Newer
Older
}
}
}
}
}
/** Indicates that this algrithms history should be tracked regardless of if it
* is a child.
* @param parentHist :: the parent algorithm history object the history in.
*/
void Algorithm::trackAlgorithmHistory(
boost::shared_ptr<AlgorithmHistory> parentHist) {
enableHistoryRecordingForChild(true);
m_parentHistory = parentHist;
}
/** Check if we are tracking history for thus algorithm
* @return if we are tracking the history of this algorithm
*/
bool Algorithm::trackingHistory() {
return (!isChild() || m_recordHistoryForChild);
}
/** Populate lists of the input & output workspace properties.
* (InOut workspaces go in both lists)
* @param inputWorkspaces :: A reference to a vector for the input workspaces
* @param outputWorkspaces :: A reference to a vector for the output workspaces
*/
void Algorithm::findWorkspaceProperties(
std::vector<Workspace_sptr> &inputWorkspaces,
std::vector<Workspace_sptr> &outputWorkspaces) const {
// Loop over properties looking for the workspace properties and putting them
// in the right list
const std::vector<Property *> &algProperties = getProperties();
std::vector<Property *>::const_iterator it;
for (it = algProperties.begin(); it != algProperties.end(); ++it) {
const IWorkspaceProperty *wsProp = dynamic_cast<IWorkspaceProperty *>(*it);
if (wsProp) {
const Property *wsPropProp = dynamic_cast<Property *>(*it);
// Check we actually have a workspace, it may have been optional
Workspace_sptr workspace = wsProp->getWorkspace();
if (!workspace)
continue;
unsigned int direction = wsPropProp->direction();
if (direction == Direction::Input || direction == Direction::InOut) {
inputWorkspaces.push_back(workspace);
Peterson, Peter
committed
}
if (direction == Direction::Output || direction == Direction::InOut) {
outputWorkspaces.push_back(workspace);
}
}
/** Sends out algorithm parameter information to the logger */
void Algorithm::logAlgorithmInfo() const {
auto &logger = getLogger();
if (m_isAlgStartupLoggingEnabled) {
logger.notice() << name() << " started";
if (this->isChild())
logger.notice() << " (child)";
// Make use of the AlgorithmHistory class, which holds all the info we want
// here
AlgorithmHistory algHistory(this);
size_t maxPropertyLength = 40;
if (logger.is(Logger::Priority::PRIO_DEBUG)) {
// include the full property value when logging in debug
maxPropertyLength = 0;
}
algHistory.printSelf(logger.information(), 0, maxPropertyLength);
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
}
}
//=============================================================================================
//================================== WorkspaceGroup-related
//===================================
//=============================================================================================
/** Check the input workspace properties for groups.
*
* If there are more than one input workspace properties, then:
* - All inputs should be groups of the same size
* - In this case, algorithms are processed in order
* - OR, only one input should be a group, the others being size of 1
*
* If the property itself is a WorkspaceProperty<WorkspaceGroup> then
* this returns false
*
* Returns true if processGroups() should be called.
* It also sets up some other members.
*
* Override if it is needed to customize the group checking.
*
* @throw std::invalid_argument if the groups sizes are incompatible.
* @throw std::invalid_argument if a member is not found
*
* This method (or an override) must NOT THROW any exception if there are no
*input workspace groups
*/
bool Algorithm::checkGroups() {
size_t numGroups = 0;
bool processGroups = false;
// Unroll the groups or single inputs into vectors of workspace
m_groups.clear();
m_groupWorkspaces.clear();
for (auto inputWorkspaceProp : m_inputWorkspaceProps) {
auto prop = dynamic_cast<Property *>(inputWorkspaceProp);
auto wsGroupProp = dynamic_cast<WorkspaceProperty<WorkspaceGroup> *>(prop);
std::vector<Workspace_sptr> thisGroup;
Workspace_sptr ws = inputWorkspaceProp->getWorkspace();
WorkspaceGroup_sptr wsGroup =
boost::dynamic_pointer_cast<WorkspaceGroup>(ws);
// Workspace groups are NOT returned by IWP->getWorkspace() most of the time
// because WorkspaceProperty is templated by <MatrixWorkspace>
// and WorkspaceGroup does not subclass <MatrixWorkspace>
if (!wsGroup && prop && !prop->value().empty()) {
// So try to use the name in the AnalysisDataService
try {
wsGroup = AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>(
prop->value());
} catch (Exception::NotFoundError &) { /* Do nothing */
// Found the group either directly or by name?
