Skip to content
Snippets Groups Projects
MRInspectData.py 22.9 KiB
Newer Older
Mathieu Doucet's avatar
Mathieu Doucet committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
#pylint: disable=no-init,invalid-name
from __future__ import (absolute_import, division, print_function)
import sys
from mantid.api import *
from mantid.kernel import *
import mantid.simpleapi
import math
import copy
import logging
import numpy as np
from scipy.optimize import curve_fit


class MRInspectData(PythonAlgorithm):

    def category(self):
        return "Reflectometry\\SNS"

    def name(self):
        return "MRInspectData"

    def summary(self):
        return "This algorithm inspects Magnetism Reflectometer data and populates meta-data."

    def PyInit(self):
        self.declareProperty(WorkspaceProperty("Workspace", "", Direction.Input),
                             "Input workspace")

        # Peak finding options
        self.declareProperty("UseROI", True,
                             doc="If true, use the meta-data ROI rather than finding the ranges")
        self.declareProperty("UpdatePeakRange", False,
                             doc="If true, a fit will be performed and the peak ranges will be updated")
        self.declareProperty("UseROIBck", False,
                             doc="If true, use the 2nd ROI in the meta-data for the background")
        self.declareProperty("UseTightBck", False,
                             doc="If true, use the area on each side of the peak to compute the background")
        self.declareProperty("BckWidth", 3,
                             doc="If UseTightBck is true, width of the background on each side of the peak")
        self.declareProperty("HuberXCut", 0.0,
                             doc="Provide a Huber X value above which a run will be considered a direct beam")

        self.declareProperty("ForcePeakROI", False,
                             doc="If true, use the PeakROI property as the ROI")
        self.declareProperty(IntArrayProperty("PeakROI", [0, 0],
                                              IntArrayLengthValidator(2), direction=Direction.Input),
                             "Pixel range defining the reflectivity peak")
        self.declareProperty("ForceLowResPeakROI", False,
                             doc="If true, use the LowResPeakROI property as the ROI")
        self.declareProperty(IntArrayProperty("LowResPeakROI", [0, 0],
                                              IntArrayLengthValidator(2), direction=Direction.Input),
                             "Pixel range defining the low-resolution peak")
        self.declareProperty("ForceBckROI", False,
                             doc="If true, use the BckROI property as the ROI")
        self.declareProperty(IntArrayProperty("BckROI", [0, 0],
                                              IntArrayLengthValidator(2), direction=Direction.Input),
                             "Pixel range defining the background")

    def PyExec(self):
        nxs_data = self.getProperty("Workspace").value
        nxs_data_name = self.getPropertyValue("Workspace")
        data_info = DataInfo(nxs_data, cross_section=nxs_data_name,
                             use_roi=self.getProperty("UseROI").value,
                             update_peak_range=self.getProperty("UpdatePeakRange").value,
                             use_roi_bck=self.getProperty("UseROIBck").value,
                             use_tight_bck=self.getProperty("UseTightBck").value,
                             bck_offset=self.getProperty("BckWidth").value,
                             huber_x_cut=self.getProperty("HuberXCut").value,
                             force_peak_roi=self.getProperty("ForcePeakROI").value,
                             peak_roi=self.getProperty("PeakROI").value,
                             force_low_res_roi=self.getProperty("ForceLowResPeakROI").value,
                             low_res_roi=self.getProperty("LowResPeakROI").value,
                             force_bck_roi=self.getProperty("ForceBckROI").value,
                             bck_roi=self.getProperty("BckROI").value)

        # Store information in logs
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='calculated_scatt_angle',
                                      LogText=str(data_info.calculated_scattering_angle),
                                      LogType='Number', LogUnit='degree')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='cross_section',
                                      LogText=nxs_data_name)
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='use_roi_actual',
                                      LogText=str(data_info.use_roi_actual))
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='is_direct_beam',
                                      LogText=str(data_info.is_direct_beam))
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='tof_range_min',
                                      LogText=str(data_info.tof_range[0]),
                                      LogType='Number', LogUnit='usec')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='tof_range_max',
                                      LogText=str(data_info.tof_range[1]),
                                      LogType='Number', LogUnit='usec')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='peak_min',
                                      LogText=str(data_info.peak_range[0]),
                                      LogType='Number', LogUnit='pixel')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='peak_max',
                                      LogText=str(data_info.peak_range[1]),
                                      LogType='Number', LogUnit='pixel')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='background_min',
                                      LogText=str(data_info.background[0]),
                                      LogType='Number', LogUnit='pixel')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='background_max',
                                      LogText=str(data_info.background[1]),
                                      LogType='Number', LogUnit='pixel')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='low_res_min',
                                      LogText=str(data_info.low_res_range[0]),
                                      LogType='Number', LogUnit='pixel')
        mantid.simpleapi.AddSampleLog(Workspace=nxs_data, LogName='low_res_max',
                                      LogText=str(data_info.low_res_range[1]),
                                      LogType='Number', LogUnit='pixel')

