Newer
Older
# Bayes routines
# Fortran programs use fixed length arrays whereas Python has variable lenght lists
# Input : the Python list is padded to Fortrans length using procedure PadArray
# Output : the Fortran numpy array is sliced to Python length using dataY = yout[:ny]
from IndirectImport import *
if is_supported_f2py_platform():
Er = import_f2py("erange")
QLr = import_f2py("QLres")
QLd = import_f2py("QLdata")
Qse = import_f2py("QLse")
Que = import_f2py("Quest")
resnorm = import_f2py("ResNorm")
cefit = import_f2py("CEfit")
ssfit = import_f2py("SSfit")
else:
from mantid.simpleapi import *
from mantid import config, logger, mtd
import sys, platform, math, os.path, numpy as np
mp = import_mantidplot()
def CalcErange(inWS,ns,er,nbin):
rscl = 1.0
array_len = 4096 # length of array in Fortran
N,X,Y,E = GetXYE(inWS,ns,array_len) # get data
nout,bnorm,Xdat=Er.erange(N,X,Y,E,er,nbin,rscl) # calculate energy range
if nout[0] == 0:
error = 'Erange - calculated points is Zero'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if nout[1] == 0:
error = 'Erange - calculated Imin is Zero'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if nout[2] == 0:
error = 'Erange - calculated Imax is Zero'
logger.notice('ERROR *** ' + error)
sys.exit(error)
return nout,bnorm,Xdat,X,Y,E
def GetXYE(inWS,n,array_len):
Xin = mtd[inWS].readX(n)
N = len(Xin)-1 # get no. points from length of x array
Yin = mtd[inWS].readY(n)
Ein = mtd[inWS].readE(n)
X=PadArray(Xin,array_len)
Y=PadArray(Yin,array_len)
E=PadArray(Ein,array_len)
def ReadNormFile(resnorm,nsam,resnormWS,Verbose): # get norm & scale values
if resnorm == 1: # use ResNorm file
if Verbose:
logger.notice('ResNorm file is ' + resnormWS)
dtnorm = mtd[resnormWS+'_Intensity'].readX(0)
nrm = len(dtnorm) # no. points from length of x array
error = 'ResNorm file has no Intensity points'
logger.notice('ERROR *** ' + error)
sys.exit(error)
xscale = mtd[resnormWS+'_Stretch'].readX(0) # no. points from length of x array
if len(xscale) == 0:
error = 'ResNorm file has no Stretch points'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if nrm != nsam: # check that no. groups are the same
error = 'ResNorm groups (' +str(nrm) + ') not = Sample (' +str(nsam) +')'
logger.notice('ERROR *** ' + error)
sys.exit(error)
else:
dtnorm = []
xscale = []
for m in range(0,nsam):
dtnorm.append(1.0)
xscale.append(1.0)
dtn=PadArray(dtnorm,51) # pad for Fortran call
xsc=PadArray(xscale,51)
def ReadWidthFile(width,wfile,ngrp,Verbose): # reads width file ASCII
workdir = config['defaultsave.directory']
if width: # use width1 data option=o_w1
if Verbose:
w_path = os.path.join(workdir, wfile) # path name for nxs file
logger.notice('Width file is ' + w_path)
handle = open(w_path, 'r')
asc = []
for line in handle:
line = line.rstrip()
asc.append(line)
handle.close()
lasc = len(asc)
if lasc == 0:
error = 'No groups in width file'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if lasc != ngrp: # check that no. groups are the same
error = 'Width groups (' +str(lasc) + ') not = Sample (' +str(ngrp) +')'
logger.notice('ERROR *** ' + error)
sys.exit(error)
else: # constant values
Wy = []
We = []
for m in range(0,ngrp):
Wy.append(0.0)
We.append(0.0)
Wy=PadArray(Wy,51) # pad for Fortran call
We=PadArray(We,51)
return Wy,We
# QLines programs
def QLRun(program,samWS,resWS,resnormWS,erange,nbins,Fit,wfile,Loop,Verbose=False,Plot='None',Save=False):
StartTime(program)
workdir = config['defaultsave.directory']
facility = config['default.facility']
array_len = 4096 # length of array in Fortran
CheckXrange(erange,'Energy')
nbin,nrbin = nbins[0],nbins[1]
if Verbose:
logger.notice('Sample is ' + samWS)
logger.notice('Resolution is ' + resWS)
if facility == 'ISIS':
CheckAnalysers(samWS,resWS,Verbose)
efix = getEfixed(samWS)
theta,Q = GetThetaQ(samWS)
nsam,ntc = CheckHistZero(samWS)
if Loop != True:
nsam = 1
nres,ntr = CheckHistZero(resWS)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
if Fit[0]:
elastic = True
o_el = 1
else:
elastic = False
o_el = 0
if Fit[1] == 'Sloping':
o_bgd = 2
if Fit[1] == 'Flat':
o_bgd = 1
if Fit[1] == 'Zero':
o_bgd = 0
background = Fit[1]
if Fit[2]:
width = True
o_w1 = 1
else:
width = False
o_w1 = 0
if Fit[3]:
resnorm = True
o_res = 1
else:
resnorm = False
o_res = 0
fitOp = [o_el, o_bgd, o_w1, o_res]
prog = 'QLr' # res file
prog = 'QLd' # data file
CheckHistSame(samWS,'Sample',resWS,'Resolution')
prog = 'QSe' # res file
else:
error = 'Stretched Exp ONLY works with RES file'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if Verbose:
logger.notice('Version is ' +prog)
logger.notice(' Number of spectra = '+str(nsam))
logger.notice(' Erange : '+str(erange[0])+' to '+str(erange[1]))
Wy,We = ReadWidthFile(width,wfile,nsam,Verbose)
dtn,xsc = ReadNormFile(resnorm,nsam,resnormWS,Verbose)
probWS = fname + '_Prob'
fitWS = fname + '_Fit'
datWS = fname + '_Data'
logger.notice(' lptfile : '+wrks+'_'+prog+'.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ')
wrkr=resWS
wrkr.ljust(140,' ')
wrk = [wrks, wrkr]
#
if program == 'QL': # initialise probability list
xQ = np.array([Q[0]])
for m in range(1,nsam):
xQ = np.append(xQ,Q[m])
xProb = xQ
xProb = np.append(xProb,xQ)
xProb = np.append(xProb,xQ)
eProb = np.zeros(3*nsam)
for m in range(0,nsam):
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
nsp = m+1
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
if prog == 'QLd':
mm = m
else:
mm = 0
Nb,Xb,Yb,Eb = GetXYE(resWS,mm,array_len) # get resolution data
numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin]
rscl = 1.0
reals = [efix, theta[m], rscl, bnorm]
if prog == 'QLr':
nd,xout,yout,eout,yfit,yprob=QLr.qlres(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Wy,We,dtn,xsc,
wrks,wrkr,lwrk)
message = ' Log(prob) : '+str(yprob[0])+' '+str(yprob[1])+' '+str(yprob[2])+' '+str(yprob[3])
if Verbose:
logger.notice(message)
if prog == 'QLd':
nd,xout,yout,eout,yfit,yprob=QLd.qldata(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Eb,Wy,We,
wrks,wrkr,lwrk)
message = ' Log(prob) : '+str(yprob[0])+' '+str(yprob[1])+' '+str(yprob[2])+' '+str(yprob[3])
if Verbose:
logger.notice(message)
if prog == 'QSe':
nd,xout,yout,eout,yfit,yprob=Qse.qlstexp(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,Wy,We,dtn,xsc,
wrks,wrkr,lwrk)
dataX = xout[:nd]
dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
yfit_list = np.split(yfit[:4*nd],4)
dataF0 = yfit_list[0]
dataF1 = yfit_list[1]
dataF2 = yfit_list[2]
dataF3 = yfit_list[3]
datX = dataX
datY = yout[:nd]
datE = eout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,dataF1[:nd])
datE = np.append(datE,dataG)
res1 = dataF1[:nd] - yout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,res1)
datE = np.append(datE,dataG)
nsp = 3
names = 'data,fit.1,diff.1'
res_plot = [0, 1, 2]
datX = np.append(datX,dataX)
datY = np.append(datY,dataF2[:nd])
datE = np.append(datE,dataG)
res2 = dataF2[:nd] - yout[:nd]
datX = np.append(datX,dataX)
datY = np.append(datY,res2)
datE = np.append(datE,dataG)
nsp += 2
names += ',fit.2,diff.2'
res_plot.append(4)
prob0.append(yprob[0])
prob1.append(yprob[1])
prob2.append(yprob[2])
fitWS = fname+'_Result'
if nsam > 1:
fout = fitWS +'_'+ str(m)
else:
fout = fitWS
CreateWorkspace(OutputWorkspace=fout, DataX=datX, DataY=datY, DataE=datE,
Nspec=nsp, UnitX='DeltaE', VerticalAxisUnit='Text', VerticalAxisValues=names)
if m == 0:
group = fout
else:
group += ',' + fout
if nsam > 1:
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fitWS)
yPr0 = np.array([prob0[0]])
yPr1 = np.array([prob1[0]])
yPr2 = np.array([prob2[0]])
for m in range(1,nsam):
yPr0 = np.append(yPr0,prob0[m])
yPr1 = np.append(yPr1,prob1[m])
yPr2 = np.append(yPr2,prob2[m])
yProb = yPr0
yProb = np.append(yProb,yPr1)
yProb = np.append(yProb,yPr2)
CreateWorkspace(OutputWorkspace=probWS, DataX=xProb, DataY=yProb, DataE=eProb,
outWS = C2Fw(samWS[:-4],fname)
QLPlotQL(fname,Plot,res_plot,Loop)
QLPlotQSe(fname,Plot,res_plot,Loop)
#Add some sample logs to the output workspace
AddSampleLog(Workspace=outWS, LogName="Fit Program", LogType="String", LogText=prog)
AddSampleLog(Workspace=outWS, LogName="Energy min", LogType="Number", LogText=str(erange[0]))
AddSampleLog(Workspace=outWS, LogName="Energy max", LogType="Number", LogText=str(erange[1]))
AddSampleLog(Workspace=outWS, LogName="Elastic", LogType="String", LogText=str(elastic))
AddSampleLog(Workspace=outWS, LogName="ResNorm", LogType="String", LogText=str(resnorm))
if resnorm:
AddSampleLog(Workspace=outWS, LogName="ResNorm file", LogType="String", LogText=resnormWS)
AddSampleLog(Workspace=outWS, LogName="Width", LogType="String", LogText=str(width))
if width:
AddSampleLog(Workspace=outWS, LogName="Width file", LogType="String", LogText=wfile)
if Save:
fit_path = os.path.join(workdir,fitWS+'.nxs')
SaveNexusProcessed(InputWorkspace=fitWS, Filename=fit_path)
out_path = os.path.join(workdir, outWS+'.nxs') # path name for nxs file
SaveNexusProcessed(InputWorkspace=outWS, Filename=out_path)
logger.notice('Output fit file created : ' + fit_path)
logger.notice('Output paramter file created : ' + out_path)
def LorBlock(a,first,nl): #read Ascii block of Integers
line1 = a[first]
first += 1
val = ExtractFloat(a[first]) #Q,AMAX,HWHM,BSCL,GSCL
Q = val[0]
AMAX = val[1]
HWHM = val[2]
BSCL = val[3]
GSCL = val[4]
first += 1
val = ExtractFloat(a[first]) #A0,A1,A2,A4
int0 = [AMAX*val[0]]
bgd1 = BSCL*val[1]
bgd2 = BSCL*val[2]
zero = GSCL*val[3]
first += 1
val = ExtractFloat(a[first]) #AI,FWHM first peak
fw = [2.*HWHM*val[1]]
int = [AMAX*val[0]]
if nl >= 2:
first += 1
val = ExtractFloat(a[first]) #AI,FWHM second peak
fw.append(2.*HWHM*val[1])
int.append(AMAX*val[0])
if nl == 3:
first += 1
val = ExtractFloat(a[first]) #AI,FWHM third peak
fw.append(2.*HWHM*val[1])
int.append(AMAX*val[0])
first += 1
int.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
if nl >= 2: # second peak
first += 1
int.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
if nl == 3: # third peak
first += 1
int.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
return first,Q,int0,fw,int #values as list
def C2Fw(prog,sname):
workdir = config['defaultsave.directory']
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
outWS = sname+'_Workspace'
Vaxis = []
for nl in range(1,4):
file = sname + '.ql' +str(nl)
handle = open(os.path.join(workdir, file), 'r')
asc = []
for line in handle:
line = line.rstrip()
asc.append(line)
handle.close()
lasc = len(asc)
var = asc[3].split() #split line on spaces
nspec = var[0]
ndat = var[1]
var = ExtractInt(asc[6])
first = 7
Xout = []
Yf1 = []
Ef1 = []
Yf2 = []
Ef2 = []
Yf3 = []
Ef3 = []
Yi1 = []
Ei1 = []
Yi2 = []
Ei2 = []
Yi3 = []
Ei3 = []
ns = int(nspec)
for m in range(0,ns):
if nl == 1:
first,Q,i0,fw,it = LorBlock(asc,first,1)
Xout.append(Q)
Yf1.append(fw[0])
Ef1.append(fw[1])
Yi1.append(it[0])
Ei1.append(it[1])
if nl == 2:
first,Q,i0,fw,it = LorBlock(asc,first,2)
Xout.append(Q)
Yf1.append(fw[0])
Ef1.append(fw[2])
Yf2.append(fw[1])
Ef2.append(fw[3])
Yi1.append(it[0])
Ei1.append(it[2])
Yi2.append(it[1])
Ei2.append(it[3])
if nl == 3:
first,Q,i0,fw,it = LorBlock(asc,first,3)
Xout.append(Q)
Yf1.append(fw[0])
Ef1.append(fw[3])
Yf2.append(fw[1])
Ef2.append(fw[4])
Yf3.append(fw[2])
Ef3.append(fw[5])
Yi1.append(it[0])
Ei1.append(it[3])
Yi2.append(it[1])
Ei2.append(it[4])
Yi3.append(it[2])
Ei3.append(it[5])
if nl ==1:
dataX = np.array(Xout)
dataY = np.array(Yf1)
dataE = np.array(Ef1)
nhist = 1
Vaxis.append('width.1.1')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi1))
dataE = np.append(dataE,np.array(Ei1))
nhist += 1
Vaxis.append('ampl.1.1')
if nl ==2:
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yf1))
dataE = np.append(dataE,np.array(Ef1))
nhist += 1
Vaxis.append('width.2.1')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi1))
dataE = np.append(dataE,np.array(Ei1))
nhist += 1
Vaxis.append('ampl.2.1')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yf2))
dataE = np.append(dataE,np.array(Ef2))
nhist += 1
Vaxis.append('width.2.2')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi2))
dataE = np.append(dataE,np.array(Ei2))
nhist += 1
Vaxis.append('ampl.2.2')
if nl ==3:
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yf1))
dataE = np.append(dataE,np.array(Ef1))
nhist += 1
Vaxis.append('width.3.1')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi1))
dataE = np.append(dataE,np.array(Ei1))
nhist += 1
Vaxis.append('ampl.3.1')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yf2))
dataE = np.append(dataE,np.array(Ef2))
nhist += 1
Vaxis.append('width.3.2')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi2))
dataE = np.append(dataE,np.array(Ei2))
nhist += 1
Vaxis.append('ampl.3.2')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yf3))
dataE = np.append(dataE,np.array(Ef3))
nhist += 1
Vaxis.append('width.3.3')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi3))
dataE = np.append(dataE,np.array(Ei3))
nhist += 1
Vaxis.append('ampl.3.3')
CreateWorkspace(OutputWorkspace=outWS, DataX=dataX, DataY=dataY, DataE=dataE, Nspec=nhist,
UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis, YUnitLabel='')
return outWS
def SeBlock(a,first): #read Ascii block of Integers
line1 = a[first]
first += 1
val = ExtractFloat(a[first]) #Q,AMAX,HWHM
Q = val[0]
AMAX = val[1]
HWHM = val[2]
first += 1
val = ExtractFloat(a[first]) #AI,FWHM first peak
fw = [2.*HWHM*val[1]]
int = [AMAX*val[0]]
first += 1
int.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
be.append(math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
return first,Q,int0,fw,int,be #values as list
def C2Se(sname):
workdir = config['defaultsave.directory']
prog = 'QSe'
outWS = sname+'_Workspace'
handle = open(os.path.join(workdir, sname+'.qse'), 'r')
asc = []
for line in handle:
line = line.rstrip()
asc.append(line)
handle.close()
lasc = len(asc)
var = asc[3].split() #split line on spaces
nspec = var[0]
ndat = var[1]
first = 7
Xout = []
Yf = []
Ef = []
Yi = []
Ei = []
Yb = []
Eb = []
ns = int(nspec)
for m in range(0,ns):
first,Q,int0,fw,it,be = SeBlock(asc,first)
Xout.append(Q)
Yf.append(fw[0])
Ef.append(fw[1])
Yi.append(it[0])
Ei.append(it[1])
Yb.append(be[0])
Eb.append(be[1])
Vaxis = []
dataX = np.array(Xout)
dataY = np.array(Yf)
dataE = np.array(Ef)
nhist = 1
Vaxis.append('width')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi))
dataE = np.append(dataE,np.array(Ei))
nhist += 1
Vaxis.append('ampl')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yb))
dataE = np.append(dataE,np.array(Eb))
nhist += 1
Vaxis.append('beta')
logger.notice('Vaxis=' + str(Vaxis))
CreateWorkspace(OutputWorkspace=outWS, DataX=dataX, DataY=dataY, DataE=dataE, Nspec=nhist,
UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis, YUnitLabel='')
return outWS
def QLPlotQL(inputWS,Plot,res_plot,Loop):
if Loop:
if (Plot == 'Prob' or Plot == 'All'):
pWS = inputWS+'_Prob'
p_plot=mp.plotSpectrum(pWS,[1,2],False)
if (Plot == 'Intensity' or Plot == 'All'):
ilist = [1,3,5]
i_plot=mp.plotSpectrum(inputWS+'_Workspace',ilist,True)
i_layer = i_plot.activeLayer()
i_layer.setAxisTitle(mp.Layer.Left,'Amplitude')
if (Plot == 'FwHm' or Plot == 'All'):
wlist = [0,2,4]
w_plot=mp.plotSpectrum(inputWS+'_Workspace',wlist,True)
w_layer = w_plot.activeLayer()
w_layer.setAxisTitle(mp.Layer.Left,'Full width half maximum (meV)')
fWS = inputWS+'_Result_0'
f_plot=mp.plotSpectrum(fWS,res_plot,False)
def QLPlotQSe(inputWS,Plot,res_plot,Loop):
if Loop:
if (Plot == 'Intensity' or Plot == 'All'):
i_plot=mp.plotSpectrum(inputWS+'_Workspace',1,True)