// If the property is of type WorkspaceGroup then don't unroll
if (wsGroup && !wsGroupProp) {
numGroups++;
processGroups = true;
std::vector<std::string> names = wsGroup->getNames();
for (auto &name : names) {
AnalysisDataService::Instance().retrieve(name);
if (!memberWS)
throw std::invalid_argument("One of the members of " +
wsGroup->getName() + ", " + name +
" was not found!.");
thisGroup.push_back(memberWS);
} else {
// Single Workspace. Treat it as a "group" with only one member
if (ws)
thisGroup.push_back(ws);
// Add to the list of groups
m_groups.push_back(thisGroup);
m_groupWorkspaces.push_back(wsGroup);
}
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
// No groups? Get out.
if (numGroups == 0)
return processGroups;
// ---- Confirm that all the groups are the same size -----
// Index of the single group
m_singleGroup = -1;
// Size of the single or of all the groups
m_groupSize = 1;
m_groupsHaveSimilarNames = true;
for (size_t i = 0; i < m_groups.size(); i++) {
std::vector<Workspace_sptr> &thisGroup = m_groups[i];
// We're ok with empty groups if the workspace property is optional
if (thisGroup.empty() && !m_inputWorkspaceProps[i]->isOptional())
throw std::invalid_argument("Empty group passed as input");
if (!thisGroup.empty()) {
// Record the index of the single group.
WorkspaceGroup_sptr wsGroup = m_groupWorkspaces[i];
if (wsGroup && (numGroups == 1))
m_singleGroup = int(i);
// For actual groups (>1 members)
if (thisGroup.size() > 1) {
// Check for matching group size
if (m_groupSize > 1)
if (thisGroup.size() != m_groupSize)
throw std::invalid_argument(
"Input WorkspaceGroups are not of the same size.");
// Are ALL the names similar?
if (wsGroup)
m_groupsHaveSimilarNames =
m_groupsHaveSimilarNames && wsGroup->areNamesSimilar();
// Save the size for the next group
m_groupSize = thisGroup.size();
Alex Buts
committed
}
} // end for each group
// If you get here, then the groups are compatible
return processGroups;
}
Federico Montesino Pouzols
committed
/**
* Calls process groups with the required timing checks and algorithm
* execution finalization steps.
*
* @param startTime to record the algorithm execution start
*
* @return whether processGroups succeeds.
*/
bool Algorithm::doCallProcessGroups(Mantid::Types::DateAndTime &startTime) {
Federico Montesino Pouzols
committed
// In the base implementation of processGroups, this normally calls
// this->execute() again on each member of the group. Other algorithms may
// choose to override that behavior (examples: CompareWorkspaces,
// CheckWorkspacesMatch, RenameWorkspace)
startTime = Mantid::Types::DateAndTime::getCurrentTime();
Federico Montesino Pouzols
committed
// Start a timer
Timer timer;
bool completed = false;
try {
// Call the concrete algorithm's processGroups method
completed = processGroups();
} catch (std::exception &ex) {
// The child algorithm will already have logged the error etc.,
// but we also need to update flags in the parent algorithm and
// send an ErrorNotification (because the child isn't registered with the
// AlgorithmMonitor).
