Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pycroscopy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Vasudevan, Rama K.
pycroscopy
Commits
c117f065
Commit
c117f065
authored
8 years ago
by
Chris Smith
Browse files
Options
Downloads
Patches
Plain Diff
Removed duplicate ptychography
parent
9eb3af6b
No related branches found
No related tags found
1 merge request
!7
Merging ports back to master
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
pycroscopy/io/translators/__init__.py
+0
-1
0 additions, 1 deletion
pycroscopy/io/translators/__init__.py
pycroscopy/io/translators/ptychographytranslator.py
+0
-229
0 additions, 229 deletions
pycroscopy/io/translators/ptychographytranslator.py
with
0 additions
and
230 deletions
pycroscopy/io/translators/__init__.py
+
0
−
1
View file @
c117f065
import
beutils
import
utils
import
translator
import
ptychographytranslator
\ No newline at end of file
This diff is collapsed.
Click to expand it.
pycroscopy/io/translators/ptychographytranslator.py
deleted
100644 → 0
+
0
−
229
View file @
9eb3af6b
"""
Created on Feb 9, 2016
@author: Chris Smith
"""
import
numpy
as
np
import
os
from
scipy.misc
import
imread
from
..iohdf5
import
ioHDF5
from
..microdata
import
MicroDataGroup
,
MicroDataset
from
..hdfutils
import
getH5DsetRefs
from
.translator
import
Translator
from
.utils
import
generateDummyMainParms
,
makePositionMat
,
getPositionSlicing
class
PtychographyTranslator
(
Translator
):
"""
Translate Pytchography data from a set of images to an HDF5 file
"""
def
translate
(
self
,
h5_path
,
image_path
):
"""
Basic method that adds Ptychography data to existing hdf5 thisfile
You must have already done the basic translation with BEodfTranslator
Parameters
----------------
h5_path : Absolute thisfile path for the data thisfile.
Must be in hdf5 format
image_path : Absolute path to folder holding the image files
Returns
----------
None
"""
# Get the list of all files with the .tif extension and the number of files in the list
file_list
,
num_files
=
self
.
__getfilelist
(
image_path
,
'
.tif
'
)
# Open the hdf5 thisfile and delete any contents
try
:
hdf
=
ioHDF5
(
h5_path
)
hdf
.
clear
()
except
:
raise
# Set up the basic parameters associated with this set of images
(
usize
,
vsize
),
data_type
=
self
.
__getimagesize
(
os
.
path
.
join
(
image_path
,
file_list
[
0
]))
num_pixels
=
usize
*
vsize
scan_size
=
np
.
int
(
np
.
sqrt
(
num_files
))
num_files
=
scan_size
**
2
mean_ronch
=
np
.
zeros
(
num_pixels
,
dtype
=
np
.
float32
)
h5_main
,
h5_mean_spec
,
h5_ronch
=
self
.
__setupH5
(
num_files
,
hdf
,
usize
,
vsize
,
np
.
float32
,
num_pixels
,
scan_size
)
for
ifile
,
thisfile
in
enumerate
(
file_list
[:
num_files
]):
selected
=
(
ifile
+
1
)
%
round
(
num_files
/
16
)
==
0
if
selected
:
print
(
'
Processing file...{}% - reading: {}
'
.
format
(
round
(
100
*
ifile
/
num_files
),
thisfile
))
image
=
imread
(
os
.
path
.
join
(
image_path
,
thisfile
))
image
=
image
.
reshape
(
num_pixels
)
h5_main
[
ifile
,:]
=
image
h5_mean_spec
[
ifile
]
=
np
.
mean
(
image
)
mean_ronch
+=
image
hdf
.
flush
()
print
np
.
max
(
mean_ronch
),
np
.
min
(
mean_ronch
)
h5_ronch
[:]
=
mean_ronch
/
num_files
hdf
.
flush
()
hdf
.
close
()
def
__getfilelist
(
self
,
path
,
ftype
=
'
all
'
):
"""
Returns a list of all files in the directory given by path
Parameters
---------------
path : string / unicode
absolute path to directory containing files
ftype : (optional) string / unicode
file type to return in file_list, Default is
'
all
'
Returns
----------
file_list : list of strings
names of all files in directory located at path
numfiles : unsigned integer
number of files in file_list
"""
# Get all files in directory
file_list
=
os
.
listdir
(
path
)
# If no file type specified, return full list
if
ftype
==
'
all
'
:
numfiles
=
len
(
file_list
)
return
(
file_list
,
numfiles
)
# Remove files of type other than the request ftype from the list
new_file_list
=
[]
for
this_file
in
file_list
:
split
=
os
.
path
.
splitext
(
this_file
)
if
len
(
split
)
<
2
:
continue
ext
=
split
[
1
]
if
ext
==
ftype
:
new_file_list
.
append
(
this_file
)
numfiles
=
len
(
new_file_list
)
return
(
new_file_list
,
numfiles
)
def
__getimagesize
(
self
,
image
):
"""
Returns the x and y size of the image in pixels
Parameters
------------
image : string / unicode
absolute path to the image file
Returns
-----------
(size, tmp.dtype) : Tuple
size : unsigned integer
x and y dimenstions of image
dtype : data type
Datatype of the image
"""
tmp
=
imread
(
image
)
size
=
tmp
.
shape
return
(
size
,
tmp
.
