Newer
Older
#pylint: disable=invalid-name,too-many-arguments,too-many-locals
"""
Bayes routines
Fortran programs use fixed length arrays whereas Python has variable lenght lists
Input : the Python list is padded to Fortrans length using procedure PadArray
Output : the Fortran numpy array is sliced to Python length using dataY = yout[:ny]
"""
from IndirectImport import *
if is_supported_f2py_platform():
QLr = import_f2py("QLres")
QLd = import_f2py("QLdata")
Qse = import_f2py("QLse")
Que = import_f2py("Quest")
resnorm = import_f2py("ResNorm")
else:
from mantid.simpleapi import *
from mantid import config, logger, mtd
import sys, platform, math, os.path, numpy as np
workdir = config['defaultsave.directory']
file_path = os.path.join(workdir, file_name)
asc = []
with open(file_path, 'r') as handle:
for line in handle:
line = line.rstrip()
asc.append(line)
return asc
def CalcErange(inWS,ns,erange,binWidth):
#length of array in Fortran
array_len = 4096
binWidth = int(binWidth)
bnorm = 1.0/binWidth
#get data from input workspace
Xdata = mtd[inWS].readX(0)
#get all x values within the energy range
rangeMask = (Xdata >= erange[0]) & (Xdata <= erange[1])
Xin = Xdata[rangeMask]
#get indicies of the bounds of our energy range
minIndex = np.where(Xdata==Xin[0])[0][0]+1
maxIndex = np.where(Xdata==Xin[-1])[0][0]
#reshape array into sublists of bins
Xin = Xin.reshape(len(Xin)/binWidth, binWidth)
#sum and normalise values in bins
#count number of bins
nbins = len(Xout)
nout = [nbins, minIndex, maxIndex]
#pad array for use in Fortran code
Xout = PadArray(Xout,array_len)
return nout,bnorm,Xout,X,Y,E
Xin = mtd[inWS].readX(n)
N = len(Xin)-1 # get no. points from length of x array
Yin = mtd[inWS].readY(n)
Ein = mtd[inWS].readE(n)
X=PadArray(Xin,array_len)
Y=PadArray(Yin,array_len)
E=PadArray(Ein,array_len)
return N,X,Y,E
def GetResNorm(resnormWS,ngrp):
if ngrp == 0: # read values from WS
dtnorm = mtd[resnormWS+'_Intensity'].readY(0)
xscale = mtd[resnormWS+'_Stretch'].readY(0)
else: # constant values
dtnorm.append(1.0)
xscale.append(1.0)
dtn=PadArray(dtnorm,51) # pad for Fortran call
xsc=PadArray(xscale,51)
return dtn,xsc
def ReadNormFile(readRes,resnormWS,nsam): # get norm & scale values
resnorm_root = resnormWS
# Obtain root of resnorm group name
if '_Intensity' in resnormWS:
resnorm_root = resnormWS[:-10]
if '_Stretch' in resnormWS:
resnorm_root = resnormWS[:-8]
if readRes: # use ResNorm file option=o_res
Xin = mtd[resnorm_root+'_Intensity'].readX(0)
nrm = len(Xin) # no. points from length of x array
if nrm == 0:
raise ValueError('ResNorm file has no Intensity points')
Xin = mtd[resnorm_root+'_Stretch'].readX(0) # no. points from length of x array
if len(Xin) == 0:
raise ValueError('ResNorm file has no xscale points')
if nrm != nsam: # check that no. groups are the same
raise ValueError('ResNorm groups (' +str(nrm) + ') not = Sample (' +str(nsam) +')')
else:
dtn,xsc = GetResNorm(resnorm_root,0)
dtn,xsc = GetResNorm(resnorm_root,nsam)
return dtn,xsc
#Reads in a width ASCII file
def ReadWidthFile(readWidth,widthFile,numSampleGroups):
widthY = []
widthE = []
if readWidth:
logger.information('Width file is ' + widthFile)
# read ascii based width file
try:
wfPath = FileFinder.getFullPath(widthFile)
handle = open(wfPath, 'r')
asc = []
for line in handle:
line = line.rstrip()
asc.append(line)
handle.close()
raise ValueError('Failed to read width file')
if numLines == 0:
raise ValueError('No groups in width file')
if numLines != numSampleGroups: # check that no. groups are the same
raise ValueError('Width groups (' +str(numLines) + ') not = Sample (' +str(numSampleGroups) +')')
widthY = np.zeros(numSampleGroups)