setExecuted(false);
m_runningAsync = false;
m_running = false;
notificationCenter().postNotification(
new ErrorNotification(this, ex.what()));
throw;
} catch (...) {
setExecuted(false);
m_runningAsync = false;
m_running = false;
notificationCenter().postNotification(new ErrorNotification(
this, "UNKNOWN Exception caught from processGroups"));
throw;
Federico Montesino Pouzols
committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
// Check for a cancellation request in case the concrete algorithm doesn't
interruption_point();
if (completed) {
// in the base processGroups each individual exec stores its outputs
if (!m_usingBaseProcessGroups && (!isChild() || m_alwaysStoreInADS))
this->store();
// Get how long this algorithm took to run
const float duration = timer.elapsed();
// Log that execution has completed.
reportCompleted(duration, true /* this is for group processing*/);
}
setExecuted(completed);
notificationCenter().postNotification(
new FinishedNotification(this, isExecuted()));
return completed;
}
//--------------------------------------------------------------------------------------------
/** Process WorkspaceGroup inputs.
*
* This should be called after checkGroups(), which sets up required members.
* It goes through each member of the group(s), creates and sets an algorithm
* for each and executes them one by one.
*
* If there are several group input workspaces, then the member of each group
* is executed pair-wise.
*
* @return true - if all the workspace members are executed.
*/
bool Algorithm::processGroups() {
Federico Montesino Pouzols
committed
m_usingBaseProcessGroups = true;
std::vector<WorkspaceGroup_sptr> outGroups;
// ---------- Create all the output workspaces ----------------------------
for (auto &pureOutputWorkspaceProp : m_pureOutputWorkspaceProps) {
Property *prop = dynamic_cast<Property *>(pureOutputWorkspaceProp);
auto outWSGrp = boost::make_shared<WorkspaceGroup>();
outGroups.push_back(outWSGrp);
// Put the GROUP in the ADS
AnalysisDataService::Instance().addOrReplace(prop->value(), outWSGrp);
outWSGrp->observeADSNotifications(false);
}
Peterson, Peter
committed
double progress_proportion = 1.0 / static_cast<double>(m_groupSize);
// Go through each entry in the input group(s)
for (size_t entry = 0; entry < m_groupSize; entry++) {
// use create Child Algorithm that look like this one
Algorithm_sptr alg_sptr = this->createChildAlgorithm(
this->name(), progress_proportion * static_cast<double>(entry),
progress_proportion * (1 + static_cast<double>(entry)),
this->isLogging(), this->version());
// Don't make the new algorithm a child so that it's workspaces are stored
// correctly
alg_sptr->setChild(false);
alg_sptr->setRethrows(true);
IAlgorithm *alg = alg_sptr.get();
// Set all non-workspace properties
this->copyNonWorkspaceProperties(alg, int(entry) + 1);
std::string outputBaseName;
// ---------- Set all the input workspaces ----------------------------
for (size_t iwp = 0; iwp < m_groups.size(); iwp++) {
std::vector<Workspace_sptr> &thisGroup = m_groups[iwp];
if (!thisGroup.empty()) {
// By default (for a single group) point to the first/only workspace
Workspace_sptr ws = thisGroup[0];
if ((m_singleGroup == int(iwp)) || m_singleGroup < 0) {
// Either: this is the single group
// OR: all inputs are groups
// ... so get then entry^th workspace in this group
ws = thisGroup[entry];
// Append the names together
if (!outputBaseName.empty())
outputBaseName += "_";
outputBaseName += ws->getName();
// Set the property using the name of that workspace
