Skip to content
Snippets Groups Projects
IndirectBayes.py 27.9 KiB
Newer Older
Dan Nixon's avatar
Dan Nixon committed
#pylint: disable=invalid-name,too-many-arguments,too-many-locals

"""
Bayes routines
Fortran programs use fixed length arrays whereas Python has variable lenght lists
Input : the Python list is padded to Fortrans length using procedure PadArray
Output : the Fortran numpy array is sliced to Python length using dataY = yout[:ny]
"""

from IndirectImport import *
if is_supported_f2py_platform():
    QLr     = import_f2py("QLres")
    QLd     = import_f2py("QLdata")
    Qse     = import_f2py("QLse")
    Que     = import_f2py("Quest")
    resnorm = import_f2py("ResNorm")
else:
    unsupported_message()
from mantid.simpleapi import *
from mantid import config, logger, mtd
from IndirectCommon import *
import sys, platform, math, os.path, numpy as np
MTD_PLOT = import_mantidplot()
def readASCIIFile(file_name):
    workdir = config['defaultsave.directory']
    file_path = os.path.join(workdir, file_name)
    asc = []
    with open(file_path, 'r') as handle:
        for line in handle:
            line = line.rstrip()
            asc.append(line)
def CalcErange(inWS,ns,erange,binWidth):
    #length of array in Fortran
    array_len = 4096

    binWidth = int(binWidth)
    bnorm = 1.0/binWidth
    #get data from input workspace
Dan Nixon's avatar
Dan Nixon committed
    _,X,Y,E = GetXYE(inWS,ns,array_len)
    #get all x values within the energy range
    rangeMask = (Xdata >= erange[0]) & (Xdata <= erange[1])
    Xin = Xdata[rangeMask]
    #get indicies of the bounds of our energy range
    minIndex = np.where(Xdata==Xin[0])[0][0]+1
    maxIndex = np.where(Xdata==Xin[-1])[0][0]
    #reshape array into sublists of bins
    Xin = Xin.reshape(len(Xin)/binWidth, binWidth)
    #sum and normalise values in bins
Dan Nixon's avatar
Dan Nixon committed
    Xout = [sum(bin_val) * bnorm for bin_val in Xin]
    #count number of bins
    nbins = len(Xout)
    nout = [nbins, minIndex, maxIndex]
     #pad array for use in Fortran code
    Xout = PadArray(Xout,array_len)

    return nout,bnorm,Xout,X,Y,E

def GetXYE(inWS,n,array_len):
    N = len(Xin)-1                            # get no. points from length of x array
    Yin = mtd[inWS].readY(n)
    Ein = mtd[inWS].readE(n)
    X=PadArray(Xin,array_len)
    Y=PadArray(Yin,array_len)
    E=PadArray(Ein,array_len)
    return N,X,Y,E
def GetResNorm(resnormWS,ngrp):
    if ngrp == 0:                                # read values from WS
        dtnorm = mtd[resnormWS+'_Intensity'].readY(0)
        xscale = mtd[resnormWS+'_Stretch'].readY(0)
        dtnorm = []
        xscale = []
Dan Nixon's avatar
Dan Nixon committed
        for _ in range(0,ngrp):
            dtnorm.append(1.0)
            xscale.append(1.0)
    dtn=PadArray(dtnorm,51)                      # pad for Fortran call
    xsc=PadArray(xscale,51)
    return dtn,xsc

def ReadNormFile(readRes,resnormWS,nsam):            # get norm & scale values
    resnorm_root = resnormWS
    # Obtain root of resnorm group name
    if '_Intensity' in resnormWS:
        resnorm_root = resnormWS[:-10]
    if '_Stretch' in resnormWS:
        resnorm_root = resnormWS[:-8]