def _as_ints(a): return [int(a[0]), int(a[1])]

class DataInfo(object):
    """
        Class to hold the relevant information from a run (scattering or direct beam).
    """
    n_x_pixel = 304
    n_y_pixel = 256
    peak_range_offset = 0
    tolerance = 0.02
    pixel_width = 0.0007
    n_events_cutoff = 10000
    huber_x_cut = 4.95

    def __init__(self, ws, cross_section='', use_roi=True, update_peak_range=False, use_roi_bck=False,
                 use_tight_bck=False, bck_offset=3, huber_x_cut=4.95,
                 force_peak_roi=False, peak_roi=[0,0],
                 force_low_res_roi=False, low_res_roi=[0,0],
                 force_bck_roi=False, bck_roi=[0,0]):
        self.cross_section = cross_section
        self.run_number = ws.getRunNumber()
        self.is_direct_beam = False
        self.data_type = 1
        self.peak_position = 0
        self.peak_range = [0,0]
        self.low_res_range = [0,0]
        self.background = [0,0]
        self.huber_x_cut = huber_x_cut
        
        # ROI information
        self.roi_peak = [0,0]
        self.roi_low_res = [0,0]
        self.roi_background = [0,0]

        # Options to override the ROI
        self.force_peak_roi = force_peak_roi
        self.forced_peak_roi = _as_ints(peak_roi)
        self.force_low_res_roi = force_low_res_roi
        self.forced_low_res_roi = _as_ints(low_res_roi)
        self.force_bck_roi = force_bck_roi
        self.forced_bck_roi = _as_ints(bck_roi)
        
        # Peak found before fitting for the central position
        self.found_peak = [0,0]
        self.found_low_res = [0,0]

        # Processing options
        # Use the ROI rather than finding the ranges
        self.use_roi = use_roi
        self.use_roi_actual = False

        # Use the 2nd ROI as the background, if available
        self.use_roi_bck = use_roi_bck

        # Use background as a region on each side of the peak
        self.use_tight_bck = use_tight_bck
        # Width of the background on each side of the peak
        self.bck_offset = bck_offset

        # Update the specular peak range after finding the peak
        # within the ROI
        self.update_peak_range = update_peak_range

        self.tof_range = self.get_tof_range(ws)
        self.determine_data_type(ws)

    def log(self):
        """
            Log useful diagnostics
        """
        logging.info("| Run: %s [direct beam: %s]" % (self.run_number, self.is_direct_beam))
        logging.info("|   Peak position: %s" % self.peak_position)
        logging.info("|   Reflectivity peak: %s" % str(self.peak_range))
        logging.info("|   Low-resolution pixel range: %s" % str(self.low_res_range))

    def get_tof_range(self, ws):
            """
                Determine TOF range from the data
            """
            run_object = ws.getRun()
            sample_detector_distance = run_object['SampleDetDis'].getStatistics().mean / 1000.0
            source_sample_distance = run_object['ModeratorSamDis'].getStatistics().mean / 1000.0
            source_detector_distance = source_sample_distance + sample_detector_distance
            
            h = 6.626e-34  # m^2 kg s^-1
            m = 1.675e-27  # kg
            wl = run_object.getProperty('LambdaRequest').value[0]
            chopper_speed = run_object.getProperty('SpeedRequest1').value[0]
            wl_offset = 0
            cst = source_detector_distance / h * m
            tof_min = cst * (wl + wl_offset * 60.0 / chopper_speed - 1.4 * 60.0 / chopper_speed) * 1e-4
            tof_max = cst * (wl + wl_offset * 60.0 / chopper_speed + 1.4 * 60.0 / chopper_speed) * 1e-4
            
            self.tof_range = [tof_min, tof_max]
            return [tof_min, tof_max]

    def process_roi(self, ws):
        """
            Process the ROI information and determine the peak
            range, the low-resolution range, and the background range.
        """
        roi_peak = [0,0]
        roi_low_res = [0,0]
        roi_background = [0,0]