i_layer = i_plot.activeLayer()
i_layer.setAxisTitle(mp.Layer.Left,'Amplitude')
if (Plot == 'FwHm' or Plot == 'All'):
w_plot=mp.plotSpectrum(inputWS+'_Workspace',0,True)
w_layer = w_plot.activeLayer()
w_layer.setAxisTitle(mp.Layer.Left,'Full width half maximum (meV)')
if (Plot == 'Beta' or Plot == 'All'):
b_plot=mp.plotSpectrum(inputWS+'_Workspace',2,True)
b_layer = b_plot.activeLayer()
b_layer.setAxisTitle(mp.Layer.Left,'Beta')
fWS = inputWS+'_Result_0'
f_plot=mp.plotSpectrum(fWS,res_plot,False)
def QuestRun(samWS,resWS,nbs,erange,nbins,Fit,Loop,Verbose,Plot,Save):
StartTime('Quest')
workdir = config['defaultsave.directory']
array_len = 4096 # length of array in Fortran
CheckXrange(erange,'Energy')
nbin,nrbin = nbins[0],nbins[1]
logger.notice('Sample is ' + samWS)
logger.notice('Resolution is ' + resWS)
CheckAnalysers(samWS,resWS,Verbose)
nsam,ntc = CheckHistZero(samWS)
if Loop != True:
nsam = 1
if Fit[0]:
elastic = True
o_el = 1
else:
elastic = False
o_el = 0
if Fit[1] == 'Sloping':
o_bgd = 2
if Fit[1] == 'Flat':
o_bgd = 1
if Fit[1] == 'Zero':
o_bgd = 0
background = Fit[1]
fitOp = [o_el, o_bgd, 0, 0]
efix = getEfixed(samWS)
theta,Q = GetThetaQ(samWS)
nres,ntr = CheckHistZero(resWS)
if nres == 1:
prog = 'Qst' # res file
else:
error = 'Stretched Exp ONLY works with RES file'
logger.notice('ERROR *** ' + error)
sys.exit(error)
if Verbose:
logger.notice(' Number of spectra = '+str(nsam))
logger.notice(' Erange : '+str(erange[0])+' to '+str(erange[1]))
# dtn,xsc = ReadNormFile(fitOp[3],nsam,Verbose)
fname = samWS[:-4] + '_'+ prog
wrks=workdir + samWS[:-4]
if Verbose:
logger.notice(' lptfile : ' + wrks +'_Qst.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ')
wrkr=resWS
wrkr.ljust(140,' ')
wrk = [wrks, wrkr]
Nbet,Nsig = nbs[0], nbs[1]
eBet0 = np.zeros(Nbet) # set errors to zero
eSig0 = np.zeros(Nsig) # set errors to zero
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
nsp = m+1
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
Nb,Xb,Yb,Eb = GetXYE(resWS,0,array_len)
numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin, Nbet, Nsig]
reals = [efix, theta[m], rscl, bnorm]
xsout,ysout,xbout,ybout,zpout=Que.quest(numb,Xv,Yv,Ev,reals,fitOp,
Xdat,Xb,Yb,wrks,wrkr,lwrk)
dataXs = xsout[:Nsig] # reduce from fixed Fortran array
dataYs = ysout[:Nsig]
dataXb = xbout[:Nbet]
dataYb = ybout[:Nbet]
if (m > 0):
Qaxis += ','
Qaxis += str(Q[m])
yfit_list = np.split(zpout[:Nsig*Nbet],Nsig)
dataYzp = yfit_list[n]
CreateWorkspace(OutputWorkspace=zpWS, DataX=xbout[:Nbet], DataY=dataYzp[:Nbet], DataE=eBet0,
Nspec=1, UnitX='MomentumTransfer')
else:
CreateWorkspace(OutputWorkspace='__Zpt', DataX=xbout[:Nbet], DataY=dataYzp[:Nbet], DataE=eBet0,
ConjoinWorkspaces(InputWorkspace1=zpWS, InputWorkspace2='__Zpt', CheckOverlapping=False)
xSig = dataXs
ySig = dataYs
eSig = eSig0
xBet = dataXb
yBet = dataYb
eBet = eBet0
xSig = np.append(xSig,dataXs)
ySig = np.append(ySig,dataYs)
eSig = np.append(eSig,eSig0)
xBet = np.append(xBet,dataXb)
yBet = np.append(yBet,dataYb)
eBet = np.append(eBet,eBet0)
CreateWorkspace(OutputWorkspace=fname+'_Sigma', DataX=xSig, DataY=ySig, DataE=eSig,
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
CreateWorkspace(OutputWorkspace=fname+'_Beta', DataX=xBet, DataY=yBet, DataE=eBet,
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fname+'_Fit')
if Loop:
GroupWorkspaces(InputWorkspaces=groupZ,OutputWorkspace=fname+'_Contour')
if Save:
fpath = os.path.join(workdir,fname+'_Fit.nxs')
SaveNexusProcessed(InputWorkspace=fname+'_Fit', Filename=fpath)
cpath = os.path.join(workdir,fname+'_Contour.nxs')
SaveNexusProcessed(InputWorkspace=fname+'_Contour', Filename=cpath)
if Verbose:
logger.notice('Output file for Fit : ' + fpath)
logger.notice('Output file for Contours : ' + cpath)
if (Plot != 'None'):
QuestPlot(fname,Plot)
def QuestPlot(inputWS,Plot):
if (Plot == 'Sigma' or Plot == 'All'):
sig_plot=mp.plotSpectrum(inputWS+'_Sigma',0,True)
if (Plot == 'Beta' or Plot == 'All'):
beta_plot = mp.plotSpectrum(inputWS+'_Beta',0,True)
if(Plot == 'All'):
mp.mergePlots(sig_plot,beta_plot)
def ResNormRun(vname,rname,erange,nbin,Verbose=False,Plot=False,Save=False):
StartTime('ResNorm')
workdir = config['defaultsave.directory']
array_len = 4096 # length of Fortran array
CheckXrange(erange,'Energy')
CheckAnalysers(vname,rname,Verbose)
nvan,ntc = CheckHistZero(vname)
theta,Q = GetThetaQ(vname)
efix = getEfixed(vname)
nres,ntr = CheckHistZero(rname)
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(vname,0,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
if Verbose:
logger.notice(' Number of spectra = '+str(nvan))
logger.notice(' lptfile : ' + wrks +'_resnrm.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ') # pad for fioxed Fortran length
Nb,Xb,Yb,Eb = GetXYE(rname,0,array_len)
xPar = np.array([theta[0]])
for m in range(1,nvan):
xPar = np.append(xPar,theta[m])
ePar = np.zeros(nvan)
fname = vname[:-4]
for m in range(0,nvan):
if Verbose:
logger.notice('Group ' +str(m)+ ' at angle '+ str(theta[m]))
ntc,Xv,Yv,Ev = GetXYE(vname,m,array_len)
nsp = m+1
numb = [nvan, nsp, ntc, Ndat, nbin, Imin, Imax, Nb]
reals = [efix, theta[0], rscl, bnorm]
nd,xout,yout,eout,yfit,pfit=resnorm.resnorm(numb,Xv,Yv,Ev,reals,
Xdat,Xb,Yb,wrks,wrkr,lwrk)
if Verbose:
message = ' Fit paras : '+str(pfit[0])+' '+str(pfit[1])
logger.notice(message)
dataX = xout[:nd]
dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
yPar1 = np.array([pfit[0]])
yPar2 = np.array([pfit[1]])
CreateWorkspace(OutputWorkspace='Data', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],
CreateWorkspace(OutputWorkspace='Fit', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),
yPar1 = np.append(yPar1,pfit[0])
yPar2 = np.append(yPar2,pfit[1])
CreateWorkspace(OutputWorkspace='__datmp', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],
NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Data', InputWorkspace2='__datmp', CheckOverlapping=False)
CreateWorkspace(OutputWorkspace='__f1tmp', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),
NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Fit', InputWorkspace2='__f1tmp', CheckOverlapping=False)
CreateWorkspace(OutputWorkspace=fname+'_ResNorm_Intensity', DataX=xPar, DataY=yPar1, DataE=xPar,