    if readRes:                   # use ResNorm file option=o_res
        Xin = mtd[resnorm_root+'_Intensity'].readX(0)
        nrm = len(Xin)                        # no. points from length of x array
        if nrm == 0:
            raise ValueError('ResNorm file has no Intensity points')
        Xin = mtd[resnorm_root+'_Stretch'].readX(0)  # no. points from length of x array
        if len(Xin) == 0:
            raise ValueError('ResNorm file has no xscale points')
        if nrm != nsam:                # check that no. groups are the same
            raise ValueError('ResNorm groups (' +str(nrm) + ') not = Sample (' +str(nsam) +')')
        else:
            dtn,xsc = GetResNorm(resnorm_root,0)
        # do not use ResNorm file
        dtn,xsc = GetResNorm(resnorm_root,nsam)
#Reads in a width ASCII file
def ReadWidthFile(readWidth,widthFile,numSampleGroups):
        logger.information('Width file is ' + widthFile)
        # read ascii based width file
        try:
            wfPath = FileFinder.getFullPath(widthFile)
            handle = open(wfPath, 'r')
            asc = []
            for line in handle:
                line = line.rstrip()
                asc.append(line)
            handle.close()
        except Exception:
            raise ValueError('Failed to read width file')
        numLines = len(asc)
        if numLines == 0:
            raise ValueError('No groups in width file')
        if numLines != numSampleGroups:                # check that no. groups are the same
            raise ValueError('Width groups (' +str(numLines) + ') not = Sample (' +str(numSampleGroups) +')')
         # no file: just use constant values
        widthY = np.zeros(numSampleGroups)
        widthE = np.zeros(numSampleGroups)

    # pad for Fortran call
    widthY = PadArray(widthY,51)
    widthE = PadArray(widthE,51)

    return widthY, widthE
def QLAddSampleLogs(workspace, res_workspace, fit_program, background, elastic_peak, e_range, binning, resnorm_workspace, width_file):

    sample_binning, res_binning = binning
    energy_min, energy_max = e_range

    AddSampleLog(Workspace=workspace, LogName="res_file",
                 LogType="String", LogText=res_workspace)
    AddSampleLog(Workspace=workspace, LogName="fit_program",
                 LogType="String", LogText=fit_program)
    AddSampleLog(Workspace=workspace, LogName="background",
                 LogType="String", LogText=str(background))
    AddSampleLog(Workspace=workspace, LogName="elastic_peak",
                 LogType="String", LogText=str(elastic_peak))
    AddSampleLog(Workspace=workspace, LogName="energy_min",
                 LogType="Number", LogText=str(energy_min))
    AddSampleLog(Workspace=workspace, LogName="energy_max",
                 LogType="Number", LogText=str(energy_max))
    AddSampleLog(Workspace=workspace, LogName="sample_binning",
                 LogType="Number", LogText=str(sample_binning))
    AddSampleLog(Workspace=workspace, LogName="resolution_binning",
                 LogType="Number", LogText=str(res_binning))

    resnorm_used = (resnorm_workspace != '')
    AddSampleLog(Workspace=workspace, LogName="resnorm",
                 LogType="String", LogText=str(resnorm_used))
        AddSampleLog(Workspace=workspace, LogName="resnorm_file",
                     LogType="String", LogText=str(resnorm_workspace))

    width_file_used = (width_file != '')
    AddSampleLog(Workspace=workspace, LogName="width",
                 LogType="String", LogText=str(width_file_used))
        AddSampleLog(Workspace=workspace, LogName="width_file",
                     LogType="String", LogText=str(width_file))
def yield_floats(block):
    #yield a list of floats from a list of lines of text
    #encapsulates the iteration over a block of lines
    for line in block:
        yield ExtractFloat(line)
def read_ql_file(file_name, nl):
    #offet to ignore header
    header_offset = 8
    block_size = 4+nl*3

    asc = readASCIIFile(file_name)
    #extract number of blocks from the file header
    num_blocks = int(ExtractFloat(asc[3])[0])

    q_data = []
    amp_data, FWHM_data, height_data = [], [], []
    amp_error, FWHM_error, height_error = [], [], []

    #iterate over each block of fit parameters in the file
    #each block corresponds to a single column in the final workspace
    for block_num in xrange(num_blocks):
        lower_index = header_offset+(block_size*block_num)
        upper_index = lower_index+block_size

        #create iterator for each line in the block
        line_pointer = yield_floats(asc[lower_index:upper_index])

        #Q,AMAX,HWHM,BSCL,GSCL
        line = line_pointer.next()
Dan Nixon's avatar
Dan Nixon committed
        Q, AMAX, HWHM, _, _ = line
        q_data.append(Q)

        #A0,A1,A2,A4
        line = line_pointer.next()
        block_height = AMAX*line[0]

        #parse peak data from block
        block_FWHM = []
        block_amplitude = []
Dan Nixon's avatar
Dan Nixon committed
        for _ in range(nl):
            #Amplitude,FWHM for each peak
            line = line_pointer.next()
            amp = AMAX*line[0]
            FWHM = 2.*HWHM*line[1]
            block_amplitude.append(amp)
            block_FWHM.append(FWHM)

        #next parse error data from block
        #SIG0
        line = line_pointer.next()
        block_height_e = line[0]

        block_FWHM_e = []
        block_amplitude_e = []
Dan Nixon's avatar
Dan Nixon committed
        for _ in range(nl):
            #Amplitude error,FWHM error for each peak
            #SIGIK
            line = line_pointer.next()
            amp = AMAX*math.sqrt(math.fabs(line[0])+1.0e-20)
            block_amplitude_e.append(amp)

            #SIGFK
            line = line_pointer.next()
            FWHM = 2.0*HWHM*math.sqrt(math.fabs(line[0])+1.0e-20)
            block_FWHM_e.append(FWHM)

        #append data from block
        amp_data.append(block_amplitude)
        FWHM_data.append(block_FWHM)
        height_data.append(block_height)

        #append error values from block
        amp_error.append(block_amplitude_e)
        FWHM_error.append(block_FWHM_e)
        height_error.append(block_height_e)

    return q_data, (amp_data, FWHM_data, height_data), (amp_error, FWHM_error, height_error)
def C2Fw(prog,sname):
    output_workspace = sname+'_Result'
    num_spectra = 0

    axis_names = []
    x, y, e = [], [], []
    for nl in range(1,4):
        num_params = nl*3+1
        num_spectra += num_params

        amplitude_data, width_data = [], []
        amplitude_error, width_error  = [], []

        #read data from file output by fortran code
        file_name = sname + '.ql' +str(nl)
        x_data, peak_data, peak_error = read_ql_file(file_name, nl)
        x_data = np.asarray(x_data)

        amplitude_data, width_data, height_data = peak_data
        amplitude_error, width_error, height_error = peak_error

        #transpose y and e data into workspace rows
        amplitude_data, width_data = np.asarray(amplitude_data).T, np.asarray(width_data).T
        amplitude_error, width_error = np.asarray(amplitude_error).T, np.asarray(width_error).T
        height_data, height_error = np.asarray(height_data), np.asarray(height_error)

        #calculate EISF and EISF error
        total = height_data+amplitude_data
        EISF_data = height_data / total
        total_error = height_error**2 + amplitude_error**2
        EISF_error = EISF_data * np.sqrt((height_error**2/height_data**2) + (total_error/total**2))

        #interlace amplitudes and widths of the peaks
        y.append(np.asarray(height_data))
        for amp, width, EISF in zip(amplitude_data, width_data, EISF_data):
            y.append(amp)
            y.append(width)
            y.append(EISF)

        #iterlace amplitude and width errors of the peaks
        e.append(np.asarray(height_error))
        for amp, width, EISF in zip(amplitude_error, width_error, EISF_error):
            e.append(amp)
            e.append(width)
            e.append(EISF)