widthE = np.zeros(numSampleGroups)
# pad for Fortran call
widthY = PadArray(widthY,51)
widthE = PadArray(widthE,51)
return widthY, widthE
def QLAddSampleLogs(workspace, res_workspace, fit_program, background, elastic_peak, e_range, binning, resnorm_workspace, width_file):
sample_binning, res_binning = binning
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="res_file",
LogType="String", LogText=res_workspace)
AddSampleLog(Workspace=workspace, LogName="fit_program",
LogType="String", LogText=fit_program)
AddSampleLog(Workspace=workspace, LogName="background",
LogType="String", LogText=str(background))
AddSampleLog(Workspace=workspace, LogName="elastic_peak",
LogType="String", LogText=str(elastic_peak))
AddSampleLog(Workspace=workspace, LogName="energy_min",
LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max",
LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="sample_binning",
LogType="Number", LogText=str(sample_binning))
AddSampleLog(Workspace=workspace, LogName="resolution_binning",
LogType="Number", LogText=str(res_binning))
resnorm_used = (resnorm_workspace != '')
AddSampleLog(Workspace=workspace, LogName="resnorm",
LogType="String", LogText=str(resnorm_used))
if resnorm_used:
AddSampleLog(Workspace=workspace, LogName="resnorm_file",
LogType="String", LogText=str(resnorm_workspace))
width_file_used = (width_file != '')
AddSampleLog(Workspace=workspace, LogName="width",
LogType="String", LogText=str(width_file_used))
if width_file_used:
AddSampleLog(Workspace=workspace, LogName="width_file",
LogType="String", LogText=str(width_file))
#yield a list of floats from a list of lines of text
#encapsulates the iteration over a block of lines
for line in block:
def read_ql_file(file_name, nl):
#offet to ignore header
header_offset = 8
block_size = 4+nl*3
asc = readASCIIFile(file_name)
#extract number of blocks from the file header
num_blocks = int(ExtractFloat(asc[3])[0])
q_data = []
amp_data, FWHM_data, height_data = [], [], []
amp_error, FWHM_error, height_error = [], [], []
#iterate over each block of fit parameters in the file
#each block corresponds to a single column in the final workspace
for block_num in xrange(num_blocks):
lower_index = header_offset+(block_size*block_num)
upper_index = lower_index+block_size
#create iterator for each line in the block
line_pointer = yield_floats(asc[lower_index:upper_index])
#Q,AMAX,HWHM,BSCL,GSCL
line = line_pointer.next()
q_data.append(Q)
#A0,A1,A2,A4
line = line_pointer.next()
block_height = AMAX*line[0]
#parse peak data from block
block_FWHM = []
block_amplitude = []
#Amplitude,FWHM for each peak
line = line_pointer.next()
amp = AMAX*line[0]
FWHM = 2.*HWHM*line[1]
block_amplitude.append(amp)
block_FWHM.append(FWHM)
#next parse error data from block
#SIG0
line = line_pointer.next()
block_height_e = line[0]
block_FWHM_e = []
block_amplitude_e = []
#Amplitude error,FWHM error for each peak
#SIGIK
line = line_pointer.next()
amp = AMAX*math.sqrt(math.fabs(line[0])+1.0e-20)
block_amplitude_e.append(amp)
#SIGFK
line = line_pointer.next()
FWHM = 2.0*HWHM*math.sqrt(math.fabs(line[0])+1.0e-20)
block_FWHM_e.append(FWHM)
#append data from block
amp_data.append(block_amplitude)
FWHM_data.append(block_FWHM)
height_data.append(block_height)
#append error values from block
amp_error.append(block_amplitude_e)
FWHM_error.append(block_FWHM_e)
height_error.append(block_height_e)
return q_data, (amp_data, FWHM_data, height_data), (amp_error, FWHM_error, height_error)
output_workspace = sname+'_Result'
num_spectra = 0
axis_names = []
x, y, e = [], [], []
for nl in range(1,4):
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
