Newer
Older
Lynch, Vickie
committed
//----------------------------------------------------------------------
// Includes
//----------------------------------------------------------------------
#include "MantidDataHandling/LoadIsawDetCal.h"
Lynch, Vickie
committed
#include "MantidAPI/FileProperty.h"
#include "MantidAPI/TableRow.h"
#include "MantidDataObjects/Workspace2D.h"
#include "MantidDataObjects/EventWorkspace.h"
#include "MantidDataObjects/EventList.h"
#include "MantidDataObjects/PeaksWorkspace.h"
Lynch, Vickie
committed
#include "MantidAPI/TextAxis.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/ArrayProperty.h"
#include "MantidKernel/Exception.h"
Lynch, Vickie
committed
#include "MantidGeometry/Instrument/RectangularDetector.h"
#include "MantidGeometry/Instrument/ObjCompAssembly.h"
#include "MantidGeometry/Instrument/ComponentHelper.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/V3D.h"
Lynch, Vickie
committed
#include <Poco/File.h>
#include <sstream>
Lynch, Vickie
committed
#include <cmath>
#include <iomanip>
Russell Taylor
committed
#include "MantidAPI/WorkspaceValidators.h"
Lynch, Vickie
committed
namespace Mantid {
namespace DataHandling {
Lynch, Vickie
committed
// Register the class into the algorithm factory
DECLARE_ALGORITHM(LoadIsawDetCal)
Lynch, Vickie
committed
using namespace Kernel;
using namespace API;
using namespace Geometry;
using namespace DataObjects;
Lynch, Vickie
committed
/// Constructor
LoadIsawDetCal::LoadIsawDetCal() : API::Algorithm() {}
Lynch, Vickie
committed
/// Destructor
LoadIsawDetCal::~LoadIsawDetCal() {}
Lynch, Vickie
committed
/**
* The intensity function calculates the intensity as a function of detector
* position and angles
Janik Zikovsky
committed
* @param x :: The shift along the X-axis
* @param y :: The shift along the Y-axis
* @param z :: The shift along the Z-axis
* @param detname :: The detector name
* @param ws :: The workspace
Lynch, Vickie
committed
*/
void LoadIsawDetCal::center(double x, double y, double z, std::string detname,
API::Workspace_sptr ws) {
MatrixWorkspace_sptr inputW =
boost::dynamic_pointer_cast<MatrixWorkspace>(ws);
PeaksWorkspace_sptr inputP = boost::dynamic_pointer_cast<PeaksWorkspace>(ws);
// Get some stuff from the input workspace
Instrument_sptr inst;
if (inputW) {
inst = boost::const_pointer_cast<Instrument>(inputW->getInstrument());
} else if (inputP) {
inst = boost::const_pointer_cast<Instrument>(inputP->getInstrument());
}
IComponent_const_sptr comp = inst->getComponentByName(detname);
if (comp == 0) {
std::ostringstream mess;
mess << "Component with name " << detname << " was not found.";
g_log.error(mess.str());
throw std::runtime_error(mess.str());
}
// Do the move
using namespace Geometry::ComponentHelper;
TransformType positionType = Absolute;
if (inputW) {
Geometry::ParameterMap &pmap = inputW->instrumentParameters();
Geometry::ComponentHelper::moveComponent(*comp, pmap, V3D(x, y, z),
positionType);
Geometry::ParameterMap &pmap = inputP->instrumentParameters();
Geometry::ComponentHelper::moveComponent(*comp, pmap, V3D(x, y, z),
positionType);
}
}
/** Initialisation method
*/
void LoadIsawDetCal::init() {
declareProperty(new WorkspaceProperty<Workspace>(