        # Read ROI 1
        roi1_valid = True
        if 'ROI1StartX' in ws.getRun():
            roi1_x0 = ws.getRun()['ROI1StartX'].getStatistics().mean
            roi1_y0 = ws.getRun()['ROI1StartY'].getStatistics().mean
            roi1_x1 = ws.getRun()['ROI1EndX'].getStatistics().mean
            roi1_y1 = ws.getRun()['ROI1EndY'].getStatistics().mean
            if roi1_x1 > roi1_x0:
                peak1 = [int(roi1_x0), int(roi1_x1)]
            else:
                peak1 = [int(roi1_x1), int(roi1_x0)]
            if roi1_y1 > roi1_y0:
                low_res1 = [int(roi1_y0), int(roi1_y1)]
            else:
                low_res1 = [int(roi1_y1), int(roi1_y0)]
            if peak1 == [0,0] and low_res1 == [0,0]:
                roi1_valid = False

            # Read ROI 2
            roi2_valid = True
            roi2_x0 = ws.getRun()['ROI2StartX'].getStatistics().mean
            roi2_y0 = ws.getRun()['ROI2StartY'].getStatistics().mean
            roi2_x1 = ws.getRun()['ROI2EndX'].getStatistics().mean
            roi2_y1 = ws.getRun()['ROI2EndY'].getStatistics().mean
            if roi2_x1 > roi2_x0:
                peak2 = [int(roi2_x0), int(roi2_x1)]
            else:
                peak2 = [int(roi2_x1), int(roi2_x0)]
            if roi2_y1 > roi2_y0:
                low_res2 = [int(roi2_y0), int(roi2_y1)]
            else:
                low_res2 = [int(roi2_y1), int(roi2_y0)]
            if peak2 == [0,0] and low_res2 == [0,0]:
                roi2_valid = False
        else:
            roi1_valid = False
            roi2_valid = False

        # Pick the ROI that describes the reflectivity peak
        if roi1_valid and not roi2_valid:
            roi_peak = peak1
            roi_low_res = low_res1
            roi_background = [0,0]
        elif roi2_valid and not roi1_valid:
            roi_peak = peak2
            roi_low_res = low_res2
            roi_background = [0,0]
        elif roi1_valid and roi2_valid:
            # If ROI 2 is within ROI 1, treat it as the peak,
            # otherwise, use ROI 1
            if peak1[0] >= peak2[0] and peak1[1] <= peak2[1]:
                roi_peak = peak1
                roi_low_res = low_res1
                roi_background = peak2
            elif peak2[0] >= peak1[0] and peak2[1] <= peak1[1]:
                roi_peak = peak2
                roi_low_res = low_res2
                roi_background = peak1
            else:
                roi_peak = peak1
                roi_low_res = low_res1
                roi_background = [0,0]

        # After all this, update the ROI according to reduction options
        self.roi_peak = roi_peak
        self.roi_low_res = roi_low_res
        self.roi_background = roi_background

        if self.force_peak_roi:
            logging.error("Forcing peak ROI: %s", self.forced_peak_roi)
            self.roi_peak = self.forced_peak_roi
        if self.force_low_res_roi:
            logging.error("Forcing low-res ROI: %s", self.forced_low_res_roi)
            self.roi_low_res = self.forced_low_res_roi
        if self.force_bck_roi:
            logging.error("Forcing background ROI: %s", self.forced_bck_roi)
            self.roi_background = self.forced_bck_roi

    def determine_peak_range(self, ws, specular=True, max_pixel=250):
        ws_summed = mantid.simpleapi.RefRoi(InputWorkspace=ws, IntegrateY=specular,
                           NXPixel=self.n_x_pixel, NYPixel=self.n_y_pixel,
                           ConvertToQ=False,
                           OutputWorkspace="ws_summed")

        integrated = mantid.simpleapi.Integration(ws_summed)
        integrated = mantid.simpleapi.Transpose(integrated)

