Newer
Older
# Bayes routines
# Fortran programs use fixed length arrays whereas Python has variable lenght lists
# Input : the Python list is padded to Fortrans length using procedure PadArray
# Output : the Fortran numpy array is sliced to Python length using dataY = yout[:ny]
from IndirectImport import *
if is_supported_f2py_platform():
QLr = import_f2py("QLres")
QLd = import_f2py("QLdata")
Qse = import_f2py("QLse")
Que = import_f2py("Quest")
resnorm = import_f2py("ResNorm")
else:
from mantid.simpleapi import *
from mantid import config, logger, mtd
import sys, platform, math, os.path, numpy as np
mp = import_mantidplot()
def readASCIIFile(file_name):
workdir = config['defaultsave.directory']
file_path = os.path.join(workdir, file_name)
asc = []
with open(file_path, 'r') as handle:
for line in handle:
line = line.rstrip()
asc.append(line)
return asc
def CalcErange(inWS,ns,erange,binWidth):
array_len = 4096
binWidth = int(binWidth)
bnorm = 1.0/binWidth
N,X,Y,E = GetXYE(inWS,ns,array_len)
Xdata = mtd[inWS].readX(0)
#get all x values within the energy range
rangeMask = (Xdata >= erange[0]) & (Xdata <= erange[1])
Xin = Xdata[rangeMask]
#get indicies of the bounds of our energy range
minIndex = np.where(Xdata==Xin[0])[0][0]+1
maxIndex = np.where(Xdata==Xin[-1])[0][0]
#reshape array into sublists of bins
Xin = Xin.reshape(len(Xin)/binWidth, binWidth)
#sum and normalise values in bins
Xout = [sum(bin)*bnorm for bin in Xin]
nout = [nbins, minIndex, maxIndex]
#pad array for use in Fortran code
Xout = PadArray(Xout,array_len)
return nout,bnorm,Xout,X,Y,E
def GetXYE(inWS,n,array_len):
Xin = mtd[inWS].readX(n)
N = len(Xin)-1 # get no. points from length of x array
Yin = mtd[inWS].readY(n)
Ein = mtd[inWS].readE(n)
X=PadArray(Xin,array_len)
Y=PadArray(Yin,array_len)
E=PadArray(Ein,array_len)
def GetResNorm(resnormWS,ngrp):
dtnorm = mtd[resnormWS+'_Intensity'].readY(0)
xscale = mtd[resnormWS+'_Stretch'].readY(0)
dtnorm = []
xscale = []
for m in range(0,ngrp):
dtnorm.append(1.0)
xscale.append(1.0)
dtn=PadArray(dtnorm,51) # pad for Fortran call
xsc=PadArray(xscale,51)
def ReadNormFile(readRes,resnormWS,nsam,Verbose): # get norm & scale values
if readRes: # use ResNorm file option=o_res
Xin = mtd[resnormWS+'_Intensity'].readX(0)
nrm = len(Xin) # no. points from length of x array
raise ValueError('ResNorm file has no Intensity points')
Xin = mtd[resnormWS+'_Stretch'].readX(0) # no. points from length of x array
if len(Xin) == 0:
raise ValueError('ResNorm file has no xscale points')
if nrm != nsam: # check that no. groups are the same
raise ValueError('ResNorm groups (' +str(nrm) + ') not = Sample (' +str(nsam) +')')
dtn,xsc = GetResNorm(resnormWS,0)
# do not use ResNorm file
dtn,xsc = GetResNorm(resnormWS,nsam)
#Reads in a width ASCII file
def ReadWidthFile(readWidth,widthFile,numSampleGroups,Verbose):
widthY = []
widthE = []
if readWidth:
logger.notice('Width file is ' + widthFile)
# read ascii based width file
try:
wfPath = FileFinder.getFullPath(widthFile)
handle = open(wfPath, 'r')
asc = []
for line in handle:
line = line.rstrip()
asc.append(line)
handle.close()
except Exception, e:
raise ValueError('Failed to read width file')
numLines = len(asc)
if numLines == 0:
raise ValueError('No groups in width file')
if numLines != numSampleGroups: # check that no. groups are the same
raise ValueError('Width groups (' +str(numLines) + ') not = Sample (' +str(numSampleGroups) +')')
else:
# no file: just use constant values
widthY = np.zeros(numSampleGroups)
widthE = np.zeros(numSampleGroups)
# pad for Fortran call
widthY = PadArray(widthY,51)
widthE = PadArray(widthE,51)
return widthY, widthE
def QLRun(program,samWS,resWS,resnormWS,erange,nbins,Fit,wfile,Loop,Verbose,Plot,Save):
#expand fit options
elastic, background, width, resnorm = Fit
#convert true/false to 1/0 for fortran
o_el = 1 if elastic else 0
o_w1 = 1 if width else 0
o_res = 1 if resnorm else 0
#fortran code uses background choices defined using the following numbers
if background == 'Sloping':
o_bgd = 2
elif background == 'Flat':
o_bgd = 1
elif background == 'Zero':
o_bgd = 0
fitOp = [o_el, o_bgd, o_w1, o_res]
workdir = getDefaultWorkingDirectory()
facility = config['default.facility']
array_len = 4096 # length of array in Fortran
CheckXrange(erange,'Energy')
Samuel Jackson
committed
if Verbose:
logger.notice('Sample is ' + samWS)
logger.notice('Resolution is ' + resWS)
if facility == 'ISIS':
CheckAnalysers(samWS,resWS,Verbose)
efix = getEfixed(samWS)
theta,Q = GetThetaQ(samWS)
nsam,ntc = CheckHistZero(samWS)
totalNoSam = nsam
#check if we're performing a sequential fit
if Loop != True:
nsam = 1
nres,ntr = CheckHistZero(resWS)
prog = 'QLr' # res file
prog = 'QLd' # data file
CheckHistSame(samWS,'Sample',resWS,'Resolution')
elif program == 'QSe':
prog = 'QSe' # res file
raise ValueError('Stretched Exp ONLY works with RES file')
if Verbose:
logger.notice('Version is ' +prog)
logger.notice(' Number of spectra = '+str(nsam))
logger.notice(' Erange : '+str(erange[0])+' to '+str(erange[1]))
Wy,We = ReadWidthFile(width,wfile,totalNoSam,Verbose)
dtn,xsc = ReadNormFile(resnorm,resnormWS,totalNoSam,Verbose)
probWS = fname + '_Prob'
fitWS = fname + '_Fit'
datWS = fname + '_Data'
wrks=os.path.join(workdir, samWS[:-4])
logger.notice(' lptfile : '+wrks+'_'+prog+'.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ')
wrkr=resWS
wrkr.ljust(140,' ')
wrk = [wrks, wrkr]
Samuel Jackson
committed
# initialise probability list
if program == 'QL':
xQ = np.array([Q[0]])
for m in range(1,nsam):
xQ = np.append(xQ,Q[m])
xProb = xQ
xProb = np.append(xProb,xQ)
xProb = np.append(xProb,xQ)
eProb = np.zeros(3*nsam)
group = ''
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
nsp = m+1
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
if prog == 'QLd':
mm = m
else:
mm = 0
Nb,Xb,Yb,Eb = GetXYE(resWS,mm,array_len) # get resolution data
numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin]
rscl = 1.0
reals = [efix, theta[m], rscl, bnorm]
if prog == 'QLr':
nd,xout,yout,eout,yfit,yprob=QLr.qlres(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Wy,We,dtn,xsc,
wrks,wrkr,lwrk)
message = ' Log(prob) : '+str(yprob[0])+' '+str(yprob[1])+' '+str(yprob[2])+' '+str(yprob[3])
if Verbose:
logger.notice(message)
if prog == 'QLd':
nd,xout,yout,eout,yfit,yprob=QLd.qldata(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Eb,Wy,We,
wrks,wrkr,lwrk)
message = ' Log(prob) : '+str(yprob[0])+' '+str(yprob[1])+' '+str(yprob[2])+' '+str(yprob[3])
if Verbose:
logger.notice(message)
if prog == 'QSe':
nd,xout,yout,eout,yfit,yprob=Qse.qlstexp(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Wy,We,dtn,xsc,
