Skip to content
Snippets Groups Projects
Commit 69c089db authored by Michael Wedel's avatar Michael Wedel
Browse files

Refs #11006. Making matrix transpose for hkl clearer in code and docs.

parent cc692e6c
No related merge requests found
...@@ -60,13 +60,10 @@ protected: ...@@ -60,13 +60,10 @@ protected:
std::vector<Kernel::V3D> getEquivalentSet(const Kernel::V3D &hkl) const; std::vector<Kernel::V3D> getEquivalentSet(const Kernel::V3D &hkl) const;
CrystalSystem getCrystalSystemFromGroup() const; CrystalSystem getCrystalSystemFromGroup() const;
std::vector<Kernel::IntMatrix> getHKLTranformationMatrices() const;
std::string m_symbolHM; std::string m_symbolHM;
std::string m_name; std::string m_name;
CrystalSystem m_crystalSystem; CrystalSystem m_crystalSystem;
std::vector<Kernel::IntMatrix> m_hklTransformationMatrices;
}; };
/// Shared pointer to a PointGroup /// Shared pointer to a PointGroup
......
...@@ -55,10 +55,18 @@ namespace Geometry { ...@@ -55,10 +55,18 @@ namespace Geometry {
is overloaded: is overloaded:
SymmetryOperation inversion("-x,-y,-z"); SymmetryOperation inversion("-x,-y,-z");
V3D hklPrime = inversion * V3D(1, 1, -1); // results in -1, -1, 1 V3D transformed = inversion * V3D(1, 1, -1); // results in -1, -1, 1
The operator is templated and works for any object Kernel::IntMatrix can be The operator is templated and works for any object Kernel::IntMatrix can be
multiplied with and V3R can be added to (for example V3R, V3D). multiplied with and V3R can be added to (for example V3R, V3D). Note that
for the transformation of HKLs, the matrix needs to be transposed. In some
cases, such as the example above, it does not matter, because the matrix is
identical to its transposed. In general however, transposing is necessary,
so there is a dedicated method for that:
SymmetryOperation sixFold("x-y,x,z");
V3D hklPrime = sixFold.transformHKL(V3D(1,0,0)); //
A special case is the multiplication of several symmetry operations, which A special case is the multiplication of several symmetry operations, which
can be used to generate new operations: can be used to generate new operations:
...@@ -137,6 +145,8 @@ public: ...@@ -137,6 +145,8 @@ public:
return (m_matrix * operand) + m_vector; return (m_matrix * operand) + m_vector;
} }
Kernel::V3D transformHKL(const Kernel::V3D &hkl) const;
SymmetryOperation operator*(const SymmetryOperation &operand) const; SymmetryOperation operator*(const SymmetryOperation &operand) const;
SymmetryOperation inverse() const; SymmetryOperation inverse() const;
...@@ -161,6 +171,8 @@ protected: ...@@ -161,6 +171,8 @@ protected:
MANTID_GEOMETRY_DLL V3R getWrappedVector(const V3R &vector); MANTID_GEOMETRY_DLL V3R getWrappedVector(const V3R &vector);
MANTID_GEOMETRY_DLL Kernel::V3D getWrappedVector(const Kernel::V3D &vector); MANTID_GEOMETRY_DLL Kernel::V3D getWrappedVector(const Kernel::V3D &vector);
MANTID_GEOMETRY_DLL Kernel::V3D
multiplyTransposed(const Kernel::IntMatrix &matrix, const Kernel::V3D &vector);
} // namespace Geometry } // namespace Geometry
} // namespace Mantid } // namespace Mantid
......