dtype
)
def
__buildSpectroscopic
(
self
,
usize
,
vsize
,
num_pixels
):
spec_mat
=
makePositionMat
([
usize
,
vsize
])
spec_slices
=
{
'
U
'
:
(
slice
(
0
,
1
,
None
),
slice
(
0
,
num_pixels
,
None
)),
'
V
'
:
(
slice
(
1
,
2
,
None
),
slice
(
0
,
num_pixels
,
None
))}
ds_spec_ind
=
MicroDataset
(
'
Spectroscopic_Indices
'
,
np
.
transpose
(
spec_mat
),
dtype
=
np
.
uint32
)
ds_spec_ind
.
attrs
[
'
labels
'
]
=
spec_slices
ds_spec_vals
=
MicroDataset
(
'
Spectroscopic_Values
'
,
np
.
transpose
(
spec_mat
),
dtype
=
np
.
float32
)
ds_spec_vals
.
attrs
[
'
labels
'
]
=
spec_slices
ds_spec_vals
.
attrs
[
'
units
'
]
=
[
''
,
''
]
return
ds_spec_ind
,
ds_spec_vals
def
__buildPosition
(
self
,
num_files
,
scan_size
):
pos_mat
=
makePositionMat
([
scan_size
,
scan_size
])
pos_slices
=
getPositionSlicing
([
'
X
'
,
'
Y
'
],
num_files
)
ds_pos_ind
=
MicroDataset
(
'
Position_Indices
'
,
pos_mat
,
dtype
=
np
.
uint32
)
ds_pos_ind
.
attrs
[
'
labels
'
]
=
pos_slices
ds_pos_val
=
MicroDataset
(
'
Position_Values
'
,
pos_mat
)
ds_pos_val
.
attrs
[
'
labels
'
]
=
pos_slices
ds_pos_val
.
attrs
[
'
units
'
]
=
[
'
pixel
'
,
'
pixel
'
]
return
ds_pos_ind
,
ds_pos_val
def
__setupH5
(
self
,
num_files
,
hdf
,
usize
,
vsize
,
data_type
,
num_pixels
,
scan_size
):
root_parms
=
generateDummyMainParms
()
main_parms
=
{
'
num_images
'
:
num_files
,
'
image_size_u
'
:
usize
,
'
image_size_v
'
:
vsize
,
'
num_pixels
'
:
num_pixels
,
'
translator
'
:
'
Ptychography
'
,
'
scan_size_x
'
:
scan_size
,
'
scan_size_y
'
:
scan_size
}
# Create the hdf5 data Group
root_grp
=
MicroDataGroup
(
'
/
'
)
root_grp
.
attrs
=
root_parms
root_grp
.
attrs
[
'
data_type
'
]
=
'
PtychographyData
'
meas_grp
=
MicroDataGroup
(
'
Measurement_000
'
)
meas_grp
.
attrs
=
main_parms
chan_grp
=
MicroDataGroup
(
'
Channel_000
'
)
# Get the Position and Spectroscopic Datasets
ds_spec_ind
,
ds_spec_vals
=
self
.
__buildSpectroscopic
(
usize
,
vsize
,
num_pixels
)
ds_pos_ind
,
ds_pos_val
=
self
.
__buildPosition
(
num_files
,
scan_size
)
# Allocate space for Main_Data and Pixel averaged Data
ds_main_data
=
MicroDataset
(
'
Raw_Data
'
,
data
=
[],
maxshape
=
(
num_files
,
num_pixels
),
chunking
=
(
1
,
num_pixels
),
dtype
=
data_type
,
compression
=
'
gzip
'
)
ds_mean_ronch_data
=
MicroDataset
(
'
Mean_Ronchigram
'
,
data
=
np
.
zeros
(
num_pixels
,
dtype
=
np
.
float32
),
dtype
=
np
.
float32
)
ds_mean_spec_data
=
MicroDataset
(
'
Spectroscopic_Mean
'
,
data
=
np
.
zeros
(
num_files
,
dtype
=
np
.
float32
),
dtype
=
np
.
float32
)
# Add datasets as children of Measurement_000 data group
chan_grp
.
addChildren
([
ds_main_data
,
ds_spec_ind
,
ds_spec_vals
,
ds_pos_ind
,
ds_pos_val
,
ds_mean_ronch_data
,
ds_mean_spec_data
])
meas_grp
.
addChildren
([
chan_grp
])
root_grp
.
addChildren
([
meas_grp
])
print
(
'
Writing following tree to thisfile:
'
)
root_grp
.
showTree
()
h5_refs
=
hdf
.
writeData
(
root_grp
)
h5_main
=
getH5DsetRefs
([
'
Raw_Data
'
],
h5_refs
)[
0
]
h5_ronch
=
getH5DsetRefs
([
'
Mean_Ronchigram
'
],
h5_refs
)[
0
]
h5_mean_spec
=
getH5DsetRefs
([
'
Spectroscopic_Mean
'
],
h5_refs
)[
0
]
aux_ds_names
=
[
'
Spectroscopic_Indices
'
,
'
Spectroscopic_Values
'
,
'
Position_Indices
'
,
'
Position_Values
'
]
hdf
.
linkRefs
(
h5_main
,
getH5DsetRefs
(
aux_ds_names
,
h5_refs
))
hdf
.
flush
()
return
h5_main
,
h5_mean_spec
,
h5_ronch
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment