Newer
Older
}
//-------------------------------------------------------------------------
/** Initialize using proxy algorithm.
* Call the main initialize method and then copy in the property values.
* @param proxy :: Initialising proxy algorithm */
void Algorithm::initializeFromProxy(const AlgorithmProxy &proxy) {
initialize();
copyPropertiesFrom(proxy);
m_algorithmID = proxy.getAlgorithmID();
setLogging(proxy.isLogging());
setLoggingOffset(proxy.getLoggingOffset());
setAlgStartupLogging(proxy.getAlgStartupLogging());
setChild(proxy.isChild());
setAlwaysStoreInADS(proxy.getAlwaysStoreInADS());
}
/** Fills History, Algorithm History and Algorithm Parameters
std::vector<Workspace_sptr> inputWorkspaces, outputWorkspaces;
if (!isChild()) {
// Create two vectors to hold a list of pointers to the input & output
// workspaces (InOut's go in both)
findWorkspaceProperties(inputWorkspaces, outputWorkspaces);
}
fillHistory(inputWorkspaces, outputWorkspaces);
* Link the name of the output workspaces on this parent algorithm.
* with the last child algorithm executed to ensure they match in the history.
*
* This solves the case where child algorithms use a temporary name and this
* name needs to match the output name of the parent algorithm so the history
*can be re-run.
*/
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
void Algorithm::linkHistoryWithLastChild() {
if (m_recordHistoryForChild) {
// iterate over the algorithms output workspaces
const std::vector<Property *> &algProperties = getProperties();
std::vector<Property *>::const_iterator it;
for (it = algProperties.begin(); it != algProperties.end(); ++it) {
const IWorkspaceProperty *outputProp =
dynamic_cast<IWorkspaceProperty *>(*it);
if (outputProp) {
// Check we actually have a workspace, it may have been optional
Workspace_sptr workspace = outputProp->getWorkspace();
if (!workspace)
continue;
// Check it's an output workspace
if ((*it)->direction() == Kernel::Direction::Output ||
(*it)->direction() == Kernel::Direction::InOut) {
bool linked = false;
// find child histories with anonymous output workspaces
auto childHistories = m_history->getChildHistories();
auto childIter = childHistories.rbegin();
for (; childIter != childHistories.rend() && !linked; ++childIter) {
auto props = (*childIter)->getProperties();
auto propIter = props.begin();
for (; propIter != props.end() && !linked; ++propIter) {
// check we have a workspace property
if ((*propIter)->direction() == Kernel::Direction::Output ||
(*propIter)->direction() == Kernel::Direction::InOut) {
// if the workspaces are equal, then rename the history
std::ostringstream os;
os << "__TMP" << outputProp->getWorkspace().get();
if (os.str() == (*propIter)->value()) {
(*propIter)->setValue((*it)->value());
linked = true;
}
}
}
}
}
}
}
}
}
/** Indicates that this algrithms history should be tracked regardless of if it
* is a child.
* @param parentHist :: the parent algorithm history object the history in.
*/
void Algorithm::trackAlgorithmHistory(
boost::shared_ptr<AlgorithmHistory> parentHist) {
enableHistoryRecordingForChild(true);
m_parentHistory = parentHist;
}
/** Check if we are tracking history for this algorithm
* @return if we are tracking the history of this algorithm
*/
bool Algorithm::trackingHistory() {
return (!isChild() || m_recordHistoryForChild);
}
/** Populate lists of the input & output workspace properties.
* (InOut workspaces go in both lists)
* @param inputWorkspaces A reference to a vector for the input workspaces
* @param outputWorkspaces A reference to a vector for the output workspaces
* @param checkADSForOutputs If true, check the ADS for workspace references
* if the check on the workspace property fails. Most useful for finding group
* workspaces that are never stored on the property
void Algorithm::findWorkspaceProperties(
std::vector<Workspace_sptr> &inputWorkspaces,
std::vector<Workspace_sptr> &outputWorkspaces,
bool checkADSForOutputs) const {
// Loop over properties looking for the workspace properties and putting them
// in the right list
auto appendWS = [&inputWorkspaces,
&outputWorkspaces](const Workspace_sptr &workspace,
const unsigned int direction) {
if (!workspace)
return false;
if (direction == Direction::Input || direction == Direction::InOut) {
inputWorkspaces.emplace_back(workspace);
// InOut needs to go in both lists
if (direction == Direction::Output || direction == Direction::InOut) {
outputWorkspaces.emplace_back(workspace);
}
return true;
const std::vector<Property *> &algProperties = getProperties();
const auto &ads = AnalysisDataService::Instance();
for (const auto &prop : algProperties) {
const unsigned int direction = prop->direction();
if (const auto wsProp = dynamic_cast<IWorkspaceProperty *>(prop)) {
const bool checkADS =
checkADSForOutputs && (direction != Direction::Input);
if (!appendWS(
workspaceFromWSProperty(*wsProp, ads, prop->value(), checkADS),
direction)) {
continue;
// Some algorithms take list of strings that are supposed to refer to
// workspace names in the ADS
const auto *strListProp = dynamic_cast<VectorStringProperty *>(prop);
if (strListProp && isADSValidator(*strListProp->getValidator())) {
auto workspaces = workspacesFromStringList(*strListProp, ads);
for (const auto &ws : workspaces) {
appendWS(ws, direction);
}
}
}
}
/** Sends out algorithm parameter information to the logger */
void Algorithm::logAlgorithmInfo() const {
auto &logger = getLogger();
if (m_isAlgStartupLoggingEnabled) {
logger.notice() << name() << " started";
if (this->isChild())
logger.notice() << " (child)";
// Make use of the AlgorithmHistory class, which holds all the info we
// want here
AlgorithmHistory algHistory(this);
size_t maxPropertyLength = 40;
if (logger.is(Logger::Priority::PRIO_DEBUG)) {
// include the full property value when logging in debug
maxPropertyLength = 0;
}
algHistory.printSelf(logger.information(), 0, maxPropertyLength);
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
}
}
//=============================================================================================
//================================== WorkspaceGroup-related
//===================================
//=============================================================================================
/** Check the input workspace properties for groups.
*
* If there are more than one input workspace properties, then:
* - All inputs should be groups of the same size
* - In this case, algorithms are processed in order
* - OR, only one input should be a group, the others being size of 1
*
* If the property itself is a WorkspaceProperty<WorkspaceGroup> then
* this returns false
*
* Returns true if processGroups() should be called.
* It also sets up some other members.
*
* Override if it is needed to customize the group checking.
*
* @throw std::invalid_argument if the groups sizes are incompatible.
* @throw std::invalid_argument if a member is not found
*
* This method (or an override) must NOT THROW any exception if there are no
*input workspace groups
*/
bool Algorithm::checkGroups() {
size_t numGroups = 0;
bool processGroups = false;
// Unroll the groups or single inputs into vectors of workspace
m_groups.clear();
m_groupWorkspaces.clear();
for (auto inputWorkspaceProp : m_inputWorkspaceProps) {
auto prop = dynamic_cast<Property *>(inputWorkspaceProp);
auto wsGroupProp = dynamic_cast<WorkspaceProperty<WorkspaceGroup> *>(prop);
std::vector<Workspace_sptr> thisGroup;
Workspace_sptr ws = inputWorkspaceProp->getWorkspace();
WorkspaceGroup_sptr wsGroup =
boost::dynamic_pointer_cast<WorkspaceGroup>(ws);
// Workspace groups are NOT returned by IWP->getWorkspace() most of the
// time because WorkspaceProperty is templated by <MatrixWorkspace> and
// WorkspaceGroup does not subclass <MatrixWorkspace>
if (!wsGroup && prop && !prop->value().empty()) {
// So try to use the name in the AnalysisDataService
try {
wsGroup = AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>(
prop->value());
} catch (Exception::NotFoundError &) { /* Do nothing */
// Found the group either directly or by name?