num_params = nl*3+1
num_spectra += num_params
amplitude_data, width_data = [], []
amplitude_error, width_error = [], []
#read data from file output by fortran code
file_name = sname + '.ql' +str(nl)
x_data, peak_data, peak_error = read_ql_file(file_name, nl)
x_data = np.asarray(x_data)
amplitude_data, width_data, height_data = peak_data
amplitude_error, width_error, height_error = peak_error
#transpose y and e data into workspace rows
amplitude_data, width_data = np.asarray(amplitude_data).T, np.asarray(width_data).T
amplitude_error, width_error = np.asarray(amplitude_error).T, np.asarray(width_error).T
height_data, height_error = np.asarray(height_data), np.asarray(height_error)
#calculate EISF and EISF error
total = height_data+amplitude_data
EISF_data = height_data / total
total_error = height_error**2 + amplitude_error**2
EISF_error = EISF_data * np.sqrt((height_error**2/height_data**2) + (total_error/total**2))
#interlace amplitudes and widths of the peaks
y.append(np.asarray(height_data))
for amp, width, EISF in zip(amplitude_data, width_data, EISF_data):
y.append(amp)
y.append(width)
y.append(EISF)
#iterlace amplitude and width errors of the peaks
e.append(np.asarray(height_error))
for amp, width, EISF in zip(amplitude_error, width_error, EISF_error):
e.append(amp)
e.append(width)
e.append(EISF)
#create x data and axis names for each function
axis_names.append('f'+str(nl)+'.f0.'+'Height')
x.append(x_data)
for j in range(1,nl+1):
axis_names.append('f'+str(nl)+'.f'+str(j)+'.Amplitude')
x.append(x_data)
axis_names.append('f'+str(nl)+'.f'+str(j)+'.FWHM')
x.append(x_data)
axis_names.append('f'+str(nl)+'.f'+str(j)+'.EISF')
x.append(x_data)
x = np.asarray(x).flatten()
y = np.asarray(y).flatten()
e = np.asarray(e).flatten()
CreateWorkspace(OutputWorkspace=output_workspace, DataX=x, DataY=y, DataE=e, Nspec=num_spectra,\
UnitX='MomentumTransfer', YUnitLabel='', VerticalAxisUnit='Text', VerticalAxisValues=axis_names)
return output_workspace
def SeBlock(a,first): #read Ascii block of Integers
first += 1
val = ExtractFloat(a[first]) #Q,AMAX,HWHM
Q = val[0]
AMAX = val[1]
HWHM = val[2]
first += 1
val = ExtractFloat(a[first]) #A0
int0 = [AMAX*val[0]]
first += 1
val = ExtractFloat(a[first]) #AI,FWHM first peak
fw = [2.*HWHM*val[1]]
first += 1
val = ExtractFloat(a[first]) #SIG0
int0.append(val[0])
first += 1
val = ExtractFloat(a[first]) #SIG3K
integer.append(AMAX*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
val = ExtractFloat(a[first]) #SIG1K
fw.append(2.0*HWHM*math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
be = ExtractFloat(a[first]) #EXPBET
first += 1
val = ExtractFloat(a[first]) #SIG2K
be.append(math.sqrt(math.fabs(val[0])+1.0e-20))
first += 1
return first,Q,int0,fw,integer,be #values as list
outWS = sname+'_Result'
asc = readASCIIFile(sname+'.qse')
var = asc[3].split() #split line on spaces
nspec = var[0]
var = ExtractInt(asc[6])
first = 7
Xout = []
Yf = []
Ef = []
Yi = []
Ei = []
Yb = []
Eb = []
ns = int(nspec)
dataX = np.array([])
dataY = np.array([])
dataE = np.array([])
for _ in range(0,ns):
first,Q,_,fw,it,be = SeBlock(asc,first)
Xout.append(Q)
Yf.append(fw[0])
Ef.append(fw[1])
Yi.append(it[0])
Ei.append(it[1])
Yb.append(be[0])
Eb.append(be[1])
Vaxis = []
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yi))
dataE = np.append(dataE,np.array(Ei))
nhist = 1
Vaxis.append('f1.Amplitude')
dataX = np.append(dataX, np.array(Xout))
dataY = np.append(dataY, np.array(Yf))
dataE = np.append(dataE, np.array(Ef))
nhist += 1
Vaxis.append('f1.FWHM')
dataX = np.append(dataX,np.array(Xout))
dataY = np.append(dataY,np.array(Yb))
dataE = np.append(dataE,np.array(Eb))