        x_values = integrated.readX(0)
        y_values = integrated.readY(0)
        e_values = integrated.readE(0)
        ws_short = mantid.simpleapi.CreateWorkspace(DataX=x_values[self.peak_range_offset:max_pixel],
                                   DataY=y_values[self.peak_range_offset:max_pixel],
                                   DataE=e_values[self.peak_range_offset:max_pixel])
        try:
            specular_peak, low_res, _ = mantid.simpleapi.LRPeakSelection(InputWorkspace=ws_short)
        except:
            logging.error("Peak finding error [specular=%s]: %s" % (specular, sys.exc_value))
            return integrated, [0,0], [0,0]
        if specular:
            peak = [specular_peak[0]+self.peak_range_offset, specular_peak[1]+self.peak_range_offset]
        else:
            # The low-resolution range finder tends to be a bit tight.
            # Broaden it by a third.
            #TODO: Fix the range finder algorithm
            broadening = (low_res[1]-low_res[0])/3.0
            peak = [low_res[0]+self.peak_range_offset-broadening,
                    low_res[1]+self.peak_range_offset+broadening]

        mantid.simpleapi.DeleteWorkspace(ws_short)
        mantid.simpleapi.DeleteWorkspace(ws_summed)

        return integrated, peak, [low_res[0]+self.peak_range_offset, low_res[1]+self.peak_range_offset]

    @classmethod
    def fit_peak(cls, signal_x, signal_y, peak):
        def gauss(x, *p):
            A, mu, sigma, bck = p
            if A < 0 or sigma < 5:
                return -np.inf
            return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + bck

        p0 = [np.max(signal_y), (peak[1]+peak[0])/2.0, (peak[1]-peak[0])/2.0, 0.0]
        err_y = np.sqrt(np.fabs(signal_y))
        # Using bounds would be great but only available with scipy>=0.17. bounds=(0, np.inf), 
        coeff, _ = curve_fit(gauss, signal_x, signal_y, sigma=err_y, p0=p0)
        peak_position = coeff[1]
        peak_width = math.fabs(3.0*coeff[2])
        return peak_position, peak_width

    @classmethod
    def scattering_angle(cls, ws, peak_position=None):
        """
            Determine the scattering angle
        """
        dangle = ws.getRun().getProperty("DANGLE").getStatistics().mean
        dangle0 = ws.getRun().getProperty("DANGLE0").getStatistics().mean
        direct_beam_pix = ws.getRun().getProperty("DIRPIX").getStatistics().mean
        det_distance = ws.getRun().getProperty("SampleDetDis").getStatistics().mean / 1000.0

        peak_pos = peak_position if peak_position is not None else direct_beam_pix
        theta_d = (dangle - dangle0) / 2.0
        theta_d += ((direct_beam_pix - peak_pos) * cls.pixel_width) * 180.0 / math.pi / (2.0 * det_distance)
        return theta_d

    def check_direct_beam(self, ws, peak_position=None):
        """
            Determine whether this data is a direct beam
        """
        huber_x = ws.getRun().getProperty("HuberX").getStatistics().mean
        #dangle = ws.getRun().getProperty("DANGLE").getStatistics().mean
        sangle = ws.getRun().getProperty("SANGLE").getStatistics().mean
        self.theta_d = self.scattering_angle(ws, peak_position)
        return not ((self.theta_d > self.tolerance or sangle > self.tolerance) and huber_x < self.huber_x_cut)

    def determine_data_type(self, ws):
        """
            Inspect the data and determine peak locations
            and data type.
        """
        # Skip empty data entries
        if ws.getNumberEvents() < self.n_events_cutoff:
            self.data_type = -1
            logging.info("No data for %s %s" % (self.run_number, self.cross_section))
            return

        # Find reflectivity peak and low resolution ranges
        # Those will be our defaults
        integrated, peak, broad_range = self.determine_peak_range(ws, specular=True)
        self.found_peak = copy.copy(peak)
        logging.info("Run %s [%s]: Peak found %s" % (self.run_number, self.cross_section, peak))
        signal_y = integrated.readY(0)
        mantid.simpleapi.DeleteWorkspace(integrated)
        signal_x = range(len(signal_y))

        _, low_res, _ = self.determine_peak_range(ws, specular=False)
        logging.info("Run %s [%s]: Low-res found %s" % (self.run_number, self.cross_section, str(low_res)))
        self.found_low_res = low_res
        bck_range = None
        