wrks,wrkr,lwrk)
dataX = xout[:nd]
dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
yfit_list = np.split(yfit[:4*nd],4)
dataF0 = yfit_list[0]
dataF1 = yfit_list[1]
dataF2 = yfit_list[2]
dataF3 = yfit_list[3]
datX = dataX
datY = yout[:nd]
datE = eout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,dataF1[:nd])
datE = np.append(datE,dataG)
res1 = dataF1[:nd] - yout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,res1)
datE = np.append(datE,dataG)
nsp = 3
names = 'data,fit.1,diff.1'
res_plot = [0, 1, 2]
datX = np.append(datX,dataX)
datY = np.append(datY,dataF2[:nd])
datE = np.append(datE,dataG)
res2 = dataF2[:nd] - yout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,res2)
datE = np.append(datE,dataG)
nsp += 2
names += ',fit.2,diff.2'
res_plot.append(4)
prob0.append(yprob[0])
prob1.append(yprob[1])
prob2.append(yprob[2])
# create result workspace
fitWS = fname+'_Workspaces'
fout = fname+'_Workspace_'+ str(m)
CreateWorkspace(OutputWorkspace=fout, DataX=datX, DataY=datY, DataE=datE,
Nspec=nsp, UnitX='DeltaE', VerticalAxisUnit='Text', VerticalAxisValues=names)
# append workspace to list of results
group += fout + ','
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS)
yPr0 = np.array([prob0[0]])
yPr1 = np.array([prob1[0]])
yPr2 = np.array([prob2[0]])
for m in range(1,nsam):
yPr0 = np.append(yPr0,prob0[m])
yPr1 = np.append(yPr1,prob1[m])
yPr2 = np.append(yPr2,prob2[m])
yProb = yPr0
yProb = np.append(yProb,yPr1)
yProb = np.append(yProb,yPr2)
CreateWorkspace(OutputWorkspace=probWS, DataX=xProb, DataY=yProb, DataE=eProb,
outWS = C2Fw(samWS[:-4],fname)
#Add some sample logs to the output workspaces
CopyLogs(InputWorkspace=samWS, OutputWorkspace=outWS)
QLAddSampleLogs(outWS, resWS, prog, background, elastic, erange, (nbin, nrbin), resnormWS, wfile)
CopyLogs(InputWorkspace=samWS, OutputWorkspace=fitWS)
QLAddSampleLogs(fitWS, resWS, prog, background, elastic, erange, (nbin, nrbin), resnormWS, wfile)
if Save:
fit_path = os.path.join(workdir,fitWS+'.nxs')
SaveNexusProcessed(InputWorkspace=fitWS, Filename=fit_path)
out_path = os.path.join(workdir, outWS+'.nxs') # path name for nxs file
SaveNexusProcessed(InputWorkspace=outWS, Filename=out_path)
logger.notice('Output fit file created : ' + fit_path)
logger.notice('Output paramter file created : ' + out_path)
def QLAddSampleLogs(workspace, res_workspace, fit_program, background, elastic_peak, e_range, binning, resnorm_workspace, width_file):
sample_binning, res_binning = binning
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="res_file", LogType="String", LogText=res_workspace)
AddSampleLog(Workspace=workspace, LogName="fit_program", LogType="String", LogText=fit_program)
AddSampleLog(Workspace=workspace, LogName="background", LogType="String", LogText=str(background))
AddSampleLog(Workspace=workspace, LogName="elastic_peak", LogType="String", LogText=str(elastic_peak))
AddSampleLog(Workspace=workspace, LogName="energy_min", LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max", LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="sample_binning", LogType="Number", LogText=str(sample_binning))
AddSampleLog(Workspace=workspace, LogName="resolution_binning", LogType="Number", LogText=str(res_binning))
resnorm_used = (resnorm_workspace != '')
AddSampleLog(Workspace=workspace, LogName="resnorm", LogType="String", LogText=str(resnorm_used))
if resnorm_used:
AddSampleLog(Workspace=workspace, LogName="resnorm_file", LogType="String", LogText=resnorm_workspace)
width_file_used = (width_file != '')
AddSampleLog(Workspace=workspace, LogName="width", LogType="String", LogText=str(width_file_used))
if width_file_used:
AddSampleLog(Workspace=workspace, LogName="width_file", LogType="String", LogText=width_file)
def yield_floats(block):
#yield a list of floats from a list of lines of text
#encapsulates the iteration over a block of lines
for line in block:
yield ExtractFloat(line)
def read_ql_file(file_name, nl):
#offet to ignore header
header_offset = 8
block_size = 4+nl*3
asc = readASCIIFile(file_name)
#extract number of blocks from the file header
num_blocks = int(ExtractFloat(asc[3])[0])
q_data = []
amp_data, FWHM_data, height_data = [], [], []
amp_error, FWHM_error, height_error = [], [], []
#iterate over each block of fit parameters in the file
#each block corresponds to a single column in the final workspace
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
for block_num in xrange(num_blocks):
lower_index = header_offset+(block_size*block_num)
upper_index = lower_index+block_size
#create iterator for each line in the block
line_pointer = yield_floats(asc[lower_index:upper_index])
#Q,AMAX,HWHM,BSCL,GSCL
line = line_pointer.next()
Q, AMAX, HWHM, BSCL, GSCL = line
q_data.append(Q)
#A0,A1,A2,A4
line = line_pointer.next()
block_height = AMAX*line[0]
#parse peak data from block
block_FWHM = []
block_amplitude = []
for i in range(nl):
#Amplitude,FWHM for each peak
line = line_pointer.next()
amp = AMAX*line[0]
FWHM = 2.*HWHM*line[1]
block_amplitude.append(amp)
block_FWHM.append(FWHM)
#next parse error data from block
#SIG0
line = line_pointer.next()
block_height_e = line[0]
block_FWHM_e = []
block_amplitude_e = []
for i in range(nl):
#Amplitude error,FWHM error for each peak
#SIGIK
line = line_pointer.next()
amp = AMAX*math.sqrt(math.fabs(line[0])+1.0e-20)
block_amplitude_e.append(amp)
#SIGFK
line = line_pointer.next()
FWHM = 2.0*HWHM*math.sqrt(math.fabs(line[0])+1.0e-20)
block_FWHM_e.append(FWHM)
amp_data.append(block_amplitude)
FWHM_data.append(block_FWHM)
height_data.append(block_height)
amp_error.append(block_amplitude_e)
FWHM_error.append(block_FWHM_e)
height_error.append(block_height_e)
return q_data, (amp_data, FWHM_data, height_data), (amp_error, FWHM_error, height_error)
output_workspace = sname+'_Result'
axis_names = []
x, y, e = [], [], []
num_params = nl*3+1
num_spectra += num_params
amplitude_data, width_data = [], []
amplitude_error, width_error = [], []
#read data from file output by fortran code
file_name = sname + '.ql' +str(nl)
x_data, peak_data, peak_error = read_ql_file(file_name, nl)
amplitude_data, width_data, height_data = peak_data
amplitude_error, width_error, height_error = peak_error
#transpose y and e data into workspace rows
amplitude_data, width_data = np.asarray(amplitude_data).T, np.asarray(width_data).T
amplitude_error, width_error = np.asarray(amplitude_error).T, np.asarray(width_error).T
height_data, height_error = np.asarray(height_data), np.asarray(height_error)
#calculate EISF and EISF error
total = height_data+amplitude_data
EISF_data = height_data / total
total_error = height_error**2 + amplitude_error**2
EISF_error = EISF_data * np.sqrt((height_error**2/height_data**2) + (total_error/total**2))
#interlace amplitudes and widths of the peaks
y.append(np.asarray(height_data))
for amp, width, EISF in zip(amplitude_data, width_data, EISF_data):
y.append(amp)
y.append(width)
#iterlace amplitude and width errors of the peaks
e.append(np.asarray(height_error))
for amp, width, EISF in zip(amplitude_error, width_error, EISF_error):
e.append(amp)
e.append(width)
#create x data and axis names for each function
axis_names.append('f'+str(nl)+'.f0.'+'Height')
x.append(x_data)
for j in range(1,nl+1):
axis_names.append('f'+str(nl)+'.f'+str(j)+'.Amplitude')
axis_names.append('f'+str(nl)+'.f'+str(j)+'.FWHM')
axis_names.append('f'+str(nl)+'.f'+str(j)+'.EISF')
x.append(x_data)
x = np.asarray(x).flatten()
y = np.asarray(y).flatten()
e = np.asarray(e).flatten()
CreateWorkspace(OutputWorkspace=output_workspace, DataX=x, DataY=y, DataE=e, Nspec=num_spectra,
UnitX='MomentumTransfer', YUnitLabel='', VerticalAxisUnit='Text', VerticalAxisValues=axis_names)
Samuel Jackson
committed
return output_workspace
def SeBlock(a,first): #read Ascii block of Integers
line1 = a[first]
first += 1
val = ExtractFloat(a[first]) #Q,AMAX,HWHM
Q = val[0]
AMAX = val[1]
HWHM = val[2]
first += 1
val = ExtractFloat(a[first]) #AI,FWHM first peak
fw = [2.*HWHM*val[1]]
int = [AMAX*val[0]]
first += 1
int.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
be.append(math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
return first,Q,int0,fw,int,be #values as list
def C2Se(sname):
prog = 'QSe'
outWS = sname+'_Result'
asc = readASCIIFile(sname+'.qse')
lasc = len(asc)
var = asc[3].split() #split line on spaces
nspec = var[0]
ndat = var[1]
first = 7
Xout = []
Yf = []
Ef = []
Yi = []
Ei = []
Yb = []
Eb = []
ns = int(nspec)
dataX = np.array([])
dataY = np.array([])
dataE = np.array([])
for m in range(0,ns):
first,Q,int0,fw,it,be = SeBlock(asc,first)
Xout.append(Q)
Yf.append(fw[0])
Ef.append(fw[1])
Yi.append(it[0])
Ei.append(it[1])
Yb.append(be[0])
Eb.append(be[1])
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi))
dataE = np.append(dataE,np.array(Ei))
Vaxis.append('f1.Amplitude')
dataX = np.append(dataX, np.array(Xout))
dataY = np.append(dataY, np.array(Yf))
dataE = np.append(dataE, np.array(Ef))
nhist += 1
Vaxis.append('f1.FWHM')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yb))
dataE = np.append(dataE,np.array(Eb))
Vaxis.append('f1.Beta')
logger.notice('Vaxis=' + str(Vaxis))
CreateWorkspace(OutputWorkspace=outWS, DataX=dataX, DataY=dataY, DataE=dataE, Nspec=nhist,
UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis, YUnitLabel='')
return outWS
def QuasiPlot(ws_stem,plot_type,res_plot,sequential):
if plot_type:
if sequential:
ws_name = ws_stem + '_Workspace'
num_spectra = mtd[ws_name].getNumberHistograms()
if (plot_type == 'Prob' or plot_type == 'All'):
prob_ws = ws_stem+'_Prob'
if prob_ws in mtd.getObjectNames():
mp.plotSpectrum(prob_ws,[1,2],False)
if (plot_type == 'Amplitude' or plot_type == 'All'):
spectra_indicies = [i for i in range(num_spectra) if 'Amplitude' in mtd[ws_name].getAxis(1).label(i)]
plotSpectra(ws_name, 'Amplitude', indicies=spectra_indicies[:3])
if (plot_type == 'FWHM' or plot_type == 'All'):
spectra_indicies = [i for i in range(num_spectra) if 'FWHM' in mtd[ws_name].getAxis(1).label(i)]
plotSpectra(ws_name, 'FWHM', indicies=spectra_indicies[:3])
if (plot_type == 'Beta' or plot_type == 'All'):
spectra_indicies = [i for i in range(num_spectra) if 'Beta' in mtd[ws_name].getAxis(1).label(i)]
plotSpectra(ws_name, 'Beta', indicies=spectra_indicies[:3])
if (plot_type == 'Fit' or plot_type == 'All'):
fWS = ws_stem+'_Result_0'
f_plot=mp.plotSpectrum(fWS,res_plot,False)
def CheckBetSig(nbs):
Nsig = int(nbs[1])
if Nsig == 0:
raise ValueError('Number of sigma points is Zero')
if Nsig > 200:
raise ValueError('Max number of sigma points is 200')
Nbet = int(nbs[0])
if Nbet == 0:
raise ValueError('Number of beta points is Zero')
if Nbet > 200:
raise ValueError('Max number of beta points is 200')
return Nbet,Nsig
def QuestRun(samWS,resWS,nbs,erange,nbins,Fit,Loop,Verbose,Plot,Save):
#expand fit options
elastic, background, width, resnorm = Fit
#convert true/false to 1/0 for fortran
o_el = 1 if elastic else 0
o_w1 = 1 if width else 0
o_res = 1 if resnorm else 0
#fortran code uses background choices defined using the following numbers
if background == 'Sloping':
o_bgd = 2
elif background == 'Flat':
o_bgd = 1
elif background == 'Zero':
o_bgd = 0
fitOp = [o_el, o_bgd, o_w1, o_res]
workdir = getDefaultWorkingDirectory()
array_len = 4096 # length of array in Fortran
CheckXrange(erange,'Energy')
nbin,nrbin = nbins[0],nbins[1]
logger.notice('Sample is ' + samWS)
logger.notice('Resolution is ' + resWS)
CheckAnalysers(samWS,resWS,Verbose)
nsam,ntc = CheckHistZero(samWS)
if Loop != True:
nsam = 1
efix = getEfixed(samWS)
theta,Q = GetThetaQ(samWS)
nres,ntr = CheckHistZero(resWS)
if nres == 1:
prog = 'Qst' # res file
else:
raise ValueError('Stretched Exp ONLY works with RES file')
if Verbose:
logger.notice(' Number of spectra = '+str(nsam))
logger.notice(' Erange : '+str(erange[0])+' to '+str(erange[1]))
Samuel Jackson
committed
wrks=os.path.join(workdir, samWS[:-4])
if Verbose:
logger.notice(' lptfile : ' + wrks +'_Qst.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ')
wrkr=resWS
wrkr.ljust(140,' ')
wrk = [wrks, wrkr]
Nbet,Nsig = nbs[0], nbs[1]
eBet0 = np.zeros(Nbet) # set errors to zero
eSig0 = np.zeros(Nsig) # set errors to zero
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
nsp = m+1
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
Nb,Xb,Yb,Eb = GetXYE(resWS,0,array_len)
numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin, Nbet, Nsig]
reals = [efix, theta[m], rscl, bnorm]
xsout,ysout,xbout,ybout,zpout=Que.quest(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,wrks,wrkr,lwrk)
dataXs = xsout[:Nsig] # reduce from fixed Fortran array
dataYs = ysout[:Nsig]
dataXb = xbout[:Nbet]
dataYb = ybout[:Nbet]
if (m > 0):
Qaxis += ','
Qaxis += str(Q[m])
dataXz = []
dataYz = []
dataEz = []
yfit_list = np.split(zpout[:Nsig*Nbet],Nsig)
dataYzp = yfit_list[n]
dataXz = np.append(dataXz,xbout[:Nbet])
dataYz = np.append(dataYz,dataYzp[:Nbet])
dataEz = np.append(dataEz,eBet0)
CreateWorkspace(OutputWorkspace=zpWS, DataX=dataXz, DataY=dataYz, DataE=dataEz,
Nspec=Nsig, UnitX='MomentumTransfer', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=dataXs)
unitx = mtd[zpWS].getAxis(0).setUnit("Label")
unitx.setLabel('beta' , '')
unity = mtd[zpWS].getAxis(1).setUnit("Label")
unity.setLabel('sigma' , '')
xSig = dataXs
ySig = dataYs
eSig = eSig0
xBet = dataXb
yBet = dataYb
eBet = eBet0
xSig = np.append(xSig,dataXs)
ySig = np.append(ySig,dataYs)
eSig = np.append(eSig,eSig0)
xBet = np.append(xBet,dataXb)
yBet = np.append(yBet,dataYb)
eBet = np.append(eBet,eBet0)
#create workspaces for sigma and beta
CreateWorkspace(OutputWorkspace=fname+'_Sigma', DataX=xSig, DataY=ySig, DataE=eSig,
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
unitx = mtd[fname+'_Sigma'].getAxis(0).setUnit("Label")
unitx.setLabel('sigma' , '')
CreateWorkspace(OutputWorkspace=fname+'_Beta', DataX=xBet, DataY=yBet, DataE=eBet,
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
unitx = mtd[fname+'_Beta'].getAxis(0).setUnit("Label")
unitx.setLabel('beta' , '')
fit_workspace = fname+'_Fit'
contour_workspace = fname+'_Contour'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fit_workspace)
GroupWorkspaces(InputWorkspaces=groupZ,OutputWorkspace=contour_workspace)
#add sample logs to the output workspaces
CopyLogs(InputWorkspace=samWS, OutputWorkspace=fit_workspace)
QuestAddSampleLogs(fit_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)
CopyLogs(InputWorkspace=samWS, OutputWorkspace=contour_workspace)
QuestAddSampleLogs(contour_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)
fpath = os.path.join(workdir,fit_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=fit_workspace, Filename=fpath)
cpath = os.path.join(workdir,contour_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=contour_workspace, Filename=cpath)
if Verbose:
logger.notice('Output file for Fit : ' + fpath)
logger.notice('Output file for Contours : ' + cpath)
if (Plot != 'None' and Loop == True):
def QuestAddSampleLogs(workspace, res_workspace, background, elastic_peak, e_range, sample_binning, sigma, beta):
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="res_file", LogType="String", LogText=res_workspace)
AddSampleLog(Workspace=workspace, LogName="background", LogType="String", LogText=str(background))
AddSampleLog(Workspace=workspace, LogName="elastic_peak", LogType="String", LogText=str(elastic_peak))
AddSampleLog(Workspace=workspace, LogName="energy_min", LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max", LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="sample_binning", LogType="Number", LogText=str(sample_binning))
AddSampleLog(Workspace=workspace, LogName="sigma", LogType="Number", LogText=str(sigma))
AddSampleLog(Workspace=workspace, LogName="beta", LogType="Number", LogText=str(beta))
def QuestPlot(inputWS,Plot):
if (Plot == 'Sigma' or Plot == 'All'):
sig_plot=mp.importMatrixWorkspace(inputWS+'_Sigma').plotGraph2D()
if (Plot == 'Beta' or Plot == 'All'):
beta_plot=mp.importMatrixWorkspace(inputWS+'_Beta').plotGraph2D()
Samuel Jackson
committed
def ResNormRun(vname,rname,erange,nbin,Verbose=False,Plot='None',Save=False):
workdir = getDefaultWorkingDirectory()
array_len = 4096 # length of Fortran array
CheckXrange(erange,'Energy')
CheckAnalysers(vname,rname,Verbose)
nvan,ntc = CheckHistZero(vname)
theta,Q = GetThetaQ(vname)
efix = getEfixed(vname)
nres,ntr = CheckHistZero(rname)
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(vname,0,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
wrks=os.path.join(workdir, vname[:-4])
if Verbose:
logger.notice(' Number of spectra = '+str(nvan))
logger.notice(' lptfile : ' + wrks +'_resnrm.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ') # pad for fioxed Fortran length
Nb,Xb,Yb,Eb = GetXYE(rname,0,array_len)
xPar = np.array([theta[0]])
for m in range(1,nvan):
xPar = np.append(xPar,theta[m])
ePar = np.zeros(nvan)
fname = vname[:-4]
for m in range(0,nvan):
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
ntc,Xv,Yv,Ev = GetXYE(vname,m,array_len)
nsp = m+1
numb = [nvan, nsp, ntc, Ndat, nbin, Imin, Imax, Nb]
reals = [efix, theta[0], rscl, bnorm]
nd,xout,yout,eout,yfit,pfit=resnorm.resnorm(numb,Xv,Yv,Ev,reals,
Xdat,Xb,Yb,wrks,wrkr,lwrk)
if Verbose:
message = ' Fit paras : '+str(pfit[0])+' '+str(pfit[1])
logger.notice(message)
dataX = xout[:nd]
dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
yPar1 = np.array([pfit[0]])
yPar2 = np.array([pfit[1]])
CreateWorkspace(OutputWorkspace='Data', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],
CreateWorkspace(OutputWorkspace='Fit', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),
yPar1 = np.append(yPar1,pfit[0])
yPar2 = np.append(yPar2,pfit[1])
CreateWorkspace(OutputWorkspace='__datmp', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],
NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Data', InputWorkspace2='__datmp', CheckOverlapping=False)
CreateWorkspace(OutputWorkspace='__f1tmp', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),
NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Fit', InputWorkspace2='__f1tmp', CheckOverlapping=False)
resnorm_intesity = fname+'_ResNorm_Intensity'
resnorm_stretch = fname+'_ResNorm_Stretch'
CreateWorkspace(OutputWorkspace=resnorm_intesity, DataX=xPar, DataY=yPar1, DataE=xPar,
CreateWorkspace(OutputWorkspace=resnorm_stretch, DataX=xPar, DataY=yPar2, DataE=xPar,
group = resnorm_intesity + ','+ resnorm_stretch
resnorm_workspace = fname+'_ResNorm'
resnorm_fit_workspace = fname+'_ResNorm_Fit'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=resnorm_workspace)
GroupWorkspaces(InputWorkspaces='Data,Fit',OutputWorkspace=resnorm_fit_workspace)
CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_workspace)
ResNormAddSampleLogs(resnorm_workspace, erange, nbin)
CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_fit_workspace)
ResNormAddSampleLogs(resnorm_fit_workspace, erange, nbin)
par_path = os.path.join(workdir,resnorm_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=resnorm_workspace, Filename=par_path)
fit_path = os.path.join(workdir,resnorm_fit_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=resnorm_fit_workspace, Filename=fit_path)
if Verbose:
logger.notice('Parameter file created : ' + par_path)
logger.notice('Fit file created : ' + fit_path)
def ResNormAddSampleLogs(workspace, e_range, v_binning):
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="energy_min", LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max", LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="van_binning", LogType="Number", LogText=str(v_binning))
def ResNormPlot(inputWS,Plot):
if (Plot == 'Intensity' or Plot == 'All'):
iWS = inputWS + '_ResNorm_Intensity'
i_plot=mp.plotSpectrum(iWS,0,False)
if (Plot == 'Stretch' or Plot == 'All'):
sWS = inputWS + '_ResNorm_Stretch'
s_plot=mp.plotSpectrum(sWS,0,False)
if (Plot == 'Fit' or Plot == 'All'):
fWS = inputWS + '_ResNorm_Fit'
Samuel Jackson
committed
f_plot=mp.plotSpectrum(fWS,0,False)