Federico Montesino Pouzols
committed
if (Property *prop =
dynamic_cast<Property *>(m_inputWorkspaceProps[iwp])) {
alg->setPropertyValue(prop->name(), ws->getName());
Federico Montesino Pouzols
committed
throw std::logic_error("Found a Workspace property which doesn't "
"inherit from Property.");
} // not an empty (i.e. optional) input
} // for each InputWorkspace property
std::vector<std::string> outputWSNames(m_pureOutputWorkspaceProps.size());
// ---------- Set all the output workspaces ----------------------------
for (size_t owp = 0; owp < m_pureOutputWorkspaceProps.size(); owp++) {
if (Property *prop =
dynamic_cast<Property *>(m_pureOutputWorkspaceProps[owp])) {
// Default name = "in1_in2_out"
const std::string inName = prop->value();
std::string outName;
Hahn, Steven
committed
if (m_groupsHaveSimilarNames) {
outName.append(inName).append("_").append(
Strings::toString(entry + 1));
} else {
outName.append(outputBaseName).append("_").append(inName);
}
auto inputProp = std::find_if(m_inputWorkspaceProps.begin(),
m_inputWorkspaceProps.end(),
WorkspacePropertyValueIs(inName));
// Overwrite workspaces in any input property if they have the same
// name as an output (i.e. copy name button in algorithm dialog used)
// (only need to do this for a single input, multiple will be handled
// by ADS)
if (inputProp != m_inputWorkspaceProps.end()) {
const auto &inputGroup =
m_groups[inputProp - m_inputWorkspaceProps.begin()];
if (!inputGroup.empty())
outName = inputGroup[entry]->getName();
// Except if all inputs had similar names, then the name is "out_1"
// Set in the output
alg->setPropertyValue(prop->name(), outName);
outputWSNames[owp] = outName;
} else {
throw std::logic_error(
"Found a Workspace property which doesn't inherit from Property.");
}
} // for each OutputWorkspace property
// ------------ Execute the algo --------------
try {
alg->execute();
} catch (std::exception &e) {
std::ostringstream msg;
msg << "Execution of " << this->name() << " for group entry "
<< (entry + 1) << " failed: ";
msg << e.what(); // Add original message
throw std::runtime_error(msg.str());
Peterson, Peter
committed
// ------------ Fill in the output workspace group ------------------
// this has to be done after execute() because a workspace must exist
// when it is added to a group
for (size_t owp = 0; owp < m_pureOutputWorkspaceProps.size(); owp++) {
// And add it to the output group
outGroups[owp]->add(outputWSNames[owp]);
} // for each entry in each group
for (auto &outGroup : outGroups) {
outGroup->observeADSNotifications(true);
return true;
}
//--------------------------------------------------------------------------------------------
/** Copy all the non-workspace properties from this to alg
*
* @param alg :: other IAlgorithm
* @param periodNum :: number of the "period" = the entry in the group + 1
*/
void Algorithm::copyNonWorkspaceProperties(IAlgorithm *alg, int periodNum) {
if (!alg)
throw std::runtime_error("Algorithm not created!");
std::vector<Property *> props = this->getProperties();
for (auto prop : props) {
if (prop) {
IWorkspaceProperty *wsProp = dynamic_cast<IWorkspaceProperty *>(prop);
// Copy the property using the string
if (!wsProp)
this->setOtherProperties(alg, prop->name(), prop->value(), periodNum);
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
}
}
//--------------------------------------------------------------------------------------------
/** Virtual method to set the non workspace properties for this algorithm.
* To be overridden by specific algorithms when needed.