"InputWorkspace", "", Direction::InOut,
boost::make_shared<InstrumentValidator>()),
"The workspace containing the geometry to be calibrated.");
Lynch, Vickie
committed
declareProperty(
new API::FileProperty("Filename", "", API::FileProperty::Load, ".DetCal"),
"The input filename of the ISAW DetCal file (East banks for SNAP) ");
declareProperty(new API::FileProperty("Filename2", "",
API::FileProperty::OptionalLoad,
".DetCal"),
"The input filename of the second ISAW DetCal file (West "
"banks for SNAP) ");
declareProperty("TimeOffset", 0.0, "Time Offset", Direction::Output);
}
/** Executes the algorithm
*
* @throw runtime_error Thrown if algorithm cannot execute
*/
void LoadIsawDetCal::exec() {
// Get the input workspace
Workspace_sptr ws = getProperty("InputWorkspace");
MatrixWorkspace_sptr inputW =
boost::dynamic_pointer_cast<MatrixWorkspace>(ws);
PeaksWorkspace_sptr inputP = boost::dynamic_pointer_cast<PeaksWorkspace>(ws);
// Get some stuff from the input workspace
Instrument_sptr inst;
if (inputW) {
inst = boost::const_pointer_cast<Instrument>(inputW->getInstrument());
} else if (inputP) {
inst = boost::const_pointer_cast<Instrument>(inputP->getInstrument());
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
std::string instname = inst->getName();
// set-up minimizer
std::string filename = getProperty("Filename");
std::string filename2 = getProperty("Filename2");
// Output summary to log file
int idnum = 0, count, id, nrows, ncols;
double width, height, depth, detd, x, y, z, base_x, base_y, base_z, up_x,
up_y, up_z;
std::ifstream input(filename.c_str(), std::ios_base::in);
std::string line;
std::string detname;
// Build a list of Rectangular Detectors
std::vector<boost::shared_ptr<RectangularDetector>> detList;
for (int i = 0; i < inst->nelements(); i++) {
boost::shared_ptr<RectangularDetector> det;
boost::shared_ptr<ICompAssembly> assem;
boost::shared_ptr<ICompAssembly> assem2;
det = boost::dynamic_pointer_cast<RectangularDetector>((*inst)[i]);
if (det) {
detList.push_back(det);
} else {
// Also, look in the first sub-level for RectangularDetectors (e.g. PG3).
// We are not doing a full recursive search since that will be very long
// for lots of pixels.
assem = boost::dynamic_pointer_cast<ICompAssembly>((*inst)[i]);
if (assem) {
for (int j = 0; j < assem->nelements(); j++) {
det = boost::dynamic_pointer_cast<RectangularDetector>((*assem)[j]);
if (det) {
detList.push_back(det);
} else {
// Also, look in the second sub-level for RectangularDetectors (e.g.
// PG3).
// We are not doing a full recursive search since that will be very
// long for lots of pixels.
assem2 = boost::dynamic_pointer_cast<ICompAssembly>((*assem)[j]);
if (assem2) {
for (int k = 0; k < assem2->nelements(); k++) {
det = boost::dynamic_pointer_cast<RectangularDetector>(
(*assem2)[k]);
if (det) {
detList.push_back(det);
Lynch, Vickie
committed
}
}
}
Lynch, Vickie
committed
}
}
}
}
std::set<int> uniqueBanks; // for CORELLI and WISH
std::string bankPart = "bank";
if (instname.compare("WISH") == 0)
bankPart = "WISHpanel";
if (detList.empty()) {
// Get all children
std::vector<IComponent_const_sptr> comps;
inst->getChildren(comps, true);
for (size_t i = 0; i < comps.size(); i++) {