        # Process the ROI information
        self.process_roi(ws)

        # Keep track of whether we actually used the ROI
        self.use_roi_actual = False
        
        if self.use_roi and not self.roi_peak == [0,0]:
            peak = copy.copy(self.roi_peak)
            if not self.roi_low_res == [0,0]:
                low_res = copy.copy(self.roi_low_res)
            if not self.roi_background == [0,0]:
                bck_range = copy.copy(self.roi_background)
            logging.info("Using ROI peak range: [%s %s]", peak[0], peak[1])
            self.use_roi_actual = True

        # Determine reflectivity peak position (center)
        signal_y_crop = signal_y[peak[0]:peak[1]+1]
        signal_x_crop = signal_x[peak[0]:peak[1]+1]

        # Calculate a reasonable peak position
        #peak_mean = np.average(signal_x_crop, weights=signal_y_crop)

        peak_position = (peak[1]+peak[0])/2.0
        peak_width = (peak[1]-peak[0])/2.0
        try:
            # Try to find the peak position within the peak range we found
            peak_position, peak_width = self.fit_peak(signal_x_crop, signal_y_crop, peak)
            # If we are more than two sigmas away from the middle of the range,
            # there's clearly a problem.
            if np.abs(peak_position - (peak[1]+peak[0])/2.0)  > np.abs(peak[1]-peak[0]):
                logging.error("Found peak position outside of given range [x=%s], switching to full detector" % peak_position)
                peak_position = (peak[1]+peak[0])/2.0
                peak_width = (peak[1]-peak[0])/2.0
                raise RuntimeError("Bad peak position")
        except:
            # If we can't find a peak, try fitting over the full detector.
            # If we do find a peak, then update the ranges rather than using
            # what we currently have (which is probably given by the ROI).
            logging.warning("Run %s [%s]: Could not fit a peak in the supplied peak range" % (self.run_number, self.cross_section))
            logging.error(sys.exc_value)
            try:
                # Define a good default that is wide enough for the fit to work
                default_width = (self.found_peak[1]-self.found_peak[0])/2.0
                default_width = max(default_width, 10.0)
                default_center = (self.found_peak[1]+self.found_peak[0])/2.0
                default_peak = [default_center-default_width, default_center+default_width]
                logging.info("Run %s [%s]: Broad data region %s" % (self.run_number, self.cross_section, broad_range))
                x_min = broad_range[0]+10
                x_max = broad_range[1]-10
                peak_position, peak_width = self.fit_peak(signal_x[x_min:x_max], signal_y[x_min:x_max], default_peak)
                peak = [math.floor(peak_position-peak_width), math.floor(peak_position+peak_width)]
                #low_res = [5, self.n_x_pixel-5]
                low_res = self.found_low_res
                self.use_roi_actual = False
                logging.warning("Run %s [%s]: Peak not in supplied range! Found peak: %s low: %s" % (self.run_number, self.cross_section, peak, low_res))
                logging.warning("Run %s [%s]: Peak position: %s  Peak width: %s" % (self.run_number, self.cross_section, peak_position, peak_width))
            except:
                logging.error(sys.exc_value)
                logging.error("Run %s [%s]: Could not use Gaussian fit to determine peak position over whole detector" % (self.run_number, self.cross_section))

        # Update the specular peak range if needed
        if self.update_peak_range:
            peak[0] = math.floor(peak_position-peak_width)
            peak[1] = math.ceil(peak_position+peak_width)
            logging.info("Updating peak range to: [%s %s]", peak[0], peak[1])
            self.use_roi_actual = False

        # Store the information we found
        self.peak_position = peak_position
        self.peak_range = [int(peak[0]), int(peak[1])]
        self.low_res_range = [int(low_res[0]), int(low_res[1])]

        if not self.use_roi_bck or bck_range is None:
            if self.use_tight_bck:
                self.background = [self.peak_range[0]-self.bck_offset, self.peak_range[1]+self.bck_offset]
            else:
                self.background = [4, self.peak_range[0]-30]
        else:
            self.background = [int(bck_range[0]), int(bck_range[1])]

        # Computed scattering angle
        self.calculated_scattering_angle = self.scattering_angle(ws, peak_position)

        # Determine whether we have a direct beam
        self.is_direct_beam = self.check_direct_beam(ws, peak_position)

        # Convenient data type
        self.data_type = 0 if self.is_direct_beam else 1

        # Write to logs
        self.log()


# Register
AlgorithmFactory.subscribe(MRInspectData)