*
* @param alg :: pointer to the algorithm
* @param propertyName :: name of the property
* @param propertyValue :: value of the property
* @param periodNum :: period number
*/
void Algorithm::setOtherProperties(IAlgorithm *alg,
const std::string &propertyName,
const std::string &propertyValue,
int periodNum) {
(void)periodNum; // Avoid compiler warning
if (alg)
alg->setPropertyValue(propertyName, propertyValue);
}
//--------------------------------------------------------------------------------------------
/** To query the property is a workspace property
* @param prop :: pointer to input properties
* @returns true if this is a workspace property
*/
bool Algorithm::isWorkspaceProperty(const Kernel::Property *const prop) const {
if (!prop) {
return false;
}
const IWorkspaceProperty *const wsProp =
dynamic_cast<const IWorkspaceProperty *>(prop);
return (wsProp != nullptr);
}
//=============================================================================================
//================================== Asynchronous Execution
//===================================
//=============================================================================================
namespace {
/**
* A object to set the flag marking asynchronous running correctly
*/
struct AsyncFlagHolder {
/** Constructor
* @param A :: reference to the running flag
*/
explicit AsyncFlagHolder(bool &running_flag) : m_running_flag(running_flag) {
m_running_flag = true;
}
/// Destructor
~AsyncFlagHolder() { m_running_flag = false; }
private:
/// Default constructor
AsyncFlagHolder();
/// Running flag
bool &m_running_flag;
};
} // namespace
//--------------------------------------------------------------------------------------------
/**
* Asynchronous execution
*/
Poco::ActiveResult<bool> Algorithm::executeAsync() {
m_executeAsync = new Poco::ActiveMethod<bool, Poco::Void, Algorithm>(
this, &Algorithm::executeAsyncImpl);
return (*m_executeAsync)(Poco::Void());
}
/**Callback when an algorithm is executed asynchronously
* @param i :: Unused argument
* @return true if executed successfully.
bool Algorithm::executeAsyncImpl(const Poco::Void &) {
AsyncFlagHolder running(m_runningAsync);
return this->execute();
}
/**
* @return A reference to the Poco::NotificationCenter object that dispatches
* notifications
*/
Poco::NotificationCenter &Algorithm::notificationCenter() const {
if (!m_notificationCenter)
m_notificationCenter = new Poco::NotificationCenter;
return *m_notificationCenter;
}
/** Handles and rescales child algorithm progress notifications.
* @param pNf :: The progress notification from the child algorithm.
*/
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
void Algorithm::handleChildProgressNotification(
const Poco::AutoPtr<ProgressNotification> &pNf) {
double p = m_startChildProgress +
(m_endChildProgress - m_startChildProgress) * pNf->progress;
progress(p, pNf->message);
}
/**
* @return A Poco:NObserver object that is responsible for reporting progress
*/
const Poco::AbstractObserver &Algorithm::progressObserver() const {
if (!m_progressObserver)
m_progressObserver = new Poco::NObserver<Algorithm, ProgressNotification>(
*const_cast<Algorithm *>(this),
&Algorithm::handleChildProgressNotification);
return *m_progressObserver;
}
//--------------------------------------------------------------------------------------------
/**
* Cancel an algorithm
*/
void Algorithm::cancel() {
// set myself to be cancelled
m_cancel = true;
// Loop over the output workspaces and try to cancel them
for (auto &weakPtr : m_ChildAlgorithms) {
if (IAlgorithm_sptr sharedPtr = weakPtr.lock()) {
sharedPtr->cancel();
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
/// Returns the cancellation state
bool Algorithm::getCancel() const { return m_cancel; }
/// Returns a reference to the logger.
Kernel::Logger &Algorithm::getLogger() const { return g_log; }
/// Logging can be disabled by passing a value of false
void Algorithm::setLogging(const bool value) { g_log.setEnabled(value); }
/// returns the status of logging, True = enabled
bool Algorithm::isLogging() const { return g_log.getEnabled(); }
/* Sets the logging priority offset. Values are subtracted from the log level.
*
* Example value=1 will turn warning into notice
* Example value=-1 will turn notice into warning
*/
void Algorithm::setLoggingOffset(const int value) {
if (m_communicator->rank() == 0)
g_log.setLevelOffset(value);
else {
int offset{1};
ConfigService::Instance().getValue("mpi.loggingOffset", offset);
g_log.setLevelOffset(value + offset);
}
}
/// returns the logging priority offset
int Algorithm::getLoggingOffset() const { return g_log.getLevelOffset(); }
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
//--------------------------------------------------------------------------------------------
/** This is called during long-running operations,
* and check if the algorithm has requested that it be cancelled.
