Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#pylint: disable=no-init,invalid-name
from __future__ import (absolute_import, division, print_function)
import sys
from mantid.api import *
from mantid.kernel import *
import mantid.simpleapi
import math
import copy
import logging
import numpy as np
from scipy.optimize import curve_fit
class MRInspectData(PythonAlgorithm):
def category(self):
return "Reflectometry\\SNS"
def name(self):
return "MRInspectData"
def summary(self):
return "This algorithm inspects Magnetism Reflectometer data and populates meta-data."
def PyInit(self):
self.declareProperty(WorkspaceProperty("Workspace", "", Direction.Input),
"Input workspace")
# Peak finding options
self.declareProperty("UseROI", True,
doc="If true, use the meta-data ROI rather than finding the ranges")
self.declareProperty("UpdatePeakRange", False,
doc="If true, a fit will be performed and the peak ranges will be updated")
self.declareProperty("UseROIBck", False,
doc="If true, use the 2nd ROI in the meta-data for the background")
self.declareProperty("UseTightBck", False,
doc="If true, use the area on each side of the peak to compute the background")
self.declareProperty("BckWidth", 3,
doc="If UseTightBck is true, width of the background on each side of the peak")
self.declareProperty("HuberXCut", 0.0,
doc="Provide a Huber X value above which a run will be considered a direct beam")
self.declareProperty("ForcePeakROI", False,
doc="If true, use the PeakROI property as the ROI")
self.declareProperty(IntArrayProperty("PeakROI", [0, 0],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the reflectivity peak")
self.declareProperty("ForceLowResPeakROI", False,
doc="If true, use the LowResPeakROI property as the ROI")
self.declareProperty(IntArrayProperty("LowResPeakROI", [0, 0],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the low-resolution peak")
self.declareProperty("ForceBckROI", False,
doc="If true, use the BckROI property as the ROI")
self.declareProperty(IntArrayProperty("BckROI", [0, 0],
IntArrayLengthValidator(2), direction=Direction.Input),
"Pixel range defining the background")
def PyExec(self):
nxs_data = self.getProperty("Workspace").value
nxs_data_name = self.getPropertyValue("Workspace")
data_info = DataInfo(nxs_data, cross_section=nxs_data_name,
use_roi=self.getProperty("UseROI").value,
update_peak_range=self.getProperty("UpdatePeakRange").value,
use_roi_bck=self.getProperty("UseROIBck").value,
use_tight_bck=self.getProperty("UseTightBck").value,
bck_offset=self.getProperty("BckWidth").value,
huber_x_cut=self.getProperty("HuberXCut").value,
force_peak_roi=self.getProperty("ForcePeakROI").value,
peak_roi=self.getProperty("PeakROI").value,
force_low_res_roi=self.getProperty("ForceLowResPeakROI").value,
low_res_roi=self.getProperty("LowResPeakROI").value,
force_bck_roi=self.getProperty("ForceBckROI").value,
bck_roi=self.getProperty("BckROI").value)
# Store information in logs
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='calculated_scatt_angle',
LogText=str(data_info.calculated_scattering_angle),
LogType='Number', LogUnit='degree')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='cross_section',
LogText=nxs_data_name)
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='use_roi_actual',
LogText=str(data_info.use_roi_actual))
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='is_direct_beam',
LogText=str(data_info.is_direct_beam))
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='tof_range_min',
LogText=str(data_info.tof_range[0]),
LogType='Number', LogUnit='usec')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='tof_range_max',
LogText=str(data_info.tof_range[1]),
LogType='Number', LogUnit='usec')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='peak_min',
LogText=str(data_info.peak_range[0]),
LogType='Number', LogUnit='pixel')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='peak_max',
LogText=str(data_info.peak_range[1]),
LogType='Number', LogUnit='pixel')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='background_min',
LogText=str(data_info.background[0]),
LogType='Number', LogUnit='pixel')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='background_max',
LogText=str(data_info.background[1]),
LogType='Number', LogUnit='pixel')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='low_res_min',
LogText=str(data_info.low_res_range[0]),
LogType='Number', LogUnit='pixel')
mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='low_res_max',
LogText=str(data_info.low_res_range[1]),
LogType='Number', LogUnit='pixel')
def _as_ints(a): return [int(a[0]), int(a[1])]
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
class DataInfo(object):
"""
Class to hold the relevant information from a run (scattering or direct beam).
