              throw std::invalid_argument("rebin: Invalid output X array, contains consecutive X values");
            }
          }
        }
      }
      else
      {
        //non distribution , just square root final error value
        for(int i=0; i<size_xnew;++i)
          enew[i]=sqrt(enew[i]);
      }
      return; //without problems
    }

/** Rebins histogram data according to a new output X array. Should be faster than previous one.
 *  @author Laurent Chapon 10/03/2009
 *
 * @param xold - old x array of data
 * @param xnew - new x array of data
 * @param yold - old y array of data
 * @param ynew - new y array of data
 * @param eold - old error array of data
 * @param enew - new error array of data
 * @param addition - if true, rebinned values are added to the existing ynew/enew vectors
 * @throw runtime_error Thrown if algorithm cannot execute
 **/
void rebinHistogram(const std::vector<double>& xold, const std::vector<double>& yold, const std::vector<double>& eold,
Laurent Chapon's avatar
Laurent Chapon committed
    const std::vector<double>& xnew, std::vector<double>& ynew, std::vector<double>& enew,bool addition)
{
  int size_xold=xold.size();
  int size_xnew=xnew.size();
  if (size_xold!=static_cast<int>(yold.size()+1) || size_xold!=static_cast<int>(eold.size()+1))
  	  throw std::runtime_error("rebin: x,y, and error vectors should be of same size");


  if (!addition)
  {
  	ynew.clear();
  	enew.clear();
  	ynew.resize(size_xnew-1); // Make sure y and e vectors are of correct sizes
  	enew.resize(size_xnew-1);
  }
  // First find the first Xpoint that is bigger than xnew[0]
  std::vector<double>::const_iterator it=std::upper_bound(xold.begin(),xold.end(),xnew[0]);
Laurent Chapon's avatar
Laurent Chapon committed
  if (it==xold.end())
  	throw std::runtime_error("No overlap, max of X-old < min of X-new");
Laurent Chapon's avatar
Laurent Chapon committed
  int iold=std::distance(xold.begin(),it); // Where we are now
  int inew=0;
  double frac, fracE;
  double width;
  if (iold==0)
  {
  	frac=0;
  	fracE=0;
  }
  else
  {
  	width=(xold[iold]-xold[iold-1]);
  	frac=yold[iold-1]/width;
  	fracE=std::pow(eold[iold-1],2)/width;
  }
Laurent Chapon's avatar
Laurent Chapon committed
  while((inew+1)!=size_xnew) //Start the loop here
Laurent Chapon's avatar
Laurent Chapon committed
  {
Laurent Chapon's avatar
Laurent Chapon committed
	while(xnew[++inew]<xold[iold]) //Upper xlimit of new vector < upper limit of old vector
	{
		if (iold!=0) // If iold==0, then no counts to add
Laurent Chapon's avatar
Laurent Chapon committed
		{
Laurent Chapon's avatar
Laurent Chapon committed
			width=(xnew[inew]-xnew[inew-1]);
			ynew[inew-1]+=frac*width; //Increment this
			enew[inew-1]+=fracE*width;
Laurent Chapon's avatar
Laurent Chapon committed
		}
Laurent Chapon's avatar
Laurent Chapon committed
		if ((inew+1)==size_xnew)
			break;
	}

	if (iold!=0) // Now upper xlimit of new vector > upper limit of old x vector
	{
		width=(xold[iold]-xnew[inew-1]);
		ynew[inew-1]+=frac*width;
		enew[inew-1]+=fracE*width;
	}

	if ((iold+1)==size_xold) //Reached the end of old vector
			break;

	while(xold[++iold]<xnew[inew]) // Now increment the upper limit of old vector until it becomes higher than the new one
Laurent Chapon's avatar
Laurent Chapon committed
	{
		ynew[inew-1]+=yold[iold-1];
		enew[inew-1]+=std::pow(eold[iold-1],2);
		if ((iold+1)==size_xold)
			break;
	}

Laurent Chapon's avatar
Laurent Chapon committed
	if (iold!=0)
	{
		width=(xold[iold]-xold[iold-1]);
		frac=yold[iold-1]/width; //Dealing with the new xold
		fracE=std::pow(eold[iold-1],2)/width;
	}

	width=(xnew[inew]-xold[iold-1]);
	ynew[inew-1]+=frac*width;
	enew[inew-1]+=fracE*width;

Laurent Chapon's avatar
Laurent Chapon committed
  }

  if (!addition) //If this used to add at the same time then not necessary.
  {
		//Now take the root-square of the errors
		typedef double (*pf)(double);
		pf uf=std::sqrt;
		std::transform(enew.begin(),enew.end(),enew.begin(),uf);
	}
		return;
}

} // End namespace Kernel