// If the property is of type WorkspaceGroup then don't unroll
if (wsGroup && !wsGroupProp) {
numGroups++;
processGroups = true;
std::vector<std::string> names = wsGroup->getNames();
thisGroup.reserve(names.size());
for (const auto &name : names) {
AnalysisDataService::Instance().retrieve(name);
if (!memberWS)
throw std::invalid_argument("One of the members of " +
wsGroup->getName() + ", " + name +
" was not found!.");
thisGroup.push_back(memberWS);
} else {
// Single Workspace. Treat it as a "group" with only one member
if (ws)
thisGroup.push_back(ws);
// Add to the list of groups
m_groups.push_back(thisGroup);
m_groupWorkspaces.push_back(wsGroup);
}
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
// No groups? Get out.
if (numGroups == 0)
return processGroups;
// ---- Confirm that all the groups are the same size -----
// Index of the single group
m_singleGroup = -1;
// Size of the single or of all the groups
m_groupSize = 1;
m_groupsHaveSimilarNames = true;
for (size_t i = 0; i < m_groups.size(); i++) {
std::vector<Workspace_sptr> &thisGroup = m_groups[i];
// We're ok with empty groups if the workspace property is optional
if (thisGroup.empty() && !m_inputWorkspaceProps[i]->isOptional())
throw std::invalid_argument("Empty group passed as input");
if (!thisGroup.empty()) {
// Record the index of the single group.
WorkspaceGroup_sptr wsGroup = m_groupWorkspaces[i];
if (wsGroup && (numGroups == 1))
m_singleGroup = int(i);
// For actual groups (>1 members)
if (thisGroup.size() > 1) {
// Check for matching group size
if (m_groupSize > 1)
if (thisGroup.size() != m_groupSize)
throw std::invalid_argument(
"Input WorkspaceGroups are not of the same size.");
// Are ALL the names similar?
if (wsGroup)
m_groupsHaveSimilarNames =
m_groupsHaveSimilarNames && wsGroup->areNamesSimilar();
// Save the size for the next group
m_groupSize = thisGroup.size();
Alex Buts
committed
}
// Remove empty groups from m_groupWorkspaces
m_groupWorkspaces.erase(
std::remove_if(std::begin(m_groupWorkspaces), std::end(m_groupWorkspaces),
[](const WorkspaceGroup_sptr &wsGroup) -> bool {
return wsGroup.get() == nullptr;
}), std::end(m_groupWorkspaces));
// If you get here, then the groups are compatible
return processGroups;
}
Federico Montesino Pouzols
committed
/**
* Calls process groups with the required timing checks and algorithm
* execution finalization steps.
*
* @param startTime to record the algorithm execution start
*
* @return whether processGroups succeeds.
*/
bool Algorithm::doCallProcessGroups(
Mantid::Types::Core::DateAndTime &startTime) {
Federico Montesino Pouzols
committed
// In the base implementation of processGroups, this normally calls
// this->execute() again on each member of the group. Other algorithms may
// choose to override that behavior (examples: CompareWorkspaces,
// CheckWorkspacesMatch, RenameWorkspace)
startTime = Mantid::Types::Core::DateAndTime::getCurrentTime();
Federico Montesino Pouzols
committed
// Start a timer
Timer timer;
bool completed = false;
try {
// Call the concrete algorithm's processGroups method
completed = processGroups();
} catch (std::exception &ex) {
// The child algorithm will already have logged the error etc.,
// but we also need to update flags in the parent algorithm and
// send an ErrorNotification (because the child isn't registered with the
// AlgorithmMonitor).
setExecuted(false);
m_runningAsync = false;
m_running = false;
notificationCenter().postNotification(
new ErrorNotification(this, ex.what()));
throw;
} catch (...) {
setExecuted(false);
m_runningAsync = false;
m_running = false;
notificationCenter().postNotification(new ErrorNotification(
this, "UNKNOWN Exception caught from processGroups"));
throw;
Federico Montesino Pouzols
committed
// Check for a cancellation request in case the concrete algorithm doesn't
interruption_point();
if (completed) {
// in the base processGroups each individual exec stores its outputs
if (!m_usingBaseProcessGroups && m_alwaysStoreInADS)
Federico Montesino Pouzols
committed
this->store();
// Get how long this algorithm took to run
const float duration = timer.elapsed();
// Log that execution has completed.
reportCompleted(duration, true /* this is for group processing*/);
m_history = boost::make_shared<AlgorithmHistory>(this, startTime, duration,
++g_execCount);
if (trackingHistory() && m_history) {
std::vector<Workspace_sptr> inputWorkspaces, outputWorkspaces;
findWorkspaceProperties(inputWorkspaces, outputWorkspaces);
// We need to find the workspaces to add the history to.
if (outputWorkspaces.size() == 0 && inputWorkspaces.size() == 0) {
outputWorkspaces.insert(outputWorkspaces.end(),
m_groupWorkspaces.begin(),
m_groupWorkspaces.end());
outputWorkspaces = inputWorkspaces;
}
for (const auto &outputWorkspace : outputWorkspaces) {
auto outputGroupWS =
boost::dynamic_pointer_cast<WorkspaceGroup>(outputWorkspace);
if (outputGroupWS) {
// Put history of the call into each child
for (auto i = 0; i < outputGroupWS->getNumberOfEntries(); ++i) {
outputGroupWS->getItem(i)->history().addHistory(m_history);
}
} else if (outputWorkspace) {
// If it's a valid pointer add history else skip for optionals
outputWorkspace->history().addHistory(m_history);
}
}
}
Federico Montesino Pouzols
committed
}
setExecuted(completed);
notificationCenter().postNotification(
new FinishedNotification(this, isExecuted()));
return completed;
}
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
/**
* Copies history between the inputs and outputs and adds a record for this
* algorithm
* @param inputWorkspaces :: A reference to a vector for the input workspaces.
* Used in the non-child case
* @param outputWorkspaces :: A reference to a vector for the output
* workspaces. Used in the non-child case
*/
void Algorithm::fillHistory(
const std::vector<Workspace_sptr> &inputWorkspaces,
const std::vector<Workspace_sptr> &outputWorkspaces) {
// this is not a child algorithm. Add the history algorithm to the
// WorkspaceHistory object.
if (!isChild()) {
// Loop over the output workspaces
for (auto &outWS : outputWorkspaces) {
auto wsGroup = boost::dynamic_pointer_cast<WorkspaceGroup>(outWS);
// Loop over the input workspaces, making the call that copies their
// history to the output ones
// (Protection against copy to self is in
// WorkspaceHistory::copyAlgorithmHistory)
for (const auto &inWS : inputWorkspaces) {
outWS->history().addHistory(inWS->getHistory());
// Add history to each child of output workspace group
if (wsGroup) {
for (size_t i = 0; i < wsGroup->size(); i++) {
wsGroup->getItem(i)->history().addHistory(inWS->getHistory());
}
}
}
// Add the history for the current algorithm to all the output workspaces
outWS->history().addHistory(m_history);
// Add history to each child of output workspace group
if (wsGroup) {
for (size_t i = 0; i < wsGroup->size(); i++) {
wsGroup->getItem(i)->history().addHistory(m_history);
}
}
}
}
// this is a child algorithm, but we still want to keep the history.
else if (m_recordHistoryForChild && m_parentHistory) {
m_parentHistory->addChildHistory(m_history);
}
}
//--------------------------------------------------------------------------------------------
/** Process WorkspaceGroup inputs.
*
* This should be called after checkGroups(), which sets up required members.
* It goes through each member of the group(s), creates and sets an algorithm
* for each and executes them one by one.
*
* If there are several group input workspaces, then the member of each group
* is executed pair-wise.
*
* @return true - if all the workspace members are executed.
*/
bool Algorithm::processGroups() {
Federico Montesino Pouzols
committed
m_usingBaseProcessGroups = true;
std::vector<WorkspaceGroup_sptr> outGroups;
// ---------- Create all the output workspaces ----------------------------
for (auto &pureOutputWorkspaceProp : m_pureOutputWorkspaceProps) {
Property *prop = dynamic_cast<Property *>(pureOutputWorkspaceProp);
if (prop && !prop->value().empty()) {
auto outWSGrp = boost::make_shared<WorkspaceGroup>();
outGroups.push_back(outWSGrp);
// Put the GROUP in the ADS
AnalysisDataService::Instance().addOrReplace(prop->value(), outWSGrp);
outWSGrp->observeADSNotifications(false);
}
Peterson, Peter
committed
double progress_proportion = 1.0 / static_cast<double>(m_groupSize);
// Go through each entry in the input group(s)
for (size_t entry = 0; entry < m_groupSize; entry++) {
// use create Child Algorithm that look like this one
Algorithm_sptr alg_sptr = this->createChildAlgorithm(
this->name(), progress_proportion * static_cast<double>(entry),
progress_proportion * (1 + static_cast<double>(entry)),
this->isLogging(), this->version());
// Make a child algorithm and turn off history recording for it, but always
// store result in the ADS
alg_sptr->setChild(true);
alg_sptr->setAlwaysStoreInADS(true);
alg_sptr->enableHistoryRecordingForChild(false);
alg_sptr->setRethrows(true);
IAlgorithm *alg = alg_sptr.get();
// Set all non-workspace properties
this->copyNonWorkspaceProperties(alg, int(entry) + 1);
std::string outputBaseName;
// ---------- Set all the input workspaces ----------------------------
for (size_t iwp = 0; iwp < m_groups.size(); iwp++) {
std::vector<Workspace_sptr> &thisGroup = m_groups[iwp];
if (!thisGroup.empty()) {
// By default (for a single group) point to the first/only workspace
Workspace_sptr ws = thisGroup[0];
if ((m_singleGroup == int(iwp)) || m_singleGroup < 0) {
// Either: this is the single group
// OR: all inputs are groups
// ... so get then entry^th workspace in this group
ws = thisGroup[entry];
// Append the names together
if (!outputBaseName.empty())
outputBaseName += "_";
outputBaseName += ws->getName();
// Set the property using the name of that workspace
Federico Montesino Pouzols
committed
if (Property *prop =
dynamic_cast<Property *>(m_inputWorkspaceProps[iwp])) {
if (ws->getName().empty()) {
alg->setProperty(prop->name(), ws);
} else {
alg->setPropertyValue(prop->name(), ws->getName());
}
Federico Montesino Pouzols
committed
throw std::logic_error("Found a Workspace property which doesn't "
"inherit from Property.");
} // not an empty (i.e. optional) input
} // for each InputWorkspace property
std::vector<std::string> outputWSNames(m_pureOutputWorkspaceProps.size());
// ---------- Set all the output workspaces ----------------------------
for (size_t owp = 0; owp < m_pureOutputWorkspaceProps.size(); owp++) {
if (Property *prop =
dynamic_cast<Property *>(m_pureOutputWorkspaceProps[owp])) {
// Default name = "in1_in2_out"
const std::string inName = prop->value();
if (inName.empty())
continue;
std::string outName;
Hahn, Steven
committed
if (m_groupsHaveSimilarNames) {
outName.append(inName).append("_").append(
Strings::toString(entry + 1));
} else {
outName.append(outputBaseName).append("_").append(inName);
}
auto inputProp = std::find_if(m_inputWorkspaceProps.begin(),
m_inputWorkspaceProps.end(),
WorkspacePropertyValueIs(inName));
// Overwrite workspaces in any input property if they have the same
// name as an output (i.e. copy name button in algorithm dialog used)
// (only need to do this for a single input, multiple will be handled
// by ADS)
if (inputProp != m_inputWorkspaceProps.end()) {
const auto &inputGroup =
m_groups[inputProp - m_inputWorkspaceProps.begin()];
if (!inputGroup.empty())
outName = inputGroup[entry]->getName();
// Except if all inputs had similar names, then the name is "out_1"
// Set in the output
alg->setPropertyValue(prop->name(), outName);
outputWSNames[owp] = outName;
} else {
throw std::logic_error("Found a Workspace property which doesn't "
"inherit from Property.");
} // for each OutputWorkspace property
// ------------ Execute the algo --------------
try {
alg->execute();
} catch (std::exception &e) {
std::ostringstream msg;
msg << "Execution of " << this->name() << " for group entry "
<< (entry + 1) << " failed: ";
msg << e.what(); // Add original message
throw std::runtime_error(msg.str());
Peterson, Peter
committed
// ------------ Fill in the output workspace group ------------------
// this has to be done after execute() because a workspace must exist
// when it is added to a group
for (size_t owp = 0; owp < m_pureOutputWorkspaceProps.size(); owp++) {
Property *prop =
dynamic_cast<Property *>(m_pureOutputWorkspaceProps[owp]);
if (prop && prop->value().empty())
// And add it to the output group
outGroups[owp]->add(outputWSNames[owp]);
} // for each entry in each group
for (auto &outGroup : outGroups) {
outGroup->observeADSNotifications(true);
return true;
}
//--------------------------------------------------------------------------------------------
/** Copy all the non-workspace properties from this to alg
*
* @param alg :: other IAlgorithm
* @param periodNum :: number of the "period" = the entry in the group + 1
*/
void Algorithm::copyNonWorkspaceProperties(IAlgorithm *alg, int periodNum) {
if (!alg)
throw std::runtime_error("Algorithm not created!");
std::vector<Property *> props = this->getProperties();
for (auto prop : props) {
if (prop) {
IWorkspaceProperty *wsProp = dynamic_cast<IWorkspaceProperty *>(prop);
// Copy the property using the string
if (!wsProp)
this->setOtherProperties(alg, prop->name(), prop->value(), periodNum);
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
}
}
//--------------------------------------------------------------------------------------------
/** Virtual method to set the non workspace properties for this algorithm.
* To be overridden by specific algorithms when needed.
*
* @param alg :: pointer to the algorithm
* @param propertyName :: name of the property
* @param propertyValue :: value of the property
* @param periodNum :: period number
*/
void Algorithm::setOtherProperties(IAlgorithm *alg,
const std::string &propertyName,
const std::string &propertyValue,
int periodNum) {
(void)periodNum; // Avoid compiler warning
if (alg)
alg->setPropertyValue(propertyName, propertyValue);
}
//--------------------------------------------------------------------------------------------
/** To query the property is a workspace property
* @param prop :: pointer to input properties
* @returns true if this is a workspace property
*/
bool Algorithm::isWorkspaceProperty(const Kernel::Property *const prop) const {
if (!prop) {
return false;
}
const IWorkspaceProperty *const wsProp =
dynamic_cast<const IWorkspaceProperty *>(prop);
return (wsProp != nullptr);
}
//=============================================================================================
//================================== Asynchronous Execution
//===================================
//=============================================================================================
namespace {
/**
* A object to set the flag marking asynchronous running correctly
*/
struct AsyncFlagHolder {
/** Constructor
* @param A :: reference to the running flag
*/
explicit AsyncFlagHolder(bool &running_flag) : m_running_flag(running_flag) {
m_running_flag = true;
}
/// Destructor
~AsyncFlagHolder() { m_running_flag = false; }
private:
/// Default constructor
AsyncFlagHolder();
/// Running flag
bool &m_running_flag;
};
} // namespace
//--------------------------------------------------------------------------------------------
/**
* Asynchronous execution
*/
Poco::ActiveResult<bool> Algorithm::executeAsync() {
m_executeAsync =
std::make_unique<Poco::ActiveMethod<bool, Poco::Void, Algorithm>>(
this, &Algorithm::executeAsyncImpl);
return (*m_executeAsync)(Poco::Void());
}
/**Callback when an algorithm is executed asynchronously
* @param i :: Unused argument
* @return true if executed successfully.
bool Algorithm::executeAsyncImpl(const Poco::Void &) {
AsyncFlagHolder running(m_runningAsync);
return this->execute();
}
/**
* @return A reference to the Poco::NotificationCenter object that dispatches
* notifications
*/
Poco::NotificationCenter &Algorithm::notificationCenter() const {
if (!m_notificationCenter)
m_notificationCenter = std::make_unique<Poco::NotificationCenter>();
return *m_notificationCenter;
}
/** Handles and rescales child algorithm progress notifications.
* @param pNf :: The progress notification from the child algorithm.
*/
void Algorithm::handleChildProgressNotification(
const Poco::AutoPtr<ProgressNotification> &pNf) {
double p = m_startChildProgress +
(m_endChildProgress - m_startChildProgress) * pNf->progress;
progress(p, pNf->message);
}
/**
* @return A Poco:NObserver object that is responsible for reporting progress
*/
const Poco::AbstractObserver &Algorithm::progressObserver() const {
if (!m_progressObserver)
m_progressObserver =
std::make_unique<Poco::NObserver<Algorithm, ProgressNotification>>(
*const_cast<Algorithm *>(this),
&Algorithm::handleChildProgressNotification);
return *m_progressObserver;
}
//--------------------------------------------------------------------------------------------
/**
* Cancel an algorithm
*/
void Algorithm::cancel() {
// set myself to be cancelled
m_cancel = true;
// Loop over the output workspaces and try to cancel them
for (auto &weakPtr : m_ChildAlgorithms) {
if (IAlgorithm_sptr sharedPtr = weakPtr.lock()) {
sharedPtr->cancel();
/// Returns the cancellation state
bool Algorithm::getCancel() const { return m_cancel; }
/// Returns a reference to the logger.
