diff --git a/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/PointGroup.h b/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/PointGroup.h
index 291c774d21c544c3320fa4fce9f6b037208dc3f9..f6ed56e7ba39116aa174b5943d0a0a60d60331cb 100644
--- a/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/PointGroup.h
+++ b/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/PointGroup.h
@@ -60,13 +60,10 @@ protected:
   std::vector<Kernel::V3D> getEquivalentSet(const Kernel::V3D &hkl) const;
 
   CrystalSystem getCrystalSystemFromGroup() const;
-  std::vector<Kernel::IntMatrix> getHKLTranformationMatrices() const;
 
   std::string m_symbolHM;
   std::string m_name;
   CrystalSystem m_crystalSystem;
-
-  std::vector<Kernel::IntMatrix> m_hklTransformationMatrices;
 };
 
 /// Shared pointer to a PointGroup
diff --git a/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/SymmetryOperation.h b/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/SymmetryOperation.h
index f0b6524b61704aae5ad8b3b044e0dea122e86e60..0c06b5c21f23e944d93dd6f6bd7121dff88c7396 100644
--- a/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/SymmetryOperation.h
+++ b/Code/Mantid/Framework/Geometry/inc/MantidGeometry/Crystal/SymmetryOperation.h
@@ -55,10 +55,18 @@ namespace Geometry {
     is overloaded:
 
         SymmetryOperation inversion("-x,-y,-z");
-        V3D hklPrime = inversion * V3D(1, 1, -1); // results in -1, -1, 1
+        V3D transformed = inversion * V3D(1, 1, -1); // results in -1, -1, 1
 
     The operator is templated and works for any object Kernel::IntMatrix can be
-    multiplied with and V3R can be added to (for example V3R, V3D).
+    multiplied with and V3R can be added to (for example V3R, V3D). Note that
+    for the transformation of HKLs, the matrix needs to be transposed. In some
+    cases, such as the example above, it does not matter, because the matrix is
+    identical to its transposed. In general however, transposing is necessary,
+    so there is a dedicated method for that:
+
+        SymmetryOperation sixFold("x-y,x,z");
+        V3D hklPrime = sixFold.transformHKL(V3D(1,0,0)); //
+
 
     A special case is the multiplication of several symmetry operations, which
     can be used to generate new operations:
@@ -137,6 +145,8 @@ public:
     return (m_matrix * operand) + m_vector;
   }
 
+  Kernel::V3D transformHKL(const Kernel::V3D &hkl) const;
+
   SymmetryOperation operator*(const SymmetryOperation &operand) const;
   SymmetryOperation inverse() const;
 
@@ -161,6 +171,8 @@ protected:
 
 MANTID_GEOMETRY_DLL V3R getWrappedVector(const V3R &vector);
 MANTID_GEOMETRY_DLL Kernel::V3D getWrappedVector(const Kernel::V3D &vector);
+MANTID_GEOMETRY_DLL Kernel::V3D
+multiplyTransposed(const Kernel::IntMatrix &matrix, const Kernel::V3D &vector);
 
 } // namespace Geometry
 } // namespace Mantid
diff --git a/Code/Mantid/Framework/Geometry/src/Crystal/PointGroup.cpp b/Code/Mantid/Framework/Geometry/src/Crystal/PointGroup.cpp
index 21be51829290cf21f1324a6650c08376c750d27e..3a521aea6cbea6b5fb300e23465455cc610d0360 100644
--- a/Code/Mantid/Framework/Geometry/src/Crystal/PointGroup.cpp
+++ b/Code/Mantid/Framework/Geometry/src/Crystal/PointGroup.cpp
@@ -57,13 +57,11 @@ PointGroup::PointGroup(const std::string &symbolHM, const Group &group,
     : Group(group), m_symbolHM(symbolHM),
       m_name(symbolHM + " (" + description + ")") {
   m_crystalSystem = getCrystalSystemFromGroup();
-  m_hklTransformationMatrices = getHKLTranformationMatrices();
 }
 
 PointGroup::PointGroup(const PointGroup &other)
     : Group(other), m_symbolHM(other.m_symbolHM), m_name(other.m_name),
-      m_crystalSystem(other.m_crystalSystem),
-      m_hklTransformationMatrices(other.m_hklTransformationMatrices) {}
+      m_crystalSystem(other.m_crystalSystem) {}
 