CreateWorkspace(OutputWorkspace=fname+'_ResNorm_Stretch', DataX=xPar, DataY=yPar2, DataE=xPar,
group = fname + '_ResNorm_Intensity,'+ fname + '_ResNorm_Stretch'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fname+'_ResNorm')
GroupWorkspaces(InputWorkspaces='Data,Fit',OutputWorkspace=fname+'_ResNorm_Fit')
if Save:
par_path = os.path.join(workdir,fname+'_ResNorm.nxs')
SaveNexusProcessed(InputWorkspace=fname+'_ResNorm', Filename=par_path)
fit_path = os.path.join(workdir,fname+'_ResNorm_Fit.nxs')
SaveNexusProcessed(InputWorkspace=fname+'_ResNorm_Fit', Filename=fit_path)
if Verbose:
logger.notice('Parameter file created : ' + par_path)
logger.notice('Fit file created : ' + fit_path)
def ResNormPlot(inputWS,Plot):
if (Plot == 'Intensity' or Plot == 'All'):
iWS = inputWS + '_ResNorm_Intensity'
i_plot=mp.plotSpectrum(iWS,0,False)
if (Plot == 'Stretch' or Plot == 'All'):
sWS = inputWS + '_ResNorm_Stretch'
s_plot=mp.plotSpectrum(sWS,0,False)
if (Plot == 'Fit' or Plot == 'All'):
fWS = inputWS + '_ResNorm_Fit'
f_plot=mp.plotSpectrum(fWS,0,False)
# Jump programs
def JumpRun(sname,jump,prog,width,Crop,qrange,Verbose,Plot,Save):
StartTime('Jump fit : '+jump+' ; ')
workdir = config['defaultsave.directory']
array_len = 1000 # length of Fortran array
if Verbose:
logger.notice('Parameters in ' + sname + '_Workspace ; label ' +width)
CloneWorkspace(InputWorkspace=sname, OutputWorkspace='__crop')
CropWorkspace(InputWorkspace=sname, OutputWorkspace='__crop',
XMin=qrange[0], XMax=qrange[1])
if Verbose:
logger.notice('Cropping from Q= ' + qrange[0] +' to '+ qrange[1])
nd,X,Y,E = GetXYE('__crop',0,array_len)
if nd == 0:
error = 'No points in parameter file'
logger.notice('ERROR *** ' + error)
sys.exit(error)
ftWS = sname +'_'+ jump + 'fit_' +width
if jump == 'CE':
kill,res,nout,Xout,Yout=cefit.cefit(nd,X,Y,E,wrk,lwrk)
# SUBROUTINE cefit(nd,X_in,Y_in,E_in,sfile,l_fn,kill,res,no,XOUT,YOUT)
if Verbose:
logger.notice(' Normalised Chi-squared = ' +str(res[0]))
logger.notice(' Log10[Prob(Chudley-Elliot|{Data})] = ' +str(res[1]))
logger.notice(' Coeff. A = ' +str(res[2])+ ' +- ' +str(res[3]))
logger.notice(' Coeff. K = ' +str(res[4])+ ' +- ' +str(res[5]))
if jump == 'SS':
kill,res,nout,Xout,Yout=ssfit.ssfit(nd,X,Y,E,wrk,lwrk)
if Verbose:
logger.notice(' Normalised Chi-squared = ' +str(res[0]))
logger.notice(' Log10[Prob(Singwi-Sjolander|{Data})] = ' +str(res[1]))
logger.notice(' Coeff. A = ' +str(res[2])+ ' +- ' +str(res[3]))
logger.notice(' Coeff. RR = ' +str(res[4])+ ' +- ' +str(res[5]))
CreateWorkspace(OutputWorkspace=ftWS+'_Fit', DataX=Xout[:nout], DataY=Yout[:nout], DataE=np.zeros(nout),
CloneWorkspace(InputWorkspace=sname, OutputWorkspace=ftWS+'_Data')
group = ftWS + '_Data,'+ ftWS +'_Fit'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=ftWS)
if Save:
fit_path = os.path.join(workdir,ftWS+'.nxs')
SaveNexusProcessed(InputWorkspace=ftWS, Filename=fit_path)
if Verbose:
logger.notice('Fit file is ' + fit_path)
j_plot=mp.plotSpectrum(inputWS+'_Data',0,True)
mp.mergePlots(j_plot,mp.plotSpectrum(inputWS+'_Fit',0,True))