std::string bankName = comps[i]->getName();
boost::trim(bankName);
boost::erase_all(bankName, bankPart);
int bank = 0;
Strings::convert(bankName, bank);
// Track unique bank numbers
uniqueBanks.insert(bank);
}
}
while (std::getline(input, line)) {
if (line[0] == '7') {
double mL1, mT0;
std::stringstream(line) >> count >> mL1 >> mT0;
setProperty("TimeOffset", mT0);
// Convert from cm to m
if (instname.compare("WISH") == 0)
center(0.0, 0.0, -0.01 * mL1, "undulator", ws);
else
center(0.0, 0.0, -0.01 * mL1, "moderator", ws);
// mT0 and time of flight are both in microsec
API::Run &run = inputW->mutableRun();
// Check to see if LoadEventNexus had T0 from TOPAZ Parameter file
if (!run.hasProperty("T0")) {
IAlgorithm_sptr alg1 = createChildAlgorithm("ChangeBinOffset");
alg1->setProperty<MatrixWorkspace_sptr>("InputWorkspace", inputW);
alg1->setProperty<MatrixWorkspace_sptr>("OutputWorkspace", inputW);
alg1->setProperty("Offset", mT0);
alg1->executeAsChildAlg();
inputW = alg1->getProperty("OutputWorkspace");
// set T0 in the run parameters
run.addProperty<double>("T0", mT0, true);
}
Lynch, Vickie
committed
if (line[0] != '5')
continue;
std::stringstream(line) >> count >> id >> nrows >> ncols >> width >>
height >> depth >> detd >> x >> y >> z >> base_x >> base_y >> base_z >>
up_x >> up_y >> up_z;
if (id == 10 && instname == "SNAP" && filename2 != "") {
input.close();
input.open(filename2.c_str());
while (std::getline(input, line)) {
if (line[0] != '5')
continue;
std::stringstream(line) >> count >> id >> nrows >> ncols >> width >>
height >> depth >> detd >> x >> y >> z >> base_x >> base_y >>
base_z >> up_x >> up_y >> up_z;
if (id == 10)
break;
}
boost::shared_ptr<RectangularDetector> det;
std::ostringstream Detbank;
Detbank << "bank" << id;
// Loop through detectors to match names with number from DetCal file
for (int i = 0; i < static_cast<int>(detList.size()); i++)
if (detList[i]->getName().compare(Detbank.str()) == 0)
idnum = i;
if (idnum >= 0)
det = detList[idnum];
detname = det->getName();
IAlgorithm_sptr alg1 = createChildAlgorithm("ResizeRectangularDetector");
alg1->setProperty<Workspace_sptr>("Workspace", ws);
alg1->setProperty("ComponentName", detname);
// Convert from cm to m
alg1->setProperty("ScaleX", 0.01 * width / det->xsize());
alg1->setProperty("ScaleY", 0.01 * height / det->ysize());
alg1->executeAsChildAlg();
// Convert from cm to m
x *= 0.01;
y *= 0.01;
z *= 0.01;
center(x, y, z, detname, ws);
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// These are the ISAW axes
V3D rX = V3D(base_x, base_y, base_z);
rX.normalize();
V3D rY = V3D(up_x, up_y, up_z);
rY.normalize();
// V3D rZ=rX.cross_prod(rY);
// These are the original axes
V3D oX = V3D(1., 0., 0.);
V3D oY = V3D(0., 1., 0.);
V3D oZ = V3D(0., 0., 1.);
// Axis that rotates X
V3D ax1 = oX.cross_prod(rX);
// Rotation angle from oX to rX
double angle1 = oX.angle(rX);
angle1 *= 180.0 / M_PI;
// Create the first quaternion
Quat Q1(angle1, ax1);
// Now we rotate the original Y using Q1
V3D roY = oY;
Q1.rotate(roY);
// Find the axis that rotates oYr onto rY
V3D ax2 = roY.cross_prod(rY);
double angle2 = roY.angle(rY);
angle2 *= 180.0 / M_PI;
Quat Q2(angle2, ax2);
// Final = those two rotations in succession; Q1 is done first.