Kernel::Logger &Algorithm::getLogger() const { return g_log; }
/// Logging can be disabled by passing a value of false
void Algorithm::setLogging(const bool value) { g_log.setEnabled(value); }
/// returns the status of logging, True = enabled
bool Algorithm::isLogging() const { return g_log.getEnabled(); }
/* Sets the logging priority offset. Values are subtracted from the log level.
*
* Example value=1 will turn warning into notice
* Example value=-1 will turn notice into warning
*/
void Algorithm::setLoggingOffset(const int value) {
if (m_communicator->rank() == 0)
g_log.setLevelOffset(value);
else {
auto offset = ConfigService::Instance().getValue<int>("mpi.loggingOffset");
g_log.setLevelOffset(value + offset.get_value_or(1));
}
}
/// returns the logging priority offset
int Algorithm::getLoggingOffset() const { return g_log.getLevelOffset(); }
//--------------------------------------------------------------------------------------------
/** This is called during long-running operations,
* and check if the algorithm has requested that it be cancelled.
*/
void Algorithm::interruption_point() {
// only throw exceptions if the code is not multi threaded otherwise you
// contravene the OpenMP standard
// that defines that all loops must complete, and no exception can leave an
// OpenMP section
// openmp cancel handling is performed using the ??, ?? and ?? macros in
// each algrothim
IF_NOT_PARALLEL
if (m_cancel)
throw CancelException();
}
/**
Report that the algorithm has completed.
@param duration : Algorithm duration
@param groupProcessing : We have been processing via processGroups if true.
*/
void Algorithm::reportCompleted(const double &duration,
const bool groupProcessing) {
std::string optionalMessage;
if (groupProcessing) {
optionalMessage = ". Processed as a workspace group";
}
Gigg, Martyn Anthony
committed
if (!m_isChildAlgorithm || m_alwaysStoreInADS) {
if (m_isAlgStartupLoggingEnabled) {
std::stringstream msg;
msg << name() << " successful, Duration ";
double seconds = duration;
if (seconds > 60.) {
int minutes = static_cast<int>(seconds / 60.);
msg << minutes << " minutes ";
seconds = seconds - static_cast<double>(minutes) * 60.;
}
msg << std::fixed << std::setprecision(2) << seconds << " seconds"
<< optionalMessage;
getLogger().notice(msg.str());
Gigg, Martyn Anthony
committed
else {
getLogger().debug() << name() << " finished with isChild = " << isChild()
}
m_running = false;
}
/** Registers the usage of the algorithm with the UsageService
void Algorithm::registerFeatureUsage() const {
std::ostringstream oss;
oss << this->name() << ".v" << this->version();
UsageService::Instance().registerFeatureUsage("Algorithm", oss.str(),
isChild());
/** Enable or disable Logging of start and end messages
@param enabled : true to enable logging, false to disable
*/
void Algorithm::setAlgStartupLogging(const bool enabled) {
m_isAlgStartupLoggingEnabled = enabled;
}
/** return the state of logging of start and end messages
@returns : true to logging is enabled
*/
bool Algorithm::getAlgStartupLogging() const {
return m_isAlgStartupLoggingEnabled;
}
bool Algorithm::isCompoundProperty(const std::string &name) const {
return std::find(m_reservedList.cbegin(), m_reservedList.cend(), name) !=
m_reservedList.cend();
}
/// Runs the algorithm with the specified execution mode.
void Algorithm::exec(Parallel::ExecutionMode executionMode) {
switch (executionMode) {
case Parallel::ExecutionMode::Serial:
case Parallel::ExecutionMode::Identical:
return exec();
case Parallel::ExecutionMode::Distributed:
return execDistributed();
case Parallel::ExecutionMode::MasterOnly:
return execMasterOnly();
default:
throw(std::runtime_error("Algorithm " + name() +
" does not support execution mode " +
Parallel::toString(executionMode)));
}
}
/** Runs the algorithm in `distributed` execution mode.
*
* The default implementation runs the normal exec() method on all ranks.
* Classes inheriting from Algorithm can re-implement this if they support
* execution with multiple MPI ranks and require a special implementation for
* distributed execution. */
void Algorithm::execDistributed() { exec(); }
/** Runs the algorithm in `master-only` execution mode.