 PointGroup &PointGroup::operator=(const PointGroup &other) {
   Group::operator=(other);
@@ -71,7 +69,6 @@ PointGroup &PointGroup::operator=(const PointGroup &other) {
   m_symbolHM = other.m_symbolHM;
   m_name = other.m_name;
   m_crystalSystem = other.m_crystalSystem;
-  m_hklTransformationMatrices = other.m_hklTransformationMatrices;
 
   return *this;
 }
@@ -103,10 +100,10 @@ bool PointGroup::isEquivalent(const Kernel::V3D &hkl,
  */
 std::vector<V3D> PointGroup::getEquivalentSet(const Kernel::V3D &hkl) const {
   std::vector<V3D> equivalents;
-  equivalents.reserve(m_hklTransformationMatrices.size());
+  equivalents.reserve(m_allOperations.size());
 
-  for (auto op = m_hklTransformationMatrices.begin(); op != m_hklTransformationMatrices.end(); ++op) {
-    equivalents.push_back((*op) * hkl);
+  for (auto op = m_allOperations.begin(); op != m_allOperations.end(); ++op) {
+    equivalents.push_back((*op).transformHKL(hkl));
   }
 
   std::sort(equivalents.begin(), equivalents.end(), std::greater<V3D>());
@@ -161,27 +158,6 @@ PointGroup::CrystalSystem PointGroup::getCrystalSystemFromGroup() const {
   return Triclinic;
 }
 
-/**
- * Returns transformation matrices for HKLs
- *
- * The transformation matrices for points must be transposed in order to get
- * correct results for transformation of miller indices. This is important
- * in case of hexagonal transformation matrices.
- *
- * @return :: Transformation matrices for hkls.
- */
-std::vector<Kernel::IntMatrix> PointGroup::getHKLTranformationMatrices() const {
-  std::vector<Kernel::IntMatrix> matrices;
-  matrices.reserve(m_allOperations.size());
-
-  for (auto op = m_allOperations.begin(); op != m_allOperations.end(); ++op) {
-    Kernel::IntMatrix matrix = (*op).matrix();
-    matrices.push_back(matrix.Transpose());
-  }
-
-  return matrices;
-}
-
 /** @return a vector with all possible PointGroup objects */
 std::vector<PointGroup_sptr> getAllPointGroups() {
   std::vector<std::string> allSymbols =
diff --git a/Code/Mantid/Framework/Geometry/src/Crystal/SymmetryOperation.cpp b/Code/Mantid/Framework/Geometry/src/Crystal/SymmetryOperation.cpp
index 1eacde990c8190625ef4f9404921612847f43581..451f0223dc3aff055ae43805c43f3502a6372040 100644
--- a/Code/Mantid/Framework/Geometry/src/Crystal/SymmetryOperation.cpp
+++ b/Code/Mantid/Framework/Geometry/src/Crystal/SymmetryOperation.cpp
@@ -94,6 +94,19 @@ bool SymmetryOperation::isIdentity() const {
 /// Returns true if the operation has a translational component.
 bool SymmetryOperation::hasTranslation() const { return m_vector != 0; }
 
+/**
+ * Transforms an index triplet hkl
+ *
+ * Unlike points, vectors are transformed using the transposed transformation
+ * matrix. This method performs the multiplication with the transposed matrix.
+ *
+ * @param hkl :: HKL index triplet to transform
+ * @return :: Transformed index triplet.
+ */
+Kernel::V3D SymmetryOperation::transformHKL(const Kernel::V3D &hkl) const {
+  return multiplyTransposed(m_matrix, hkl);
+}
+
 /**
  * Multiplication operator for combining symmetry operations
  *
@@ -248,5 +261,16 @@ Kernel::V3D getWrappedVector(const Kernel::V3D &vector) {
   return wrappedVector;
 }
 
+/// Multiplies the transposed 3x3-matrix with the vector.
+Kernel::V3D multiplyTransposed(const Kernel::IntMatrix &matrix,
+                               const Kernel::V3D &vector) {
+  return Kernel::V3D(matrix[0][0] * vector.X() + matrix[1][0] * vector.Y() +
+                 matrix[2][0] * vector.Z(),
+             matrix[0][1] * vector.X() + matrix[1][1] * vector.Y() +
+                 matrix[2][1] * vector.Z(),
+             matrix[0][2] * vector.X() + matrix[1][2] * vector.Y() +
+                 matrix[2][2] * vector.Z());
+}
+
 } // namespace Geometry
 } // namespace Mantid
diff --git a/Code/Mantid/Framework/Geometry/test/SymmetryOperationTest.h b/Code/Mantid/Framework/Geometry/test/SymmetryOperationTest.h
index 572f8319310af03a90dfcdabdece0150a2b9d3ba..9a624ac0097247fafe4a6d1b7ea4ee49b50803a9 100644
--- a/Code/Mantid/Framework/Geometry/test/SymmetryOperationTest.h
+++ b/Code/Mantid/Framework/Geometry/test/SymmetryOperationTest.h
@@ -252,10 +252,11 @@ public:
         testSymmetryOperation(twoFoldXOp,
                               2, V3D(m_h, -m_k, -m_l), "x,-y,-z");
 
-        // 2-fold rotation around [210] in hexagonal system
-        SymmetryOperation twoFold210Op("x, x-y, -z");
-        testSymmetryOperation(twoFold210Op,
-                              2, V3D(m_h, m_h-m_k, -m_l), "x,x-y,-z");
+        // 6-fold rotation around [001] in hexagonal
+        SymmetryOperation sixFoldZOp("x-y , x, z");
+        testSymmetryOperation(sixFoldZOp,
+                              6, V3D((m_h+m_k), -m_h, m_l), "x-y,x,z");
+
     }
 
     void testPower()
@@ -275,6 +276,26 @@ public:
         TS_ASSERT_EQUALS(fourFoldZ^4, identity);
     }
 
+    void checkTransposedMatrixMultiply()
+    {
+       IntMatrix matrix(3, 3, true);
+       matrix[1][2] = 3;
+       matrix[2][0] = -2;
+       matrix[1][0] = 5;
+
+       IntMatrix transposed = matrix.Transpose();
+
+       TS_ASSERT_DIFFERS(transposed, matrix);
+
+       V3D vector(2, 3, 7);
+
+       V3D transposedProduct = transposed * vector;
+       V3D testProduct = multiplyTransposed(matrix, vector);
+
+       TS_ASSERT_EQUALS(transposedProduct, testProduct);
+
+    }
+
 private:
     V3D applyOrderTimes(const SymmetryOperation &symOp, const V3D &vector)
     {
@@ -317,7 +338,7 @@ private:
 
     void checkCorrectTransformationGeneralHKL(const SymmetryOperation &symOp, const V3D &expected)
     {
-        V3D transformed = symOp * m_hkl;
+        V3D transformed = symOp.transformHKL(m_hkl);
 
         TSM_ASSERT_EQUALS(symOp.identifier() + ": Transformed hkl is " + transformed.toString() + ", expected " + expected.toString(),
                           transformed, expected);
diff --git a/Code/Mantid/Framework/PythonInterface/mantid/geometry/src/Exports/SymmetryOperation.cpp b/Code/Mantid/Framework/PythonInterface/mantid/geometry/src/Exports/SymmetryOperation.cpp
index 4a8d7074f7573c377d9265c49a65d8089da19aff..0b1d516b7bd51297ce7d29c9051ffd095a408f08 100644
--- a/Code/Mantid/Framework/PythonInterface/mantid/geometry/src/Exports/SymmetryOperation.cpp
+++ b/Code/Mantid/Framework/PythonInterface/mantid/geometry/src/Exports/SymmetryOperation.cpp
@@ -19,7 +19,12 @@ namespace //<unnamed>
 
   Mantid::Kernel::V3D applyToVector(SymmetryOperation & self, const object& hkl)
   {
-    return self.operator *<Mantid::Kernel::V3D>(Converters::PyObjectToV3D(hkl)());
+    return self.transformHKL(Converters::PyObjectToV3D(hkl)());
+  }
+
+  Mantid::Kernel::V3D applyToCoordinates(SymmetryOperation & self, const object& coordinates)
+  {
+    return self.operator *<Mantid::Kernel::V3D>(Converters::PyObjectToV3D(coordinates)());
   }
 }
 