nhist += 1
Vaxis.append('f1.Beta')
logger.information('Vaxis=' + str(Vaxis))
CreateWorkspace(OutputWorkspace=outWS, DataX=dataX, DataY=dataY, DataE=dataE, Nspec=nhist,\
UnitX='MomentumTransfer', VerticalAxisUnit='Text', VerticalAxisValues=Vaxis, YUnitLabel='')
return outWS
def QuasiPlot(ws_stem,plot_type,res_plot,sequential):
if plot_type:
if sequential:
ws_name = ws_stem + '_Result'
if plot_type == 'Prob' or plot_type == 'All':
prob_ws = ws_stem+'_Prob'
if prob_ws in mtd.getObjectNames():
MTD_PLOT.plotSpectrum(prob_ws,[1,2],False)
QuasiPlotParameters(ws_name, plot_type)
if plot_type == 'Fit' or plot_type == 'All':
MTD_PLOT.plotSpectrum(fWS,res_plot,False)
def QuasiPlotParameters(ws_name, plot_type):
"""
Plot a parameter if the user requested it and it exists
in the workspace
@param ws_name :: name of the workspace to plot from. This function expects it has a TextAxis
@param plot_type :: the name of the parameter to plot (or All if all parameters should
be plotted)
"""
num_spectra = mtd[ws_name].getNumberHistograms()
param_names = ['Amplitude', 'FWHM', 'Beta']
for param_name in param_names:
if plot_type == param_name or plot_type == 'All':
spectra_indicies = [i for i in range(num_spectra) if param_name in mtd[ws_name].getAxis(1).label(i)]
if len(spectra_indicies) > 0:
plotSpectra(ws_name, param_name, indicies=spectra_indicies[:3])
def CheckBetSig(nbs):
Nsig = int(nbs[1])
if Nsig == 0:
raise ValueError('Number of sigma points is Zero')
if Nsig > 200:
raise ValueError('Max number of sigma points is 200')
Nbet = int(nbs[0])
if Nbet == 0:
raise ValueError('Number of beta points is Zero')
if Nbet > 200:
raise ValueError('Max number of beta points is 200')
return Nbet,Nsig
def QuestRun(samWS,resWS,nbs,erange,nbins,Fit,Loop,Plot,Save):
StartTime('Quest')
#expand fit options
#convert true/false to 1/0 for fortran
o_el = 1 if elastic else 0
o_w1 = 1 if width else 0
#fortran code uses background choices defined using the following numbers
if background == 'Sloping':
elif background == 'Flat':
elif background == 'Zero':
fitOp = [o_el, o_bgd, o_w1, o_res]
workdir = config['defaultsave.directory']
if not os.path.isdir(workdir):
workdir = os.getcwd()
logger.information('Default Save directory is not set. Defaulting to current working Directory: ' + workdir)
array_len = 4096 # length of array in Fortran
CheckXrange(erange,'Energy')
nbin,nrbin = nbins[0],nbins[1]
logger.information('Sample is ' + samWS)
logger.information('Resolution is ' + resWS)
CheckAnalysers(samWS,resWS)
nsam,ntc = CheckHistZero(samWS)
if Loop != True:
efix = getEfixed(samWS)
theta,Q = GetThetaQ(samWS)
if nres == 1:
raise ValueError('Stretched Exp ONLY works with RES file')
logger.information(' Number of spectra = '+str(nsam))
logger.information(' Erange : '+str(erange[0])+' to '+str(erange[1]))
fname = samWS[:-4] + '_'+ prog
wrks=os.path.join(workdir, samWS[:-4])
logger.information(' lptfile : ' + wrks +'_Qst.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ')
wrkr=resWS
wrkr.ljust(140,' ')
Nbet,Nsig = nbs[0], nbs[1]
eBet0 = np.zeros(Nbet) # set errors to zero
eSig0 = np.zeros(Nsig) # set errors to zero
rscl = 1.0
Qaxis = ''
for m in range(0,nsam):
logger.information('Group ' +str(m)+ ' at angle '+ str(theta[m]))
nsp = m+1
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(samWS,m,erange,nbin)
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
numb = [nsam, nsp, ntc, Ndat, nbin, Imin, Imax, Nb, nrbin, Nbet, Nsig]
reals = [efix, theta[m], rscl, bnorm]
xsout,ysout,xbout,ybout,zpout=Que.quest(numb,Xv,Yv,Ev,reals,fitOp,\
Xdat,Xb,Yb,wrks,wrkr,lwrk)
dataXs = xsout[:Nsig] # reduce from fixed Fortran array