Quat Rot = Q2 * Q1;
// Then find the corresponding relative position
boost::shared_ptr<const IComponent> comp =
inst->getComponentByName(detname);
boost::shared_ptr<const IComponent> parent = comp->getParent();
if (parent) {
Quat rot0 = parent->getRelativeRot();
rot0.inverse();
Rot = Rot * rot0;
}
boost::shared_ptr<const IComponent> grandparent = parent->getParent();
if (grandparent) {
Quat rot0 = grandparent->getRelativeRot();
rot0.inverse();
Rot = Rot * rot0;
if (inputW) {
Geometry::ParameterMap &pmap = inputW->instrumentParameters();
// Set or overwrite "rot" instrument parameter.
pmap.addQuat(comp.get(), "rot", Rot);
Geometry::ParameterMap &pmap = inputP->instrumentParameters();
// Set or overwrite "rot" instrument parameter.
pmap.addQuat(comp.get(), "rot", Rot);
}
// Loop through tube detectors to match names with number from DetCal file
idnum = -1;
std::set<int>::iterator it;
for (it = uniqueBanks.begin(); it != uniqueBanks.end(); ++it)
if (*it == id)
idnum = *it;
if (idnum < 0)
continue;
std::ostringstream mess;
if (bankPart == "WISHpanel" && idnum < 10)
mess << bankPart << "0" << idnum;
else
mess << bankPart << idnum;
std::string bankName = mess.str();
// Retrieve it
boost::shared_ptr<const IComponent> comp =
inst->getComponentByName(bankName);
if (instname.compare("CORELLI") ==
0) // for Corelli with sixteenpack under bank
{
std::vector<Geometry::IComponent_const_sptr> children;
boost::shared_ptr<const Geometry::ICompAssembly> asmb =
boost::dynamic_pointer_cast<const Geometry::ICompAssembly>(
inst->getComponentByName(bankName));
asmb->getChildren(children, false);
comp = children[0];
}
if (comp) {
// Convert from cm to m
x *= 0.01;
y *= 0.01;
z *= 0.01;
detname = comp->getFullName();
center(x, y, z, detname, ws);
// These are the ISAW axes
V3D rX = V3D(base_x, base_y, base_z);
rX.normalize();
V3D rY = V3D(up_x, up_y, up_z);
rY.normalize();
// V3D rZ=rX.cross_prod(rY);
// These are the original axes
V3D oX = V3D(1., 0., 0.);
V3D oY = V3D(0., 1., 0.);
V3D oZ = V3D(0., 0., 1.);
// Axis that rotates X
V3D ax1 = oX.cross_prod(rX);
// Rotation angle from oX to rX
double angle1 = oX.angle(rX);
angle1 *= 180.0 / M_PI;
// TODO: find out why this is needed for WISH
if (instname == "WISH")
angle1 += 180.0;
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
// Create the first quaternion
Quat Q1(angle1, ax1);
// Now we rotate the original Y using Q1
V3D roY = oY;
Q1.rotate(roY);
// Find the axis that rotates oYr onto rY
V3D ax2 = roY.cross_prod(rY);
double angle2 = roY.angle(rY);
angle2 *= 180.0 / M_PI;
Quat Q2(angle2, ax2);
// Final = those two rotations in succession; Q1 is done first.
Quat Rot = Q2 * Q1;
boost::shared_ptr<const IComponent> parent = comp->getParent();
if (parent) {
Quat rot0 = parent->getRelativeRot();
rot0.inverse();
Rot = Rot * rot0;
}
boost::shared_ptr<const IComponent> grandparent = parent->getParent();
if (grandparent) {
Quat rot0 = grandparent->getRelativeRot();
rot0.inverse();
Rot = Rot * rot0;
}
if (inputW) {
Geometry::ParameterMap &pmap = inputW->instrumentParameters();
// Set or overwrite "rot" instrument parameter.
pmap.addQuat(comp.get(), "rot", Rot);
Geometry::ParameterMap &pmap = inputP->instrumentParameters();
// Set or overwrite "rot" instrument parameter.
pmap.addQuat(comp.get(), "rot", Rot);
Lynch, Vickie
committed
}
setProperty("InputWorkspace", ws);
Lynch, Vickie
committed
Lynch, Vickie
committed
} // namespace Algorithm
} // namespace Mantid