"""
n_x_pixel = 304
n_y_pixel = 256
peak_range_offset = 0
tolerance = 0.02
pixel_width = 0.0007
n_events_cutoff = 10000
huber_x_cut = 4.95
def __init__(self, ws, cross_section='', use_roi=True, update_peak_range=False, use_roi_bck=False,
use_tight_bck=False, bck_offset=3, huber_x_cut=4.95,
force_peak_roi=False, peak_roi=[0,0],
force_low_res_roi=False, low_res_roi=[0,0],
force_bck_roi=False, bck_roi=[0,0]):
self.cross_section = cross_section
self.run_number = ws.getRunNumber()
self.is_direct_beam = False
self.data_type = 1
self.peak_position = 0
self.peak_range = [0,0]
self.low_res_range = [0,0]
self.background = [0,0]
self.huber_x_cut = huber_x_cut
# ROI information
self.roi_peak = [0,0]
self.roi_low_res = [0,0]
self.roi_background = [0,0]
# Options to override the ROI
self.force_peak_roi = force_peak_roi
self.forced_peak_roi = _as_ints(peak_roi)
self.force_low_res_roi = force_low_res_roi
self.forced_low_res_roi = _as_ints(low_res_roi)
self.force_bck_roi = force_bck_roi
self.forced_bck_roi = _as_ints(bck_roi)
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Peak found before fitting for the central position
self.found_peak = [0,0]
self.found_low_res = [0,0]
# Processing options
# Use the ROI rather than finding the ranges
self.use_roi = use_roi
self.use_roi_actual = False
# Use the 2nd ROI as the background, if available
self.use_roi_bck = use_roi_bck
# Use background as a region on each side of the peak
self.use_tight_bck = use_tight_bck
# Width of the background on each side of the peak
self.bck_offset = bck_offset
# Update the specular peak range after finding the peak
# within the ROI
self.update_peak_range = update_peak_range
self.tof_range = self.get_tof_range(ws)
self.determine_data_type(ws)
def log(self):
"""
Log useful diagnostics
"""
logging.info("| Run: %s [direct beam: %s]" % (self.run_number, self.is_direct_beam))
logging.info("| Peak position: %s" % self.peak_position)
logging.info("| Reflectivity peak: %s" % str(self.peak_range))
logging.info("| Low-resolution pixel range: %s" % str(self.low_res_range))
def get_tof_range(self, ws):
"""
Determine TOF range from the data
"""
run_object = ws.getRun()
sample_detector_distance = run_object['SampleDetDis'].getStatistics().mean / 1000.0
source_sample_distance = run_object['ModeratorSamDis'].getStatistics().mean / 1000.0
source_detector_distance = source_sample_distance + sample_detector_distance
h = 6.626e-34 # m^2 kg s^-1
m = 1.675e-27 # kg
wl = run_object.getProperty('LambdaRequest').value[0]
chopper_speed = run_object.getProperty('SpeedRequest1').value[0]
wl_offset = 0
cst = source_detector_distance / h * m
tof_min = cst * (wl + wl_offset * 60.0 / chopper_speed - 1.4 * 60.0 / chopper_speed) * 1e-4
tof_max = cst * (wl + wl_offset * 60.0 / chopper_speed + 1.4 * 60.0 / chopper_speed) * 1e-4
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
self.tof_range = [tof_min, tof_max]
return [tof_min, tof_max]
def process_roi(self, ws):
"""
Process the ROI information and determine the peak
range, the low-resolution range, and the background range.
"""
roi_peak = [0,0]
roi_low_res = [0,0]
roi_background = [0,0]
# Read ROI 1
roi1_valid = True
if 'ROI1StartX' in ws.getRun():
roi1_x0 = ws.getRun()['ROI1StartX'].getStatistics().mean
roi1_y0 = ws.getRun()['ROI1StartY'].getStatistics().mean
roi1_x1 = ws.getRun()['ROI1EndX'].getStatistics().mean
roi1_y1 = ws.getRun()['ROI1EndY'].getStatistics().mean
if roi1_x1 > roi1_x0:
peak1 = [int(roi1_x0), int(roi1_x1)]
else:
peak1 = [int(roi1_x1), int(roi1_x0)]
if roi1_y1 > roi1_y0:
low_res1 = [int(roi1_y0), int(roi1_y1)]
else:
low_res1 = [int(roi1_y1), int(roi1_y0)]
if peak1 == [0,0] and low_res1 == [0,0]:
roi1_valid = False
# Read ROI 2
roi2_valid = True
roi2_x0 = ws.getRun()['ROI2StartX'].getStatistics().mean
roi2_y0 = ws.getRun()['ROI2StartY'].getStatistics().mean
roi2_x1 = ws.getRun()['ROI2EndX'].getStatistics().mean
roi2_y1 = ws.getRun()['ROI2EndY'].getStatistics().mean
if roi2_x1 > roi2_x0:
peak2 = [int(roi2_x0), int(roi2_x1)]
else:
peak2 = [int(roi2_x1), int(roi2_x0)]
if roi2_y1 > roi2_y0:
low_res2 = [int(roi2_y0), int(roi2_y1)]
else:
low_res2 = [int(roi2_y1), int(roi2_y0)]
if peak2 == [0,0] and low_res2 == [0,0]:
roi2_valid = False
else:
roi1_valid = False
roi2_valid = False
# Pick the ROI that describes the reflectivity peak
if roi1_valid and not roi2_valid:
roi_peak = peak1
roi_low_res = low_res1
roi_background = [0,0]
elif roi2_valid and not roi1_valid:
roi_peak = peak2
roi_low_res = low_res2
roi_background = [0,0]
elif roi1_valid and roi2_valid:
# If ROI 2 is within ROI 1, treat it as the peak,
# otherwise, use ROI 1
if peak1[0] >= peak2[0] and peak1[1] <= peak2[1]:
roi_peak = peak1
roi_low_res = low_res1
roi_background = peak2
elif peak2[0] >= peak1[0] and peak2[1] <= peak1[1]:
roi_peak = peak2
roi_low_res = low_res2
roi_background = peak1
else:
roi_peak = peak1
roi_low_res = low_res1
roi_background = [0,0]
# After all this, update the ROI according to reduction options
self.roi_peak = roi_peak
self.roi_low_res = roi_low_res
self.roi_background = roi_background
if self.force_peak_roi:
logging.error("Forcing peak ROI: %s", self.forced_peak_roi)
self.roi_peak = self.forced_peak_roi
if self.force_low_res_roi:
logging.error("Forcing low-res ROI: %s", self.forced_low_res_roi)
self.roi_low_res = self.forced_low_res_roi
if self.force_bck_roi:
logging.error("Forcing background ROI: %s", self.forced_bck_roi)
self.roi_background = self.forced_bck_roi
def determine_peak_range(self, ws, specular=True, max_pixel=250):
ws_summed = mantid.simpleapi.RefRoi(InputWorkspace=ws, IntegrateY=specular,
NXPixel=self.n_x_pixel, NYPixel=self.n_y_pixel,
ConvertToQ=False,
OutputWorkspace="ws_summed")
integrated = mantid.simpleapi.Integration(ws_summed)
integrated = mantid.simpleapi.Transpose(integrated)
x_values = integrated.readX(0)
y_values = integrated.readY(0)
e_values = integrated.readE(0)
ws_short = mantid.simpleapi.CreateWorkspace(DataX=x_values[self.peak_range_offset:max_pixel],
DataY=y_values[self.peak_range_offset:max_pixel],
DataE=e_values[self.peak_range_offset:max_pixel])
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
try:
specular_peak, low_res, _ = mantid.simpleapi.LRPeakSelection(InputWorkspace=ws_short)
except:
logging.error("Peak finding error [specular=%s]: %s" % (specular, sys.exc_value))
return integrated, [0,0], [0,0]
if specular:
peak = [specular_peak[0]+self.peak_range_offset, specular_peak[1]+self.peak_range_offset]
else:
# The low-resolution range finder tends to be a bit tight.
# Broaden it by a third.
#TODO: Fix the range finder algorithm
broadening = (low_res[1]-low_res[0])/3.0
peak = [low_res[0]+self.peak_range_offset-broadening,
low_res[1]+self.peak_range_offset+broadening]
mantid.simpleapi.DeleteWorkspace(ws_short)
mantid.simpleapi.DeleteWorkspace(ws_summed)
return integrated, peak, [low_res[0]+self.peak_range_offset, low_res[1]+self.peak_range_offset]
@classmethod
def fit_peak(cls, signal_x, signal_y, peak):
def gauss(x, *p):
A, mu, sigma, bck = p
if A < 0 or sigma < 5:
return -np.inf
return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + bck
p0 = [np.max(signal_y), (peak[1]+peak[0])/2.0, (peak[1]-peak[0])/2.0, 0.0]
err_y = np.sqrt(np.fabs(signal_y))
# Using bounds would be great but only available with scipy>=0.17. bounds=(0, np.inf)
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
coeff, _ = curve_fit(gauss, signal_x, signal_y, sigma=err_y, p0=p0)
peak_position = coeff[1]
peak_width = math.fabs(3.0*coeff[2])
return peak_position, peak_width
@classmethod
def scattering_angle(cls, ws, peak_position=None):
"""
Determine the scattering angle
"""
dangle = ws.getRun().getProperty("DANGLE").getStatistics().mean
dangle0 = ws.getRun().getProperty("DANGLE0").getStatistics().mean
direct_beam_pix = ws.getRun().getProperty("DIRPIX").getStatistics().mean
det_distance = ws.getRun().getProperty("SampleDetDis").getStatistics().mean / 1000.0
peak_pos = peak_position if peak_position is not None else direct_beam_pix
theta_d = (dangle - dangle0) / 2.0
theta_d += ((direct_beam_pix - peak_pos) * cls.pixel_width) * 180.0 / math.pi / (2.0 * det_distance)
return theta_d
def check_direct_beam(self, ws, peak_position=None):
"""
Determine whether this data is a direct beam
"""
huber_x = ws.getRun().getProperty("HuberX").getStatistics().mean
#dangle = ws.getRun().getProperty("DANGLE").getStatistics().mean
sangle = ws.getRun().getProperty("SANGLE").getStatistics().mean
self.theta_d = self.scattering_angle(ws, peak_position)
return not ((self.theta_d > self.tolerance or sangle > self.tolerance) and huber_x < self.huber_x_cut)
def determine_data_type(self, ws):
"""
Inspect the data and determine peak locations
and data type.
"""
# Skip empty data entries
if ws.getNumberEvents() < self.n_events_cutoff:
self.data_type = -1
logging.info("No data for %s %s" % (self.run_number, self.cross_section))
return
# Find reflectivity peak and low resolution ranges
# Those will be our defaults
integrated, peak, broad_range = self.determine_peak_range(ws, specular=True)
self.found_peak = copy.copy(peak)
logging.info("Run %s [%s]: Peak found %s" % (self.run_number, self.cross_section, peak))
signal_y = integrated.readY(0)
mantid.simpleapi.DeleteWorkspace(integrated)
signal_x = range(len(signal_y))
_, low_res, _ = self.determine_peak_range(ws, specular=False)
logging.info("Run %s [%s]: Low-res found %s" % (self.run_number, self.cross_section, str(low_res)))
self.found_low_res = low_res
bck_range = None
# Process the ROI information
self.process_roi(ws)
# Keep track of whether we actually used the ROI
self.use_roi_actual = False
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
if self.use_roi and not self.roi_peak == [0,0]:
peak = copy.copy(self.roi_peak)
if not self.roi_low_res == [0,0]:
low_res = copy.copy(self.roi_low_res)
if not self.roi_background == [0,0]:
bck_range = copy.copy(self.roi_background)
logging.info("Using ROI peak range: [%s %s]", peak[0], peak[1])
self.use_roi_actual = True
# Determine reflectivity peak position (center)
signal_y_crop = signal_y[peak[0]:peak[1]+1]
signal_x_crop = signal_x[peak[0]:peak[1]+1]
# Calculate a reasonable peak position
#peak_mean = np.average(signal_x_crop, weights=signal_y_crop)
peak_position = (peak[1]+peak[0])/2.0
peak_width = (peak[1]-peak[0])/2.0
try:
# Try to find the peak position within the peak range we found
peak_position, peak_width = self.fit_peak(signal_x_crop, signal_y_crop, peak)