*
* The default implementation runs the normal exec() method on rank 0 and
* nothing on all other ranks. As a consequence all output properties will
* have their default values, such as a nullptr for output workspaces. Classes
* inheriting from Algorithm can re-implement this if they support execution
* with multiple MPI ranks and require a special implementation for
* master-only execution. */
void Algorithm::execMasterOnly() {
if (communicator().rank() == 0)
exec();
/** Get a (valid) execution mode for this algorithm.
*
* "Valid" implies that this function does check whether or not the Algorithm
* actually supports the mode. If it cannot return a valid mode it throws an
* error. As a consequence, the return value of this function can be used
* without further sanitization of the return value. */
Parallel::ExecutionMode Algorithm::getExecutionMode() const {
if (communicator().size() == 1)
return Parallel::ExecutionMode::Serial;
const auto storageModes = getInputWorkspaceStorageModes();
const auto executionMode = getParallelExecutionMode(storageModes);
if (executionMode == Parallel::ExecutionMode::Invalid) {
std::string error("Algorithm does not support execution with input "
"workspaces of the following storage types: " +
Parallel::toString(storageModes) + ".");
getLogger().error() << error << "\n";
throw(std::runtime_error(error));
}
if (executionMode == Parallel::ExecutionMode::Serial) {
std::string error(Parallel::toString(executionMode) +
" is not a valid *parallel* execution mode.");
getLogger().error() << error << "\n";
throw(std::runtime_error(error));
}
getLogger().information()
<< "MPI Rank " << communicator().rank() << " running with "
<< Parallel::toString(executionMode) << '\n';
return executionMode;
}
/** Get map of storage modes of all input workspaces.
*
* The key to the name is the property name of the respective workspace. */
std::map<std::string, Parallel::StorageMode>
Algorithm::getInputWorkspaceStorageModes() const {
std::map<std::string, Parallel::StorageMode> map;
for (const auto &wsProp : m_inputWorkspaceProps) {
// This is the reverse cast of what is done in cacheWorkspaceProperties(),
// so it should never fail.
const Property &prop = dynamic_cast<Property &>(*wsProp);
// Check if we actually have that input workspace
if (wsProp->getWorkspace())
map.emplace(prop.name(), wsProp->getWorkspace()->storageMode());
else if (!wsProp->isOptional())
map.emplace(prop.name(), Parallel::StorageMode::MasterOnly);
getLogger().information()
<< "Input workspaces for determining execution mode:\n";
for (const auto &item : map)
getLogger().information() << " " << item.first << " --- "
<< Parallel::toString(item.second) << '\n';
return map;
}
/** Get correct execution mode based on input storage modes for an MPI run.
*
* The default implementation returns ExecutionMode::Invalid. Classes
* inheriting from Algorithm can re-implement this if they support execution
* with multiple MPI ranks. May not return ExecutionMode::Serial, because that
* is not a "parallel" execution mode. */
Parallel::ExecutionMode Algorithm::getParallelExecutionMode(
const std::map<std::string, Parallel::StorageMode> &storageModes) const {
UNUSED_ARG(storageModes)
// By default no parallel execution is possible.
return Parallel::ExecutionMode::Invalid;
}
/// Sets up skipping workspace validation on non-master ranks for
/// StorageMode::MasterOnly.
void Algorithm::setupSkipValidationMasterOnly() {
// If workspaces have StorageMode::MasterOnly, validation on non-master
// ranks would usually fail. Therefore, WorkspaceProperty needs to skip
// validation. Thus, we must notify it whether or not it is on the master
// rank or not.
if (communicator().rank() != 0)
for (auto *prop : getProperties())
if (auto *wsProp = dynamic_cast<IWorkspaceProperty *>(prop))
wsProp->setIsMasterRank(false);
}
/// Returns a const reference to the (MPI) communicator of the algorithm.
const Parallel::Communicator &Algorithm::communicator() const {
return *m_communicator;
}
/// Sets the (MPI) communicator of the algorithm.
void Algorithm::setCommunicator(const Parallel::Communicator &communicator) {
m_communicator = Kernel::make_unique<Parallel::Communicator>(communicator);
}
//---------------------------------------------------------------------------
// Algorithm's inner classes
//---------------------------------------------------------------------------