        #create x data and axis names for each function
        axis_names.append('f'+str(nl)+'.f0.'+'Height')
        x.append(x_data)
        for j in range(1,nl+1):
            axis_names.append('f'+str(nl)+'.f'+str(j)+'.Amplitude')
            x.append(x_data)
            axis_names.append('f'+str(nl)+'.f'+str(j)+'.FWHM')
            x.append(x_data)
            axis_names.append('f'+str(nl)+'.f'+str(j)+'.EISF')
            x.append(x_data)

    x = np.asarray(x).flatten()
    y = np.asarray(y).flatten()
    e = np.asarray(e).flatten()

    CreateWorkspace(OutputWorkspace=output_workspace, DataX=x, DataY=y, DataE=e, Nspec=num_spectra,\
        UnitX='MomentumTransfer', YUnitLabel='', VerticalAxisUnit='Text', VerticalAxisValues=axis_names)
def SeBlock(a,first):                                 #read Ascii block of Integers
    first += 1
    val = ExtractFloat(a[first])               #Q,AMAX,HWHM
    Q = val[0]
    AMAX = val[1]
    HWHM = val[2]
    first += 1
    val = ExtractFloat(a[first])               #A0
    int0 = [AMAX*val[0]]
    first += 1
    val = ExtractFloat(a[first])                #AI,FWHM first peak
    fw = [2.*HWHM*val[1]]
Dan Nixon's avatar
Dan Nixon committed
    integer = [AMAX*val[0]]
    first += 1
    val = ExtractFloat(a[first])                 #SIG0
    int0.append(val[0])
    first += 1
    val = ExtractFloat(a[first])                  #SIG3K
Dan Nixon's avatar
Dan Nixon committed
    integer.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
    first += 1
    val = ExtractFloat(a[first])                  #SIG1K
    fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
    first += 1
    be = ExtractFloat(a[first])                  #EXPBET
    first += 1
    val = ExtractFloat(a[first])                  #SIG2K
    be.append(math.sqrt(math.fabs(val[0])+1.0e-20))
    first += 1
Dan Nixon's avatar
Dan Nixon committed
    return first,Q,int0,fw,integer,be                                      #values as list
def C2Se(sname):
    outWS = sname+'_Result'
    asc = readASCIIFile(sname+'.qse')
    var = asc[3].split()                            #split line on spaces
    nspec = var[0]
    var = ExtractInt(asc[6])
    first = 7
    Xout = []
    Yf = []
    Ef = []
    Yi = []
    Ei = []
    Yb = []
    Eb = []
    ns = int(nspec)

    dataX = np.array([])
    dataY = np.array([])
    dataE = np.array([])

Dan Nixon's avatar
Dan Nixon committed
    for _ in range(0,ns):
        first,Q,_,fw,it,be = SeBlock(asc,first)
        Xout.append(Q)
        Yf.append(fw[0])
        Ef.append(fw[1])
        Yi.append(it[0])
        Ei.append(it[1])
        Yb.append(be[0])
        Eb.append(be[1])
    Vaxis = []

    dataX = np.append(dataX,np.array(Xout))
    dataY = np.append(dataY,np.array(Yi))
    dataE = np.append(dataE,np.array(Ei))
    nhist = 1
    Vaxis.append('f1.Amplitude')

    dataX = np.append(dataX, np.array(Xout))
    dataY = np.append(dataY, np.array(Yf))
    dataE = np.append(dataE, np.array(Ef))
    nhist += 1
    Vaxis.append('f1.FWHM')

    dataX = np.append(dataX,np.array(Xout))
    dataY = np.append(dataY,np.array(Yb))
    dataE = np.append(dataE,np.array(Eb))
    nhist += 1
    Vaxis.append('f1.Beta')

    logger.information('Vaxis=' + str(Vaxis))
    CreateWorkspace(OutputWorkspace=outWS, DataX=dataX, DataY=dataY, DataE=dataE, Nspec=nhist,\
        UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis, YUnitLabel='')
def QuasiPlot(ws_stem,plot_type,res_plot,sequential):
        if sequential:
            ws_name = ws_stem + '_Result'
            if plot_type == 'Prob' or plot_type == 'All':
                prob_ws = ws_stem+'_Prob'
                if prob_ws in mtd.getObjectNames():
                    MTD_PLOT.plotSpectrum(prob_ws,[1,2],False)
            QuasiPlotParameters(ws_name, plot_type)
        if plot_type == 'Fit' or plot_type == 'All':
            fWS = ws_stem+'_Workspace_0'
            MTD_PLOT.plotSpectrum(fWS,res_plot,False)

def QuasiPlotParameters(ws_name, plot_type):
    """
    Plot a parameter if the user requested it and it exists
    in the workspace

    @param ws_name :: name of the workspace to plot from. This function expects it has a TextAxis
    @param plot_type :: the name of the parameter to plot (or All if all parameters should
                        be plotted)
    """
    num_spectra = mtd[ws_name].getNumberHistograms()
    param_names = ['Amplitude', 'FWHM', 'Beta']

    for param_name in param_names:
        if plot_type == param_name or plot_type == 'All':
            spectra_indicies = [i for i in range(num_spectra) if param_name in mtd[ws_name].getAxis(1).label(i)]
            if len(spectra_indicies) > 0:
                plotSpectra(ws_name, param_name, indicies=spectra_indicies[:3])
# Quest programs
        raise ValueError('Number of sigma points is Zero')
        raise ValueError('Max number of sigma points is 200')
        raise ValueError('Number of beta points is Zero')
        raise ValueError('Max number of beta points is 200')
def QuestRun(samWS,resWS,nbs,erange,nbins,Fit,Loop,Plot,Save):
    StartTime('Quest')
    #expand fit options
Dan Nixon's avatar
Dan Nixon committed
    elastic, background, width, res_norm = Fit

    #convert true/false to 1/0 for fortran
    o_el = 1 if elastic else 0
    o_w1 = 1 if width else 0
Dan Nixon's avatar
Dan Nixon committed
    o_res = 1 if res_norm else 0

    #fortran code uses background choices defined using the following numbers
    if background == 'Sloping':
        o_bgd = 2
        o_bgd = 1
        o_bgd = 0
    workdir = config['defaultsave.directory']
    if not os.path.isdir(workdir):
        workdir = os.getcwd()
        logger.information('Default Save directory is not set. Defaulting to current working Directory: ' + workdir)

    array_len = 4096                           # length of array in Fortran
    CheckXrange(erange,'Energy')
    nbin,nrbin = nbins[0],nbins[1]
    logger.information('Sample is ' + samWS)
    logger.information('Resolution is ' + resWS)
    CheckAnalysers(samWS,resWS)
    nsam,ntc = CheckHistZero(samWS)

    if Loop != True:
        nsam = 1

    efix = getEfixed(samWS)
    theta,Q = GetThetaQ(samWS)
Dan Nixon's avatar
Dan Nixon committed
    nres = CheckHistZero(resWS)[0]
        prog = 'Qst'                        # res file
        raise ValueError('Stretched Exp ONLY works with RES file')
    logger.information(' Number of spectra = '+str(nsam))
    logger.information(' Erange : '+str(erange[0])+' to '+str(erange[1]))

    fname = samWS[:-4] + '_'+ prog
    wrks=os.path.join(workdir, samWS[:-4])
    logger.information(' lptfile : ' + wrks +'_Qst.lpt')
    lwrk=len(wrks)
    wrks.ljust(140,' ')
    wrkr=resWS
    wrkr.ljust(140,' ')
    Nbet,Nsig = nbs[0], nbs[1]
    eBet0 = np.zeros(Nbet)                  # set errors to zero
    eSig0 = np.zeros(Nsig)                  # set errors to zero
    rscl = 1.0
    Qaxis = ''
    for m in range(0,nsam):
        logger.information('Group ' +str(m)+ ' at angle '+ str(theta[m]))
        nsp = m+1
        nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
        Ndat = nout[0]
        Imin = nout[1]
        Imax = nout[2]
Dan Nixon's avatar
Dan Nixon committed
        Nb,Xb,Yb,_ = GetXYE(resWS,0,array_len)
        numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin, Nbet, Nsig]
        reals = [efix, theta[m], rscl, bnorm]
        xsout,ysout,xbout,ybout,zpout=Que.quest(numb,Xv,Yv,Ev,reals,fitOp,\
                                            Xdat,Xb,Yb,wrks,wrkr,lwrk)
        dataXs = xsout[:Nsig]               # reduce from fixed Fortran array
        dataYs = ysout[:Nsig]
        dataXb = xbout[:Nbet]
        dataYb = ybout[:Nbet]
        zpWS = fname + '_Zp' +str(m)
            Qaxis += ','
        Qaxis += str(Q[m])

        dataXz = []
        dataYz = []
        dataEz = []

        for n in range(0,Nsig):
            yfit_list = np.split(zpout[:Nsig*Nbet],Nsig)
            dataYzp = yfit_list[n]

            dataXz = np.append(dataXz,xbout[:Nbet])
            dataYz = np.append(dataYz,dataYzp[:Nbet])
            dataEz = np.append(dataEz,eBet0)

        CreateWorkspace(OutputWorkspace=zpWS, DataX=dataXz, DataY=dataYz, DataE=dataEz,
                        Nspec=Nsig, UnitX='MomentumTransfer',
                        VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=dataXs)

        unitx = mtd[zpWS].getAxis(0).setUnit("Label")
        unitx.setLabel('beta' , '')
        unity = mtd[zpWS].getAxis(1).setUnit("Label")
        unity.setLabel('sigma' , '')

        if m == 0:
            xSig = dataXs
            ySig = dataYs
            eSig = eSig0
            xBet = dataXb
            yBet = dataYb
            eBet = eBet0
            groupZ = zpWS
        else:
            xSig = np.append(xSig,dataXs)
            ySig = np.append(ySig,dataYs)
            eSig = np.append(eSig,eSig0)
            xBet = np.append(xBet,dataXb)
            yBet = np.append(yBet,dataYb)
            eBet = np.append(eBet,eBet0)
            groupZ = groupZ +','+ zpWS

    #create workspaces for sigma and beta
    CreateWorkspace(OutputWorkspace=fname+'_Sigma', DataX=xSig, DataY=ySig, DataE=eSig,\
        Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
    unitx = mtd[fname+'_Sigma'].getAxis(0).setUnit("Label")
    unitx.setLabel('sigma' , '')

    CreateWorkspace(OutputWorkspace=fname+'_Beta', DataX=xBet, DataY=yBet, DataE=eBet,\
        Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
    unitx = mtd[fname+'_Beta'].getAxis(0).setUnit("Label")
    unitx.setLabel('beta' , '')

    group = fname + '_Sigma,'+ fname + '_Beta'

    fit_workspace = fname+'_Fit'
    contour_workspace = fname+'_Contour'
    GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fit_workspace)
    GroupWorkspaces(InputWorkspaces=groupZ,OutputWorkspace=contour_workspace)