dataYs = ysout[:Nsig]
dataXb = xbout[:Nbet]
dataYb = ybout[:Nbet]
zpWS = fname + '_Zp' +str(m)
Qaxis += ','
Qaxis += str(Q[m])
dataXz = []
dataYz = []
dataEz = []
for n in range(0,Nsig):
yfit_list = np.split(zpout[:Nsig*Nbet],Nsig)
dataYzp = yfit_list[n]
dataXz = np.append(dataXz,xbout[:Nbet])
dataYz = np.append(dataYz,dataYzp[:Nbet])
dataEz = np.append(dataEz,eBet0)
CreateWorkspace(OutputWorkspace=zpWS, DataX=dataXz, DataY=dataYz, DataE=dataEz,
Nspec=Nsig, UnitX='MomentumTransfer',
VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=dataXs)
unitx = mtd[zpWS].getAxis(0).setUnit("Label")
unitx.setLabel('beta' , '')
unity = mtd[zpWS].getAxis(1).setUnit("Label")
unity.setLabel('sigma' , '')
if m == 0:
xSig = dataXs
ySig = dataYs
eSig = eSig0
xBet = dataXb
yBet = dataYb
eBet = eBet0
groupZ = zpWS
else:
xSig = np.append(xSig,dataXs)
ySig = np.append(ySig,dataYs)
eSig = np.append(eSig,eSig0)
xBet = np.append(xBet,dataXb)
yBet = np.append(yBet,dataYb)
eBet = np.append(eBet,eBet0)
groupZ = groupZ +','+ zpWS
#create workspaces for sigma and beta
CreateWorkspace(OutputWorkspace=fname+'_Sigma', DataX=xSig, DataY=ySig, DataE=eSig,\
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
unitx = mtd[fname+'_Sigma'].getAxis(0).setUnit("Label")
unitx.setLabel('sigma' , '')
CreateWorkspace(OutputWorkspace=fname+'_Beta', DataX=xBet, DataY=yBet, DataE=eBet,\
Nspec=nsam, UnitX='', VerticalAxisUnit='MomentumTransfer', VerticalAxisValues=Qaxis)
unitx = mtd[fname+'_Beta'].getAxis(0).setUnit("Label")
unitx.setLabel('beta' , '')
group = fname + '_Sigma,'+ fname + '_Beta'
fit_workspace = fname+'_Fit'
contour_workspace = fname+'_Contour'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=fit_workspace)
GroupWorkspaces(InputWorkspaces=groupZ,OutputWorkspace=contour_workspace)
#add sample logs to the output workspaces
CopyLogs(InputWorkspace=samWS, OutputWorkspace=fit_workspace)
QuestAddSampleLogs(fit_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)
CopyLogs(InputWorkspace=samWS, OutputWorkspace=contour_workspace)
QuestAddSampleLogs(contour_workspace, resWS, background, elastic, erange, nbin, Nsig, Nbet)
if Save:
fpath = os.path.join(workdir,fit_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=fit_workspace, Filename=fpath)
cpath = os.path.join(workdir,contour_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=contour_workspace, Filename=cpath)
logger.information('Output file for Fit : ' + fpath)
logger.information('Output file for Contours : ' + cpath)
if Plot != 'None' and Loop == True:
EndTime('Quest')
def QuestAddSampleLogs(workspace, res_workspace, background, elastic_peak, e_range, sample_binning, sigma, beta):
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="res_file",
LogType="String", LogText=res_workspace)
AddSampleLog(Workspace=workspace, LogName="background",
LogType="String", LogText=str(background))
AddSampleLog(Workspace=workspace, LogName="elastic_peak",
LogType="String", LogText=str(elastic_peak))
AddSampleLog(Workspace=workspace, LogName="energy_min",
LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max",
LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="sample_binning",
LogType="Number", LogText=str(sample_binning))
AddSampleLog(Workspace=workspace, LogName="sigma",
LogType="Number", LogText=str(sigma))
AddSampleLog(Workspace=workspace, LogName="beta",
LogType="Number", LogText=str(beta))
def QuestPlot(inputWS,Plot):
if Plot == 'Sigma' or Plot == 'All':
MTD_PLOT.importMatrixWorkspace(inputWS+'_Sigma').plotGraph2D()
if Plot == 'Beta' or Plot == 'All':
MTD_PLOT.importMatrixWorkspace(inputWS+'_Beta').plotGraph2D()
def ResNormRun(vname,rname,erange,nbin,Plot='None',Save=False):
StartTime('ResNorm')
workdir = getDefaultWorkingDirectory()
array_len = 4096 # length of Fortran array
CheckXrange(erange,'Energy')
nvan,ntc = CheckHistZero(vname)
efix = getEfixed(vname)
print "begining erange calc"
nout,bnorm,Xdat,Xv,Yv,Ev = CalcErange(vname,0,erange,nbin)
print "end of erange calc"
Ndat = nout[0]
Imin = nout[1]
Imax = nout[2]
wrks=os.path.join(workdir, vname[:-4])
logger.information(' Number of spectra = '+str(nvan))
logger.information(' lptfile : ' + wrks +'_resnrm.lpt')
lwrk=len(wrks)
wrks.ljust(140,' ') # pad for fioxed Fortran length
wrkr=rname
wrkr.ljust(140,' ')
rscl = 1.0
xPar = np.array([theta[0]])
for m in range(1,nvan):
fname = vname[:-4]
for m in range(0,nvan):
logger.information('Group ' +str(m)+ ' at angle '+ str(theta[m]))
ntc,Xv,Yv,Ev = GetXYE(vname,m,array_len)
nsp = m+1
numb = [nvan, nsp, ntc, Ndat, nbin, Imin, Imax, Nb]
reals = [efix, theta[0], rscl, bnorm]
nd,xout,yout,eout,yfit,pfit=resnorm.resnorm(numb,Xv,Yv,Ev,reals,\
message = ' Fit paras : '+str(pfit[0])+' '+str(pfit[1])
logger.information(message)
dataX = xout[:nd]
dataX = np.append(dataX,2*xout[nd-1]-xout[nd-2])
if m == 0:
yPar1 = np.array([pfit[0]])
yPar2 = np.array([pfit[1]])
CreateWorkspace(OutputWorkspace='Data', DataX=dataX, DataY=yout[:nd], DataE=eout[:nd],\
CreateWorkspace(OutputWorkspace='Fit', DataX=dataX, DataY=yfit[:nd], DataE=np.zeros(nd),\
NSpec=1, UnitX='DeltaE')
else:
yPar1 = np.append(yPar1,pfit[0])
yPar2 = np.append(yPar2,pfit[1])
CreateWorkspace(OutputWorkspace='__datmp', DataX=dataX, DataY=yout[:nd],
DataE=eout[:nd], NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Data', InputWorkspace2='__datmp',
CheckOverlapping=False)
CreateWorkspace(OutputWorkspace='__f1tmp', DataX=dataX, DataY=yfit[:nd],
DataE=np.zeros(nd), NSpec=1, UnitX='DeltaE')
ConjoinWorkspaces(InputWorkspace1='Fit', InputWorkspace2='__f1tmp',
CheckOverlapping=False)
resnorm_intesity = fname+'_ResNorm_Intensity'
resnorm_stretch = fname+'_ResNorm_Stretch'
CreateWorkspace(OutputWorkspace=resnorm_intesity, DataX=xPar, DataY=yPar1, DataE=xPar,\
CreateWorkspace(OutputWorkspace=resnorm_stretch, DataX=xPar, DataY=yPar2, DataE=xPar,\
group = resnorm_intesity + ','+ resnorm_stretch
resnorm_workspace = fname+'_ResNorm'
resnorm_fit_workspace = fname+'_ResNorm_Fit'
GroupWorkspaces(InputWorkspaces=group,OutputWorkspace=resnorm_workspace)
GroupWorkspaces(InputWorkspaces='Data,Fit',OutputWorkspace=resnorm_fit_workspace)
CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_workspace)
ResNormAddSampleLogs(resnorm_workspace, erange, nbin)
CopyLogs(InputWorkspace=vname, OutputWorkspace=resnorm_fit_workspace)
ResNormAddSampleLogs(resnorm_fit_workspace, erange, nbin)
if Save:
par_path = os.path.join(workdir,resnorm_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=resnorm_workspace, Filename=par_path)
fit_path = os.path.join(workdir,resnorm_fit_workspace+'.nxs')
SaveNexusProcessed(InputWorkspace=resnorm_fit_workspace, Filename=fit_path)
logger.information('Parameter file created : ' + par_path)
logger.information('Fit file created : ' + fit_path)
if Plot != 'None':
EndTime('ResNorm')
def ResNormAddSampleLogs(workspace, e_range, v_binning):
energy_min, energy_max = e_range
AddSampleLog(Workspace=workspace, LogName="energy_min",
LogType="Number", LogText=str(energy_min))
AddSampleLog(Workspace=workspace, LogName="energy_max",
LogType="Number", LogText=str(energy_max))
AddSampleLog(Workspace=workspace, LogName="van_binning",
LogType="Number", LogText=str(v_binning))
if Plot == 'Intensity' or Plot == 'All':
if Plot == 'Stretch' or Plot == 'All':
if Plot == 'Fit' or Plot == 'All':