# If we are more than two sigmas away from the middle of the range,
# there's clearly a problem.
if np.abs(peak_position - (peak[1]+peak[0])/2.0) > np.abs(peak[1]-peak[0]):
logging.error("Found peak position outside of given range [x=%s], switching to full detector" % peak_position)
peak_position = (peak[1]+peak[0])/2.0
peak_width = (peak[1]-peak[0])/2.0
raise RuntimeError("Bad peak position")
except:
# If we can't find a peak, try fitting over the full detector.
# If we do find a peak, then update the ranges rather than using
# what we currently have (which is probably given by the ROI).
logging.warning("Run %s [%s]: Could not fit a peak in the supplied peak range" % (self.run_number, self.cross_section))
logging.error(sys.exc_value)
try:
# Define a good default that is wide enough for the fit to work
default_width = (self.found_peak[1]-self.found_peak[0])/2.0
default_width = max(default_width, 10.0)
default_center = (self.found_peak[1]+self.found_peak[0])/2.0
default_peak = [default_center-default_width, default_center+default_width]
logging.info("Run %s [%s]: Broad data region %s" % (self.run_number, self.cross_section, broad_range))
x_min = broad_range[0]+10
x_max = broad_range[1]-10
peak_position, peak_width = self.fit_peak(signal_x[x_min:x_max], signal_y[x_min:x_max], default_peak)
peak = [math.floor(peak_position-peak_width), math.floor(peak_position+peak_width)]
#low_res = [5, self.n_x_pixel-5]
low_res = self.found_low_res
self.use_roi_actual = False
logging.warning("Run %s [%s]: Peak not in supplied range! Found peak: %s low: %s" % (self.run_number,
self.cross_section,
peak, low_res))
logging.warning("Run %s [%s]: Peak position: %s Peak width: %s" % (self.run_number,
self.cross_section,
peak_position, peak_width))
logging.error("Run %s [%s]: Gaussian fit failed to determine peak position" % (self.run_number,
self.cross_section))
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# Update the specular peak range if needed
if self.update_peak_range:
peak[0] = math.floor(peak_position-peak_width)
peak[1] = math.ceil(peak_position+peak_width)
logging.info("Updating peak range to: [%s %s]", peak[0], peak[1])
self.use_roi_actual = False
# Store the information we found
self.peak_position = peak_position
self.peak_range = [int(peak[0]), int(peak[1])]
self.low_res_range = [int(low_res[0]), int(low_res[1])]
if not self.use_roi_bck or bck_range is None:
if self.use_tight_bck:
self.background = [self.peak_range[0]-self.bck_offset, self.peak_range[1]+self.bck_offset]
else:
self.background = [4, self.peak_range[0]-30]
else:
self.background = [int(bck_range[0]), int(bck_range[1])]
# Computed scattering angle
self.calculated_scattering_angle = self.scattering_angle(ws, peak_position)
# Determine whether we have a direct beam
self.is_direct_beam = self.check_direct_beam(ws, peak_position)
# Convenient data type
self.data_type = 0 if self.is_direct_beam else 1
# Write to logs
self.log()
# Register
AlgorithmFactory.subscribe(MRInspectData)