    #add sample logs to the output workspaces
    CopyLogs(InputWorkspace=samWS, OutputWorkspace=fit_workspace)
    QuestAddSampleLogs(fit_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)
    CopyLogs(InputWorkspace=samWS, OutputWorkspace=contour_workspace)
    QuestAddSampleLogs(contour_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)

    if Save:
        fpath = os.path.join(workdir,fit_workspace+'.nxs')
        SaveNexusProcessed(InputWorkspace=fit_workspace, Filename=fpath)
        cpath = os.path.join(workdir,contour_workspace+'.nxs')
        SaveNexusProcessed(InputWorkspace=contour_workspace, Filename=cpath)
        logger.information('Output file for Fit : ' + fpath)
        logger.information('Output file for Contours : ' + cpath)
    if Plot != 'None' and Loop == True:
        QuestPlot(fname,Plot)
def QuestAddSampleLogs(workspace, res_workspace, background, elastic_peak, e_range, sample_binning, sigma, beta):
    energy_min, energy_max = e_range
    AddSampleLog(Workspace=workspace, LogName="res_file",
                 LogType="String", LogText=res_workspace)
    AddSampleLog(Workspace=workspace, LogName="background",
                 LogType="String", LogText=str(background))
    AddSampleLog(Workspace=workspace, LogName="elastic_peak",
                 LogType="String", LogText=str(elastic_peak))
    AddSampleLog(Workspace=workspace, LogName="energy_min",
                 LogType="Number", LogText=str(energy_min))
    AddSampleLog(Workspace=workspace, LogName="energy_max",
                 LogType="Number", LogText=str(energy_max))
    AddSampleLog(Workspace=workspace, LogName="sample_binning",
                 LogType="Number", LogText=str(sample_binning))
    AddSampleLog(Workspace=workspace, LogName="sigma",
                 LogType="Number", LogText=str(sigma))
    AddSampleLog(Workspace=workspace, LogName="beta",
                 LogType="Number", LogText=str(beta))
def QuestPlot(inputWS,Plot):
    if Plot == 'Sigma' or Plot == 'All':
        MTD_PLOT.importMatrixWorkspace(inputWS+'_Sigma').plotGraph2D()
    if Plot == 'Beta' or Plot == 'All':
        MTD_PLOT.importMatrixWorkspace(inputWS+'_Beta').plotGraph2D()
# ResNorm programs
def ResNormRun(vname,rname,erange,nbin,Plot='None',Save=False):
    StartTime('ResNorm')

    workdir = getDefaultWorkingDirectory()

    array_len = 4096                                    # length of Fortran array
    CheckXrange(erange,'Energy')
    CheckAnalysers(vname,rname)
    nvan,ntc = CheckHistZero(vname)
Dan Nixon's avatar
Dan Nixon committed
    theta = GetThetaQ(vname)[0]
    efix = getEfixed(vname)
    print "begining erange calc"
    nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(vname,0,erange,nbin)
    print "end of erange calc"
    Ndat = nout[0]
    Imin = nout[1]
    Imax = nout[2]
    wrks=os.path.join(workdir, vname[:-4])
    logger.information(' Number of spectra = '+str(nvan))
    logger.information(' lptfile : ' + wrks +'_resnrm.lpt')
    lwrk=len(wrks)
    wrks.ljust(140,' ')                              # pad for fioxed Fortran length
    wrkr=rname
    wrkr.ljust(140,' ')
Dan Nixon's avatar
Dan Nixon committed
    Nb,Xb,Yb,_ = GetXYE(rname,0,array_len)
    rscl = 1.0
    xPar = np.array([theta[0]])
    for m in range(1,nvan):
        xPar = np.append(xPar,theta[m])
    fname = vname[:-4]
    for m in range(0,nvan):
        logger.information('Group ' +str(m)+ ' at angle '+ str(theta[m]))
        ntc,Xv,Yv,Ev = GetXYE(vname,m,array_len)
        nsp = m+1
        numb = [nvan, nsp, ntc, Ndat, nbin, Imin, Imax, Nb]
        reals = [efix, theta[0], rscl, bnorm]
        nd,xout,yout,eout,yfit,pfit=resnorm.resnorm(numb,Xv,Yv,Ev,reals,\
                                    Xdat,Xb,Yb,wrks,wrkr,lwrk)
        message = ' Fit paras : '+str(pfit[0])+' '+str(pfit[1])
        logger.information(message)
        dataX = xout[:nd]
        dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
        if m == 0:
            yPar1 = np.array([pfit[0]])
            yPar2 = np.array([pfit[1]])
            CreateWorkspace(OutputWorkspace='Data', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],\
                NSpec=1, UnitX='DeltaE')
            CreateWorkspace(OutputWorkspace='Fit', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),\
                NSpec=1, UnitX='DeltaE')
        else:
            yPar1 = np.append(yPar1,pfit[0])
            yPar2 = np.append(yPar2,pfit[1])
            CreateWorkspace(OutputWorkspace='__datmp', DataX=dataX, DataY=yout[:nd],
                            DataE=eout[:nd], NSpec=1, UnitX='DeltaE')
            ConjoinWorkspaces(InputWorkspace1='Data', InputWorkspace2='__datmp',
                              CheckOverlapping=False)
            CreateWorkspace(OutputWorkspace='__f1tmp', DataX=dataX, DataY=yfit[:nd],
                            DataE=np.zeros(nd), NSpec=1, UnitX='DeltaE')
            ConjoinWorkspaces(InputWorkspace1='Fit', InputWorkspace2='__f1tmp',
                              CheckOverlapping=False)