*/
void Algorithm::interruption_point() {
// only throw exceptions if the code is not multi threaded otherwise you
// contravene the OpenMP standard
// that defines that all loops must complete, and no exception can leave an
// OpenMP section
// openmp cancel handling is performed using the ??, ?? and ?? macros in each
// algrothim
IF_NOT_PARALLEL
if (m_cancel)
throw CancelException();
}
/**
Report that the algorithm has completed.
@param duration : Algorithm duration
@param groupProcessing : We have been processing via processGroups if true.
*/
void Algorithm::reportCompleted(const double &duration,
const bool groupProcessing) {
std::string optionalMessage;
if (groupProcessing) {
optionalMessage = ". Processed as a workspace group";
}
Gigg, Martyn Anthony
committed
if (!m_isChildAlgorithm || m_alwaysStoreInADS) {
if (m_isAlgStartupLoggingEnabled) {
std::stringstream msg;
msg << name() << " successful, Duration ";
double seconds = duration;
if (seconds > 60.) {
int minutes = static_cast<int>(seconds / 60.);
msg << minutes << " minutes ";
seconds = seconds - static_cast<double>(minutes) * 60.;
}
msg << std::fixed << std::setprecision(2) << seconds << " seconds"
<< optionalMessage;
getLogger().notice(msg.str());
Gigg, Martyn Anthony
committed
else {
getLogger().debug() << name() << " finished with isChild = " << isChild()
}
m_running = false;
}
/** Registers the usage of the algorithm with the UsageService
void Algorithm::registerFeatureUsage() const {
std::ostringstream oss;
oss << this->name() << ".v" << this->version();
UsageService::Instance().registerFeatureUsage("Algorithm", oss.str(),
isChild());
/** Enable or disable Logging of start and end messages
@param enabled : true to enable logging, false to disable
*/
void Algorithm::setAlgStartupLogging(const bool enabled) {
m_isAlgStartupLoggingEnabled = enabled;
}
/** return the state of logging of start and end messages
@returns : true to logging is enabled
*/
bool Algorithm::getAlgStartupLogging() const {
return m_isAlgStartupLoggingEnabled;
}
bool Algorithm::isCompoundProperty(const std::string &name) const {
return std::find(m_reservedList.cbegin(), m_reservedList.cend(), name) !=
m_reservedList.cend();
}
/// Runs the algorithm with the specified execution mode.
void Algorithm::exec(Parallel::ExecutionMode executionMode) {
switch (executionMode) {
case Parallel::ExecutionMode::Serial:
case Parallel::ExecutionMode::Identical:
return exec();
case Parallel::ExecutionMode::Distributed:
return execDistributed();
case Parallel::ExecutionMode::MasterOnly:
return execMasterOnly();
default:
throw(std::runtime_error("Algorithm " + name() +
" does not support execution mode " +
Parallel::toString(executionMode)));
}
}
/** Runs the algorithm in `distributed` execution mode.
*
* The default implementation runs the normal exec() method on all ranks.
* Classes inheriting from Algorithm can re-implement this if they support
* execution with multiple MPI ranks and require a special implementation for
* distributed execution. */
void Algorithm::execDistributed() { exec(); }
/** Runs the algorithm in `master-only` execution mode.
*
* The default implementation runs the normal exec() method on rank 0 and
* execNonMaster() on all other ranks. Classes inheriting from Algorithm can
* re-implement this if they support execution with multiple MPI ranks and
* require a special implementation for master-only execution. */
void Algorithm::execMasterOnly() {
if (communicator().rank() == 0)
exec();
else
execNonMaster();
}
/** By default execMasterOnly() runs this in `master-only` execution mode on all
* but rank 0.