...@@ -57,13 +57,11 @@ PointGroup::PointGroup(const std::string &symbolHM, const Group &group, ...@@ -57,13 +57,11 @@ PointGroup::PointGroup(const std::string &symbolHM, const Group &group,
: Group(group), m_symbolHM(symbolHM), : Group(group), m_symbolHM(symbolHM),
m_name(symbolHM + " (" + description + ")") { m_name(symbolHM + " (" + description + ")") {
m_crystalSystem = getCrystalSystemFromGroup(); m_crystalSystem = getCrystalSystemFromGroup();
m_hklTransformationMatrices = getHKLTranformationMatrices();
} }
PointGroup::PointGroup(const PointGroup &other) PointGroup::PointGroup(const PointGroup &other)
: Group(other), m_symbolHM(other.m_symbolHM), m_name(other.m_name), : Group(other), m_symbolHM(other.m_symbolHM), m_name(other.m_name),
m_crystalSystem(other.m_crystalSystem), m_crystalSystem(other.m_crystalSystem) {}
m_hklTransformationMatrices(other.m_hklTransformationMatrices) {}
PointGroup &PointGroup::operator=(const PointGroup &other) { PointGroup &PointGroup::operator=(const PointGroup &other) {
Group::operator=(other); Group::operator=(other);
...@@ -71,7 +69,6 @@ PointGroup &PointGroup::operator=(const PointGroup &other) { ...@@ -71,7 +69,6 @@ PointGroup &PointGroup::operator=(const PointGroup &other) {
m_symbolHM = other.m_symbolHM; m_symbolHM = other.m_symbolHM;
m_name = other.m_name; m_name = other.m_name;
m_crystalSystem = other.m_crystalSystem; m_crystalSystem = other.m_crystalSystem;
m_hklTransformationMatrices = other.m_hklTransformationMatrices;
return *this; return *this;
} }
...@@ -103,10 +100,10 @@ bool PointGroup::isEquivalent(const Kernel::V3D &hkl, ...@@ -103,10 +100,10 @@ bool PointGroup::isEquivalent(const Kernel::V3D &hkl,
*/ */
std::vector<V3D> PointGroup::getEquivalentSet(const Kernel::V3D &hkl) const { std::vector<V3D> PointGroup::getEquivalentSet(const Kernel::V3D &hkl) const {
std::vector<V3D> equivalents; std::vector<V3D> equivalents;
equivalents.reserve(m_hklTransformationMatrices.size()); equivalents.reserve(m_allOperations.size());
for (auto op = m_hklTransformationMatrices.begin(); op != m_hklTransformationMatrices.end(); ++op) { for (auto op = m_allOperations.begin(); op != m_allOperations.end(); ++op) {
equivalents.push_back((*op) * hkl); equivalents.push_back((*op).transformHKL(hkl));
} }
std::sort(equivalents.begin(), equivalents.end(), std::greater<V3D>()); std::sort(equivalents.begin(), equivalents.end(), std::greater<V3D>());
...@@ -161,27 +158,6 @@ PointGroup::CrystalSystem PointGroup::getCrystalSystemFromGroup() const { ...@@ -161,27 +158,6 @@ PointGroup::CrystalSystem PointGroup::getCrystalSystemFromGroup() const {
return Triclinic; return Triclinic;
} }
/**
* Returns transformation matrices for HKLs
*
* The transformation matrices for points must be transposed in order to get
* correct results for transformation of miller indices. This is important
* in case of hexagonal transformation matrices.
*
* @return :: Transformation matrices for hkls.
*/
std::vector<Kernel::IntMatrix> PointGroup::getHKLTranformationMatrices() const {
std::vector<Kernel::IntMatrix> matrices;
matrices.reserve(m_allOperations.size());
for (auto op = m_allOperations.begin(); op != m_allOperations.end(); ++op) {
Kernel::IntMatrix matrix = (*op).matrix();
matrices.push_back(matrix.Transpose());
}
return matrices;
}
/** @return a vector with all possible PointGroup objects */ /** @return a vector with all possible PointGroup objects */
std::vector<PointGroup_sptr> getAllPointGroups() { std::vector<PointGroup_sptr> getAllPointGroups() {
std::vector<std::string> allSymbols = std::vector<std::string> allSymbols =
......
...@@ -94,6 +94,19 @@ bool SymmetryOperation::isIdentity() const { ...@@ -94,6 +94,19 @@ bool SymmetryOperation::isIdentity() const {
/// Returns true if the operation has a translational component. /// Returns true if the operation has a translational component.
bool SymmetryOperation::hasTranslation() const { return m_vector != 0; } bool SymmetryOperation::hasTranslation() const { return m_vector != 0; }
/**
* Transforms an index triplet hkl
*
* Unlike points, vectors are transformed using the transposed transformation
* matrix. This method performs the multiplication with the transposed matrix.
*
* @param hkl :: HKL index triplet to transform
* @return :: Transformed index triplet.
*/
Kernel::V3D SymmetryOperation::transformHKL(const Kernel::V3D &hkl) const {
return multiplyTransposed(m_matrix, hkl);
}
/** /**
* Multiplication operator for combining symmetry operations * Multiplication operator for combining symmetry operations
* *
...@@ -248,5 +261,16 @@ Kernel::V3D getWrappedVector(const Kernel::V3D &vector) { ...@@ -248,5 +261,16 @@ Kernel::V3D getWrappedVector(const Kernel::V3D &vector) {
return wrappedVector; return wrappedVector;
} }
/// Multiplies the transposed 3x3-matrix with the vector.