    resnorm_intesity = fname+'_ResNorm_Intensity'
    resnorm_stretch = fname+'_ResNorm_Stretch'

    CreateWorkspace(OutputWorkspace=resnorm_intesity, DataX=xPar, DataY=yPar1, DataE=xPar,\
        NSpec=1, UnitX='MomentumTransfer')
    CreateWorkspace(OutputWorkspace=resnorm_stretch, DataX=xPar, DataY=yPar2, DataE=xPar,\
        NSpec=1, UnitX='MomentumTransfer')

    group = resnorm_intesity + ','+ resnorm_stretch

    resnorm_workspace = fname+'_ResNorm'
    resnorm_fit_workspace = fname+'_ResNorm_Fit'

    GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=resnorm_workspace)
    GroupWorkspaces(InputWorkspaces='Data,Fit',OutputWorkspace=resnorm_fit_workspace)

    CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_workspace)
    ResNormAddSampleLogs(resnorm_workspace, erange, nbin)

    CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_fit_workspace)
    ResNormAddSampleLogs(resnorm_fit_workspace, erange, nbin)

    if Save:
        par_path = os.path.join(workdir,resnorm_workspace+'.nxs')
        SaveNexusProcessed(InputWorkspace=resnorm_workspace, Filename=par_path)
        fit_path = os.path.join(workdir,resnorm_fit_workspace+'.nxs')
        SaveNexusProcessed(InputWorkspace=resnorm_fit_workspace, Filename=fit_path)
        logger.information('Parameter file created : ' + par_path)
        logger.information('Fit file created : ' + fit_path)
        ResNormPlot(fname,Plot)
def ResNormAddSampleLogs(workspace, e_range, v_binning):
    energy_min, energy_max = e_range
    AddSampleLog(Workspace=workspace, LogName="energy_min",
                 LogType="Number", LogText=str(energy_min))
    AddSampleLog(Workspace=workspace, LogName="energy_max",
                 LogType="Number", LogText=str(energy_max))
    AddSampleLog(Workspace=workspace, LogName="van_binning",
                 LogType="Number", LogText=str(v_binning))
def ResNormPlot(inputWS,Plot):
    if Plot == 'Intensity' or Plot == 'All':
        iWS = inputWS + '_ResNorm_Intensity'
        MTD_PLOT.plotSpectrum(iWS,0,False)
    if Plot == 'Stretch' or Plot == 'All':
        sWS = inputWS + '_ResNorm_Stretch'
        MTD_PLOT.plotSpectrum(sWS,0,False)
    if Plot == 'Fit' or Plot == 'All':
        fWS = inputWS + '_ResNorm_Fit'
        MTD_PLOT.plotSpectrum(fWS,0,False)