@@ -30,6 +35,8 @@ void export_SymmetryOperation()
   class_<SymmetryOperation>("SymmetryOperation")
           .def("order", &SymmetryOperation::order)
           .def("identifier", &SymmetryOperation::identifier)
+          .def("transformCoordinates", &applyToCoordinates)
+          .def("transformHKL", &applyToVector)
           .def("apply", &applyToVector);
 }
 
diff --git a/Code/Mantid/docs/source/concepts/Point_groups.rst b/Code/Mantid/docs/source/concepts/Point_groups.rst
index 0d4de599b6a74ee705075201eaa1d0899f6ccd1c..e7451f700e5e3cdb5c152776c332e9aec7463c98 100644
--- a/Code/Mantid/docs/source/concepts/Point_groups.rst
+++ b/Code/Mantid/docs/source/concepts/Point_groups.rst
@@ -39,10 +39,15 @@ As mentioned before, point groups can describe the symmetry of a lattice, includ
 .. math::
     \mathbf{h}' = \mathbf{S}_i \cdot \mathbf{h}
     
-To describe the rotational and translational components of the symmetry operation, a matrix :math:`M_i` and a vector :math:`v_i` are used. In three dimensions :math:`\mathbf{h}` has three elements, so :math:`\mathbf{M_i}` is a :math:`3\times3`-matrix and the symmetry operation is applied like this:
+To describe the rotational and translational components of the symmetry operation, a matrix :math:`\mathbf{W}_i` and a vector :math:`\mathbf{w}_i` are used. In three dimensions :math:`\mathbf{h}` has three elements, so :math:`\mathbf{W}_i` is a :math:`3\times3`-matrix and the symmetry operation is applied like this:
 
 .. math::
-    \mathbf{h}' = \mathbf{M}_i \cdot \mathbf{h} + \mathbf{v_i}
+    \mathbf{h}' = \mathbf{W}_i^T \cdot \mathbf{h}
+
+Note that the translational component is not used for transforming HKLs and :math:`\mathbf{W}_i` is transposed. Coordinates :math:`\mathbf{x}` are transformed differently, they are affected by the translational component:
+
+.. math::
+    \mathbf{x}' = \mathbf{W}_i \cdot \mathbf{h} + \mathbf{w}_i
 
 A point group is an ensemble of symmetry operations. The number of operations present in this collection is the so called order :math:`N` of the corresponding point group. Applying all symmetry operations of a point group to a given vector :math:`\mathbf{h}` results in :math:`N` new vectors :math:`\mathbf{h}'`, some of which may be identical (this depends on the symmetry and also on the vectors, e.g. if one or more index is 0). This means that the symmetry operations of a point group generate a set of :math:`N'` (where :math:`N' < N`) non-identical vectors :math:`\mathbf{h}'` for a given vector :math:`\mathbf{h}` - these vectors are called symmetry equivalents.
 
@@ -75,7 +80,7 @@ Using these identifiers, ``SymmetryOperation``-objects can be created through a
     symOp = SymmetryOperationFactory.createSymOp("x,y,-z")
     
     hkl = [1, -1, 3]
-    hklPrime = symOp.apply(hkl)
+    hklPrime = symOp.transformHKL(hkl)
     
     print "Mirrored hkl:", hklPrime
     
@@ -84,7 +89,26 @@ The above code will print the mirrored index:
 .. testoutput :: ExSymmetryOperation
 
     Mirrored hkl: [1,-1,-3]
+    
+Point groups can also be used to transform coordinates, which are handled a bit differently than vectors (as described above), so there the symmetry operation class has a dedicated method for performing this operation:
 
+.. testcode :: ExSymmetryOperationPoint
+
+    from mantid.geometry import SymmetryOperation, SymmetryOperationFactory
+    
+    symOp = SymmetryOperationFactory.createSymOp("x-y,x,z")
+    
+    coordinates = [0.3, 0.4, 0.5]
+    coordinatesPrime = symOp.transformCoordinates(coordinates)
+    
+    print "Transformed coordinates:", coordinatesPrime
+    
+The script prints the transformed coordinates:
+
+.. testoutput :: ExSymmetryOperationPoint
+
+    Transformed coordinates: [-0.1,0.3,0.5]
+    
 Sometimes it is easier to think about symmetry in terms of the elements that cause certain symmetry. These are commonly described with Herrman-Mauguin symbols. A symmetry element can be derived from the matrix/vector pair that described the symmetry operation, according to the International Tables for Crystallography A, section 11.2. Expanding a bit on the above example, it's possible to get information about the symmetry element associated to the operation ``x,y,-z``:
 
 .. testcode :: ExSymmetryElement