*
* The default implementation creates dummy workspaces for all pure output
* workspaces. Classes inheriting from Algorithm can re-implement this if they
* support execution with multiple MPI ranks and require a special behavior on
* non-master ranks in master-only execution. */
void Algorithm::execNonMaster() {
// If there is no output we can simply do nothing.
if (m_pureOutputWorkspaceProps.empty())
return;
// Does Algorithm have exactly one input and one output workspace property?
if (m_inputWorkspaceProps.size() == 1 &&
m_pureOutputWorkspaceProps.size() == 1) {
// Does the input workspace property point to an actual workspace?
if (const auto &ws = m_inputWorkspaceProps.front()->getWorkspace()) {
if (ws->storageMode() == Parallel::StorageMode::MasterOnly) {
const auto &wsProp = m_pureOutputWorkspaceProps.front();
// This is the reverse cast of what is done in
// cacheWorkspaceProperties(), so it should never fail.
const Property &prop = dynamic_cast<Property &>(*wsProp);
auto clone = ws->cloneEmpty();
// Currently we have not implemented a proper cloneEmpty() for all
// workspace types, in particular the abundance of Workspace2D subtypes,
// so we do a safety check here.
if (ws->storageMode() != clone->storageMode())
throw std::runtime_error(clone->id() +
"::cloneEmpty() did not return a workspace "
"with the correct storage mode. Make sure "
"cloneEmpty() sets the storage mode.");
setProperty(prop.name(), std::move(clone));
return;
}
}
throw std::runtime_error(
"Attempt to run algorithm with " +
Parallel::toString(Parallel::ExecutionMode::MasterOnly) +
": Execution in this mode not implemented.");
/** Get a (valid) execution mode for this algorithm.
*
* "Valid" implies that this function does check whether or not the Algorithm
* actually supports the mode. If it cannot return a valid mode it throws an
* error. As a consequence, the return value of this function can be used
* without further sanitization of the return value. */
Parallel::ExecutionMode Algorithm::getExecutionMode() const {
if (communicator().size() == 1)
return Parallel::ExecutionMode::Serial;
const auto storageModes = getInputWorkspaceStorageModes();
const auto executionMode = getParallelExecutionMode(storageModes);
if (executionMode == Parallel::ExecutionMode::Invalid) {
std::string error("Algorithm does not support execution with input "
"workspaces of the following storage types: " +
Parallel::toString(storageModes) + ".");
getLogger().error() << error << "\n";
throw(std::runtime_error(error));
}
if (executionMode == Parallel::ExecutionMode::Serial) {
std::string error(Parallel::toString(executionMode) +
" is not a valid *parallel* execution mode.");
getLogger().error() << error << "\n";
throw(std::runtime_error(error));
}
return executionMode;
}
/** Get map of storage modes of all input workspaces.
*
* The key to the name is the property name of the respective workspace. */
std::map<std::string, Parallel::StorageMode>
Algorithm::getInputWorkspaceStorageModes() const {
std::map<std::string, Parallel::StorageMode> map;
for (const auto &wsProp : m_inputWorkspaceProps) {
// This is the reverse cast of what is done in cacheWorkspaceProperties(),
// so it should never fail.
const Property &prop = dynamic_cast<Property &>(*wsProp);
// Check if we actually have that input workspace
if (wsProp->getWorkspace())
map.emplace(prop.name(), wsProp->getWorkspace()->storageMode());
}
return map;
}
/** Get correct execution mode based on input storage modes for an MPI run.
*
* The default implementation returns ExecutionMode::Invalid. Classes inheriting
* from Algorithm can re-implement this if they support execution with multiple
* MPI ranks. May not return ExecutionMode::Serial, because that is not a
* "parallel" execution mode. */
Parallel::ExecutionMode Algorithm::getParallelExecutionMode(
const std::map<std::string, Parallel::StorageMode> &storageModes) const {
UNUSED_ARG(storageModes)
// By default no parallel execution is possible.
return Parallel::ExecutionMode::Invalid;
}
/// Sets up skipping workspace validation on non-master ranks for
/// StorageMode::MasterOnly.
void Algorithm::setupSkipValidationMasterOnly() {
// If workspaces have StorageMode::MasterOnly, validation on non-master ranks
// would usually fail. Therefore, WorkspaceProperty needs to skip validation.
// Thus, we must notify it whether or not it is on the master rank or not.
if (communicator().rank() != 0)
for (auto *prop : getProperties())
if (auto *wsProp = dynamic_cast<IWorkspaceProperty *>(prop))
wsProp->setIsMasterRank(false);
}
/// Returns a const reference to the (MPI) communicator of the algorithm.
const Parallel::Communicator &Algorithm::communicator() const {
return *m_communicator;
}
/// Sets the (MPI) communicator of the algorithm.
void Algorithm::setCommunicator(const Parallel::Communicator &communicator) {
m_communicator = Kernel::make_unique<Parallel::Communicator>(communicator);
}
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
//---------------------------------------------------------------------------
// Algorithm's inner classes
//---------------------------------------------------------------------------
Algorithm::AlgorithmNotification::AlgorithmNotification(
const Algorithm *const alg)
: Poco::Notification(), m_algorithm(alg) {}
const IAlgorithm *Algorithm::AlgorithmNotification::algorithm() const {
return m_algorithm;
}
Algorithm::StartedNotification::StartedNotification(const Algorithm *const alg)
: AlgorithmNotification(alg) {}
std::string Algorithm::StartedNotification::name() const {
return "StartedNotification";
} ///< class name
Algorithm::FinishedNotification::FinishedNotification(
const Algorithm *const alg, bool res)
: AlgorithmNotification(alg), success(res) {}
std::string Algorithm::FinishedNotification::name() const {
return "FinishedNotification";
}
Algorithm::ProgressNotification::ProgressNotification(
const Algorithm *const alg, double p, const std::string &msg,
double estimatedTime, int progressPrecision)
: AlgorithmNotification(alg), progress(p), message(msg),
estimatedTime(estimatedTime), progressPrecision(progressPrecision) {}
std::string Algorithm::ProgressNotification::name() const {
return "ProgressNotification";
}
Algorithm::ErrorNotification::ErrorNotification(const Algorithm *const alg,
const std::string &str)
: AlgorithmNotification(alg), what(str) {}
std::string Algorithm::ErrorNotification::name() const {
return "ErrorNotification";
}
const char *Algorithm::CancelException::what() const noexcept {
return "Algorithm terminated";
}
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
} // namespace API
//---------------------------------------------------------------------------
// Specialized templated PropertyManager getValue definitions for Algorithm
// types
//---------------------------------------------------------------------------
namespace Kernel {
/**
* Get the value of a given property as the declared concrete type
* @param name :: The name of the property
* @returns A pointer to an algorithm
*/
template <>
MANTID_API_DLL API::IAlgorithm_sptr
IPropertyManager::getValue<API::IAlgorithm_sptr>(
const std::string &name) const {
PropertyWithValue<API::IAlgorithm_sptr> *prop =
dynamic_cast<PropertyWithValue<API::IAlgorithm_sptr> *>(
getPointerToProperty(name));
if (prop) {
return *prop;
} else {
std::string message = "Attempt to assign property " + name +
" to incorrect type. Expected shared_ptr<IAlgorithm>";
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
throw std::runtime_error(message);
}
}
/**
* Get the value of a given property as the declared concrete type (const
* version)
* @param name :: The name of the property
* @returns A pointer to an algorithm
*/
template <>
MANTID_API_DLL API::IAlgorithm_const_sptr
IPropertyManager::getValue<API::IAlgorithm_const_sptr>(
const std::string &name) const {
PropertyWithValue<API::IAlgorithm_sptr> *prop =
dynamic_cast<PropertyWithValue<API::IAlgorithm_sptr> *>(
getPointerToProperty(name));
if (prop) {
return prop->operator()();
} else {
std::string message =
"Attempt to assign property " + name +
" to incorrect type. Expected const shared_ptr<IAlgorithm>";
throw std::runtime_error(message);
Gigg, Martyn Anthony
committed
}
} // namespace Kernel
Gigg, Martyn Anthony
committed
Peterson, Peter
committed
} // namespace Mantid