Kernel::V3D multiplyTransposed(const Kernel::IntMatrix &matrix,
const Kernel::V3D &vector) {
return Kernel::V3D(matrix[0][0] * vector.X() + matrix[1][0] * vector.Y() +
matrix[2][0] * vector.Z(),
matrix[0][1] * vector.X() + matrix[1][1] * vector.Y() +
matrix[2][1] * vector.Z(),
matrix[0][2] * vector.X() + matrix[1][2] * vector.Y() +
matrix[2][2] * vector.Z());
}
} // namespace Geometry } // namespace Geometry
} // namespace Mantid } // namespace Mantid
...@@ -252,10 +252,11 @@ public: ...@@ -252,10 +252,11 @@ public:
testSymmetryOperation(twoFoldXOp, testSymmetryOperation(twoFoldXOp,
2, V3D(m_h, -m_k, -m_l), "x,-y,-z"); 2, V3D(m_h, -m_k, -m_l), "x,-y,-z");
// 2-fold rotation around [210] in hexagonal system // 6-fold rotation around [001] in hexagonal
SymmetryOperation twoFold210Op("x, x-y, -z"); SymmetryOperation sixFoldZOp("x-y , x, z");
testSymmetryOperation(twoFold210Op, testSymmetryOperation(sixFoldZOp,
2, V3D(m_h, m_h-m_k, -m_l), "x,x-y,-z"); 6, V3D((m_h+m_k), -m_h, m_l), "x-y,x,z");
} }
void testPower() void testPower()
...@@ -275,6 +276,26 @@ public: ...@@ -275,6 +276,26 @@ public:
TS_ASSERT_EQUALS(fourFoldZ^4, identity); TS_ASSERT_EQUALS(fourFoldZ^4, identity);
} }
void checkTransposedMatrixMultiply()
{
IntMatrix matrix(3, 3, true);
matrix[1][2] = 3;
matrix[2][0] = -2;
matrix[1][0] = 5;
IntMatrix transposed = matrix.Transpose();
TS_ASSERT_DIFFERS(transposed, matrix);
V3D vector(2, 3, 7);
V3D transposedProduct = transposed * vector;
V3D testProduct = multiplyTransposed(matrix, vector);
TS_ASSERT_EQUALS(transposedProduct, testProduct);
}
private: private:
V3D applyOrderTimes(const SymmetryOperation &symOp, const V3D &vector) V3D applyOrderTimes(const SymmetryOperation &symOp, const V3D &vector)
{ {
...@@ -317,7 +338,7 @@ private: ...@@ -317,7 +338,7 @@ private:
void checkCorrectTransformationGeneralHKL(const SymmetryOperation &symOp, const V3D &expected) void checkCorrectTransformationGeneralHKL(const SymmetryOperation &symOp, const V3D &expected)
{ {
V3D transformed = symOp * m_hkl; V3D transformed = symOp.transformHKL(m_hkl);
TSM_ASSERT_EQUALS(symOp.identifier() + ": Transformed hkl is " + transformed.toString() + ", expected " + expected.toString(), TSM_ASSERT_EQUALS(symOp.identifier() + ": Transformed hkl is " + transformed.toString() + ", expected " + expected.toString(),
transformed, expected); transformed, expected);
......
...@@ -19,7 +19,12 @@ namespace //<unnamed> ...@@ -19,7 +19,12 @@ namespace //<unnamed>
Mantid::Kernel::V3D applyToVector(SymmetryOperation & self, const object& hkl) Mantid::Kernel::V3D applyToVector(SymmetryOperation & self, const object& hkl)
{ {
return self.operator *<Mantid::Kernel::V3D>(Converters::PyObjectToV3D(hkl)()); return self.transformHKL(Converters::PyObjectToV3D(hkl)());
}
Mantid::Kernel::V3D applyToCoordinates(SymmetryOperation & self, const object& coordinates)
{
return self.operator *<Mantid::Kernel::V3D>(Converters::PyObjectToV3D(coordinates)());
} }
} }
...@@ -30,6 +35,8 @@ void export_SymmetryOperation() ...@@ -30,6 +35,8 @@ void export_SymmetryOperation()
class_<SymmetryOperation>("SymmetryOperation") class_<SymmetryOperation>("SymmetryOperation")
.def("order", &SymmetryOperation::order) .def("order", &SymmetryOperation::order)
.def("identifier", &SymmetryOperation::identifier) .def("identifier", &SymmetryOperation::identifier)
.def("transformCoordinates", &applyToCoordinates)
.def("transformHKL", &applyToVector)
.def("apply", &applyToVector); .def("apply", &applyToVector);
} }
...@@ -39,10 +39,15 @@ As mentioned before, point groups can describe the symmetry of a lattice, includ ...@@ -39,10 +39,15 @@ As mentioned before, point groups can describe the symmetry of a lattice, includ
.. math:: .. math::
\mathbf{h}' = \mathbf{S}_i \cdot \mathbf{h} \mathbf{h}' = \mathbf{S}_i \cdot \mathbf{h}
To describe the rotational and translational components of the symmetry operation, a matrix :math:`M_i` and a vector :math:`v_i` are used. In three dimensions :math:`\mathbf{h}` has three elements, so :math:`\mathbf{M_i}` is a :math:`3\times3`-matrix and the symmetry operation is applied like this: To describe the rotational and translational components of the symmetry operation, a matrix :math:`\mathbf{W}_i` and a vector :math:`\mathbf{w}_i` are used. In three dimensions :math:`\mathbf{h}` has three elements, so :math:`\mathbf{W}_i` is a :math:`3\times3`-matrix and the symmetry operation is applied like this:
.. math:: .. math::
\mathbf{h}' = \mathbf{M}_i \cdot \mathbf{h} + \mathbf{v_i} \mathbf{h}' = \mathbf{W}_i^T \cdot \mathbf{h}
Note that the translational component is not used for transforming HKLs and :math:`\mathbf{W}_i` is transposed. Coordinates :math:`\mathbf{x}` are transformed differently, they are affected by the translational component:
.. math::
\mathbf{x}' = \mathbf{W}_i \cdot \mathbf{h} + \mathbf{w}_i
A point group is an ensemble of symmetry operations. The number of operations present in this collection is the so called order :math:`N` of the corresponding point group. Applying all symmetry operations of a point group to a given vector :math:`\mathbf{h}` results in :math:`N` new vectors :math:`\mathbf{h}'`, some of which may be identical (this depends on the symmetry and also on the vectors, e.g. if one or more index is 0). This means that the symmetry operations of a point group generate a set of :math:`N'` (where :math:`N' < N`) non-identical vectors :math:`\mathbf{h}'` for a given vector :math:`\mathbf{h}` - these vectors are called symmetry equivalents. A point group is an ensemble of symmetry operations. The number of operations present in this collection is the so called order :math:`N` of the corresponding point group. Applying all symmetry operations of a point group to a given vector :math:`\mathbf{h}` results in :math:`N` new vectors :math:`\mathbf{h}'`, some of which may be identical (this depends on the symmetry and also on the vectors, e.g. if one or more index is 0). This means that the symmetry operations of a point group generate a set of :math:`N'` (where :math:`N' < N`) non-identical vectors :math:`\mathbf{h}'` for a given vector :math:`\mathbf{h}` - these vectors are called symmetry equivalents.
...@@ -75,7 +80,7 @@ Using these identifiers, ``SymmetryOperation``-objects can be created through a ...@@ -75,7 +80,7 @@ Using these identifiers, ``SymmetryOperation``-objects can be created through a
symOp = SymmetryOperationFactory.createSymOp("x,y,-z") symOp = SymmetryOperationFactory.createSymOp("x,y,-z")
hkl = [1, -1, 3] hkl = [1, -1, 3]
hklPrime = symOp.apply(hkl) hklPrime = symOp.transformHKL(hkl)
print "Mirrored hkl:", hklPrime print "Mirrored hkl:", hklPrime
...@@ -84,7 +89,26 @@ The above code will print the mirrored index: ...@@ -84,7 +89,26 @@ The above code will print the mirrored index:
.. testoutput :: ExSymmetryOperation .. testoutput :: ExSymmetryOperation
Mirrored hkl: [1,-1,-3] Mirrored hkl: [1,-1,-3]
Point groups can also be used to transform coordinates, which are handled a bit differently than vectors (as described above), so there the symmetry operation class has a dedicated method for performing this operation:
.. testcode :: ExSymmetryOperationPoint
from mantid.geometry import SymmetryOperation, SymmetryOperationFactory
symOp = SymmetryOperationFactory.createSymOp("x-y,x,z")
coordinates = [0.3, 0.4, 0.5]
coordinatesPrime = symOp.transformCoordinates(coordinates)
print "Transformed coordinates:", coordinatesPrime
The script prints the transformed coordinates:
.. testoutput :: ExSymmetryOperationPoint
Transformed coordinates: [-0.1,0.3,0.5]
Sometimes it is easier to think about symmetry in terms of the elements that cause certain symmetry. These are commonly described with Herrman-Mauguin symbols. A symmetry element can be derived from the matrix/vector pair that described the symmetry operation, according to the International Tables for Crystallography A, section 11.2. Expanding a bit on the above example, it's possible to get information about the symmetry element associated to the operation ``x,y,-z``: Sometimes it is easier to think about symmetry in terms of the elements that cause certain symmetry. These are commonly described with Herrman-Mauguin symbols. A symmetry element can be derived from the matrix/vector pair that described the symmetry operation, according to the International Tables for Crystallography A, section 11.2. Expanding a bit on the above example, it's possible to get information about the symmetry element associated to the operation ``x,y,-z``:
.. testcode :: ExSymmetryElement .. testcode :: ExSymmetryElement
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment