Newer
Older
#include "MantidKernel/Exception.h"
#include "MantidKernel/make_unique.h"
#include "MantidKernel/MersenneTwister.h"
#include "MantidKernel/TimeSeriesProperty.h"
Gigg, Martyn Anthony
committed
#include <algorithm>
#include <memory>
namespace Kernel {
//
#define fabs(x) std::fabs((x)*1.0)
Gigg, Martyn Anthony
committed
namespace {
//-------------------------------------------------------------------------
// Utility methods and function objects in anonymous namespace
//-------------------------------------------------------------------------
/**
\class PIndex
\author S. Ansell
\date Aug 2005
\version 1.0
\brief Class to fill an index with a progressive count
*/
template <typename T> struct PIndex {
private:
int count; ///< counter
public:
/// Constructor
PIndex() : count(0) {}
/// functional
std::pair<T, int> operator()(const T &A) {
return std::pair<T, int>(A, count++);
Gigg, Martyn Anthony
committed
}
Gigg, Martyn Anthony
committed
/**
\class PSep
\author S. Ansell
\date Aug 2005
\version 1.0
\brief Class to access the second object in index pair.
*/
template <typename T> struct PSep {
/// Functional to the second object
int operator()(const std::pair<T, int> &A) { return A.second; }
};
/**
* Function to take a vector and sort the vector
* so as to produce an index. Leaves the vector unchanged.
* @param pVec :: Input vector
* @param Index :: Output vector
*/
template <typename T>
void indexSort(const std::vector<T> &pVec, std::vector<int> &Index) {
Index.resize(pVec.size());
std::vector<typename std::pair<T, int>> PartList;
PartList.resize(pVec.size());
transform(pVec.begin(), pVec.end(), PartList.begin(), PIndex<T>());
sort(PartList.begin(), PartList.end());
transform(PartList.begin(), PartList.end(), Index.begin(), PSep<T>());
}
template void indexSort(const std::vector<double> &, std::vector<int> &);
template void indexSort(const std::vector<float> &, std::vector<int> &);
template void indexSort(const std::vector<int> &, std::vector<int> &);
} // End of Anonymous name space
Gigg, Martyn Anthony
committed
template <typename T> std::vector<T> Matrix<T>::getVector() const {
std::vector<T> rez(m_numRows * m_numColumns);
Gigg, Martyn Anthony
committed
size_t ic(0);
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
rez[ic] = m_rawData[i][j];
Gigg, Martyn Anthony
committed
ic++;
}
}
return rez;
Alex Buts
committed
}
//
Matrix<T>::Matrix(const size_t nrow, const size_t ncol, const bool makeIdentity)
: m_numRows(0), m_numColumns(0)
/**
Constructor with pre-set sizes. Matrix is zeroed
@param nrow :: number of rows
@param ncol :: number of columns
@param makeIdentity :: flag for the constructor to return an identity matrix
*/
// Note:: m_numRows, m_numColumns zeroed so setMem always works
if (makeIdentity)
identityMatrix();
}
template <typename T>
Matrix<T>::Matrix(const std::vector<T> &A, const std::vector<T> &B)
: m_numRows(0), m_numColumns(0)
/**
Constructor to take two vectors and multiply them to
construct a matrix. (assuming that we have columns x row
vector.
@param A :: Column vector to multiply
@param B :: Row vector to multiply
*/
// Note:: m_numRows,m_numColumns zeroed so setMem always works
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = A[i] * B[j];
Gigg, Martyn Anthony
committed
}
template <typename T>
Matrix<T>::Matrix(const std::vector<T> &data)
: m_numRows(0), m_numColumns(0) {
size_t numElements = data.size();
size_t numRows = static_cast<size_t>(sqrt(double(numElements)));
size_t numRowsSquare = numRows * numRows;
if (numElements != numRowsSquare) {
throw(std::invalid_argument(
"number of elements in input vector have to be square of some value"));
}
Gigg, Martyn Anthony
committed
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = data[ic];
template <typename T>
Matrix<T>::Matrix(const std::vector<T> &data, const size_t nrow,
const size_t ncol)
: m_numRows(0), m_numColumns(0) {
size_t numel = data.size();
size_t test = nrow * ncol;
if (test != numel) {
throw(std::invalid_argument("number of elements in input vector have is "
"incompatible with the number of rows and "
"columns"));
}
setMem(nrow, ncol);
size_t ic(0);
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = data[ic];
ic++;
}
}
}
template <typename T>
Matrix<T>::Matrix(const Matrix<T> &A, const size_t nrow, const size_t ncol)
: m_numRows(A.m_numRows - 1), m_numColumns(A.m_numColumns - 1)
/**
Constructor with for a missing row/column.
@param A :: The input matrix
@param nrow :: number of row to miss
@param ncol :: number of column to miss
*/
Gigg, Martyn Anthony
committed
{
if (nrow > m_numRows)
throw Kernel::Exception::IndexError(nrow, A.m_numRows,
"Matrix::Constructor without row");
if (ncol > m_numColumns)
throw Kernel::Exception::IndexError(ncol, A.m_numColumns,
"Matrix::Constructor without col");
setMem(m_numRows, m_numColumns);
for (size_t i = 0; i <= m_numRows; i++) {
if (i != nrow) {
size_t jR(0);
for (size_t j = 0; j <= m_numColumns; j++) {
if (j != ncol) {
m_rawData[iR][jR] = A.m_rawData[i][j];
jR++;
Gigg, Martyn Anthony
committed
}
}
Gigg, Martyn Anthony
committed
}
}
}
template <typename T>
Matrix<T>::Matrix(const Matrix<T> &A)
: m_numRows(0), m_numColumns(0)
/**
Simple copy constructor
@param A :: Object to copy
*/
// Note:: m_numRows,m_numColumns zeroed so setMem always works
setMem(A.m_numRows, A.m_numColumns);
if ((m_numRows * m_numColumns) > 0) {
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = A.m_rawData[i][j];
Gigg, Martyn Anthony
committed
}
Gigg, Martyn Anthony
committed
}
template <typename T>
Matrix<T> &Matrix<T>::operator=(const Matrix<T> &A)
/**
Simple assignment operator
@param A :: Object to copy
@return the copied object
*/
setMem(A.m_numRows, A.m_numColumns);
if ((m_numRows * m_numColumns) > 0) {
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = A.m_rawData[i][j];
Gigg, Martyn Anthony
committed
}
Gigg, Martyn Anthony
committed
}
template <typename T>
Matrix<T>::Matrix(Matrix<T> &&other) noexcept
: m_numRows(other.m_numRows),
m_numColumns(other.m_numColumns),
m_rawDataAlloc(std::move(other.m_rawDataAlloc)),
m_rawData(std::move(other.m_rawData)) {
other.m_numRows = 0;
other.m_numColumns = 0;
}
template <typename T>
Matrix<T> &Matrix<T>::operator=(Matrix<T> &&other) noexcept {
m_numRows = other.m_numRows;
m_numColumns = other.m_numColumns;
m_rawData = std::move(other.m_rawData);
m_rawDataAlloc = std::move(other.m_rawDataAlloc);
other.m_numRows = 0;
other.m_numColumns = 0;
return *this;
}
template <typename T>
Matrix<T> &Matrix<T>::operator+=(const Matrix<T> &A)
/**
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
@param A :: Matrix to add
@return Matrix(this + A)
*/
const size_t Xpt((m_numRows > A.m_numRows) ? A.m_numRows : m_numRows);
const size_t Ypt((m_numColumns > A.m_numColumns) ? A.m_numColumns
: m_numColumns);
for (size_t i = 0; i < Xpt; i++) {
for (size_t j = 0; j < Ypt; j++) {
m_rawData[i][j] += A.m_rawData[i][j];
}
}
template <typename T>
Matrix<T> &Matrix<T>::operator-=(const Matrix<T> &A)
/**
Matrix subtractoin THIS - A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
@param A :: Matrix to add
@return Ma
*/
const size_t Xpt((m_numRows > A.m_numRows) ? A.m_numRows : m_numRows);
const size_t Ypt((m_numColumns > A.m_numColumns) ? A.m_numColumns
: m_numColumns);
for (size_t i = 0; i < Xpt; i++) {
for (size_t j = 0; j < Ypt; j++) {
m_rawData[i][j] -= A.m_rawData[i][j];
}
}
template <typename T>
Matrix<T> Matrix<T>::operator+(const Matrix<T> &A) const
/**
Matrix addition THIS + A
If the size is different then 0 is added where appropiate
Matrix A is not expanded.
@param A :: Matrix to add
@return Matrix(this + A)
*/
return X += A;
}
template <typename T>
Matrix<T> Matrix<T>::operator-(const Matrix<T> &A) const
/**
Matrix subtraction THIS - A
If the size is different then 0 is subtracted where
appropiate. This matrix determines the size
@param A :: Matrix to add
@return Matrix(this + A)
*/
return X -= A;
}
template <typename T>
Matrix<T> Matrix<T>::operator*(const Matrix<T> &A) const
/**
Matrix multiplication THIS * A
@param A :: Matrix to multiply by (this->row must == A->columns)
@throw MisMatch<size_t> if there is a size mismatch.
@return Matrix(This * A)
*/
if (m_numColumns != A.m_numRows)
throw Kernel::Exception::MisMatch<size_t>(m_numColumns, A.m_numRows,
Matrix<T> X(m_numRows, A.m_numColumns);
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < A.m_numColumns; j++) {
for (size_t kk = 0; kk < m_numColumns; kk++) {
X.m_rawData[i][j] += m_rawData[i][kk] * A.m_rawData[kk][j];
}
}
}
template <typename T>
std::vector<T> Matrix<T>::operator*(const std::vector<T> &Vec) const
/**
Matrix multiplication THIS * Vec to produce a vec
@param Vec :: size of vector > this->nrows
@throw MisMatch<size_t> if there is a size mismatch.
@return Matrix(This * Vec)
*/
if (m_numColumns > Vec.size())
throw Kernel::Exception::MisMatch<size_t>(m_numColumns, Vec.size(),
"Matrix::operator*(m_rawDataec)");
std::vector<T> Out(m_numRows);
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
Out[i] += m_rawData[i][j] * Vec[j];
Gigg, Martyn Anthony
committed
}
/**
Matrix multiplication THIS * Vec to produce a vec
@param in :: size of vector > this->nrows
@param out :: result of Matrix(This * Vec)
@throw MisMatch<size_t> if there is a size mismatch.
*/
template <typename T>
void Matrix<T>::multiplyPoint(const std::vector<T> &in,
std::vector<T> &out) const {
std::fill(std::begin(out), std::end(out), static_cast<T>(0.0));
if (m_numColumns > in.size())
throw Kernel::Exception::MisMatch<size_t>(m_numColumns, in.size(),
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
out[i] += m_rawData[i][j] * in[j];
template <typename T>
V3D Matrix<T>::operator*(const V3D &Vx) const
/**
Matrix multiplication THIS * V
@param Vx :: Colunm vector to multiply by
@throw MisMatch<size_t> if there is a size mismatch.
@return Matrix(This * A)
*/
if (m_numColumns != 3 || m_numRows > 3)
throw Kernel::Exception::MisMatch<size_t>(m_numColumns, 3,
"Matrix::operator*(m_rawData3D)");
for (size_t i = 0; i < m_numRows; ++i) {
v[i] = m_rawData[i][0] * Vx.X() + m_rawData[i][1] * Vx.Y() +
m_rawData[i][2] * Vx.Z();
template <typename T>
Matrix<T> Matrix<T>::operator*(const T &Value) const
/**
Matrix multiplication THIS * Value
@param Value :: Scalar to multiply by
@return V * (this)
*/
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
X.m_rawData[i][j] *= Value;
Gigg, Martyn Anthony
committed
}
}
/**
Matrix multiplication THIS *= A
Note that we call operator* to avoid the problem
of changing matrix size.
@param A :: Matrix to multiply by (this->row must == A->columns)
@return This *= A
*/
template <typename T> Matrix<T> &Matrix<T>::operator*=(const Matrix<T> &A) {
if (m_numColumns != A.m_numRows)
throw Kernel::Exception::MisMatch<size_t>(m_numColumns, A.m_numRows,
"Matrix*=(Matrix<T>)");
// This construct to avoid the problem of changing size
*this = this->operator*(A);
return *this;
}
template <typename T>
Matrix<T> &Matrix<T>::operator*=(const T &Value)
/**
Matrix multiplication THIS * Value
@param Value :: Scalar to multiply matrix by
@return *this
*/
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] *= Value;
Gigg, Martyn Anthony
committed
}
}
template <typename T>
Matrix<T> &Matrix<T>::operator/=(const T &Value)
/**
Matrix divishio THIS / Value
@param Value :: Scalar to multiply matrix by
@return *this
*/
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] /= Value;
Gigg, Martyn Anthony
committed
}
}
template <typename T>
bool Matrix<T>::operator!=(const Matrix<T> &A) const
Janik Zikovsky
committed
/**
Janik Zikovsky
committed
@param A :: Matrix to check
@return true :: on succees
@return false :: failure
template <typename T>
bool Matrix<T>::operator==(const Matrix<T> &A) const
/**
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance
Janik Zikovsky
committed
@param A :: matrix to check.
Gigg, Martyn Anthony
committed
return this->equals(A, 1e-8);
}
//---------------------------------------------------------------------------------------
template <typename T>
bool Matrix<T>::equals(const Matrix<T> &A, const double Tolerance) const
Gigg, Martyn Anthony
committed
/**
Element by element comparison within tolerance.
Tolerance means that the value must be > tolerance
and less than (diff/max)>tolerance
Always returns 0 if the Matrix have different sizes
@param A :: matrix to check.
@param Tolerance :: tolerance in comparing elements
@return true on success
*/
{
if (&A != this) // this == A == always true
if (A.m_numRows != m_numRows || A.m_numColumns != m_numColumns)
for (size_t i = 0; i < m_numRows; i++)
for (size_t j = 0; j < m_numColumns; j++) {
const T diff = (m_rawData[i][j] - A.m_rawData[i][j]);
if (fabs(diff) > maxDiff)
maxDiff = fabs(diff);
if (fabs(m_rawData[i][j]) > maxS)
maxS = fabs(m_rawData[i][j]);
if (maxDiff < Tolerance)
return true;
if (maxS > 1.0 && (maxDiff / maxS) < Tolerance)
return true;
return false;
//---------------------------------------------------------------------------------------
/** Element by element comparison of <
Always returns false if the Matrix have different sizes
@param A :: matrix to check.
@return true if this < A
*/
template <typename T> bool Matrix<T>::operator<(const Matrix<T> &A) const {
if (&A == this) // this < A == always false
if (A.m_numRows != m_numRows || A.m_numColumns != m_numColumns)
for (size_t i = 0; i < m_numRows; i++)
for (size_t j = 0; j < m_numColumns; j++) {
if (m_rawData[i][j] >= A.m_rawData[i][j])
return false;
}
return true;
}
//---------------------------------------------------------------------------------------
/** Element by element comparison of >=
Always returns false if the Matrix have different sizes
@param A :: matrix to check.
@return true if this >= A
*/
template <typename T> bool Matrix<T>::operator>=(const Matrix<T> &A) const {
if (&A == this)
return true;
if (A.m_numRows != m_numRows || A.m_numColumns != m_numColumns)
for (size_t i = 0; i < m_numRows; i++)
for (size_t j = 0; j < m_numColumns; j++) {
if (m_rawData[i][j] < A.m_rawData[i][j])
return false;
}
return true;
}
/**
Sets the memory held in matrix
@param a :: number of rows
@param b :: number of columns
*/
template <typename T> void Matrix<T>::setMem(const size_t a, const size_t b) {
if (a == m_numRows && b == m_numColumns && m_rawData != nullptr)
return;
m_numRows = a;
m_numColumns = b;
// Allocate memory first - this has to be a flat 1d array masquerading as a 2d
// array so we can expose the memory to Python APIs via numpy which expects
// this
// style of memory layout.
auto allocatedMemory = Kernel::make_unique<T[]>((m_numRows * m_numColumns));
// Next allocate an array of pointers for the rows (X). This partitions
// the 1D array into a 2D array for callers.
auto rowPtrs = Kernel::make_unique<T *[]>(m_numRows);
for (size_t i = 0; i < m_numRows; i++) {
// Calculate offsets into the allocated memory array (Y)
rowPtrs[i] = &allocatedMemory[i * m_numColumns];
m_rawDataAlloc = std::move(allocatedMemory);
m_rawData = std::move(rowPtrs);
/**
Swap rows I and J
@param RowI :: row I to swap
@param RowJ :: row J to swap
*/
template <typename T>
void Matrix<T>::swapRows(const size_t RowI, const size_t RowJ) {
if ((m_numRows * m_numColumns > 0) && RowI < m_numRows && RowJ < m_numRows &&
for (size_t k = 0; k < m_numColumns; k++) {
T tmp = m_rawData[RowI][k];
m_rawData[RowI][k] = m_rawData[RowJ][k];
m_rawData[RowJ][k] = tmp;
Gigg, Martyn Anthony
committed
}
/**
Swap columns I and J
@param colI :: col I to swap
@param colJ :: col J to swap
*/
template <typename T>
void Matrix<T>::swapCols(const size_t colI, const size_t colJ) {
if ((m_numRows * m_numColumns) > 0 && colI < m_numColumns &&
colJ < m_numColumns && colI != colJ) {
for (size_t k = 0; k < m_numRows; k++) {
T tmp = m_rawData[k][colI];
m_rawData[k][colI] = m_rawData[k][colJ];
m_rawData[k][colJ] = tmp;
Gigg, Martyn Anthony
committed
}
template <typename T>
void Matrix<T>::zeroMatrix()
/**
Zeros all elements of the matrix
*/
if ((m_numRows * m_numColumns) > 0) {
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = static_cast<T>(0);
Gigg, Martyn Anthony
committed
}
}
}
template <typename T>
void Matrix<T>::identityMatrix()
/**
Makes the matrix an idenity matrix.
Zeros all the terms outside of the square
*/
if ((m_numRows * m_numColumns) > 0) {
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
m_rawData[i][j] = static_cast<T>(j == i);
Gigg, Martyn Anthony
committed
}
}
}
template <typename T>
void Matrix<T>::setColumn(const size_t nCol, const std::vector<T> &newCol) {
if (nCol >= this->m_numColumns) {
throw(std::invalid_argument("nCol requested> nCol availible"));
}
size_t m_numRowsM = newCol.size();
if (m_numRows < m_numRowsM)
m_numRowsM = m_numRows;
for (size_t i = 0; i < m_numRowsM; i++) {
m_rawData[i][nCol] = newCol[i];
Alex Buts
committed
}
template <typename T>
void Matrix<T>::setRow(const size_t nRow, const std::vector<T> &newRow) {
if (nRow >= this->m_numRows) {
throw(std::invalid_argument("nRow requested> nRow availible"));
}
size_t m_numColumnsM = newRow.size();
if (m_numColumns < m_numColumnsM)
m_numColumnsM = m_numColumns;
for (size_t j = 0; j < m_numColumnsM; j++) {
m_rawData[nRow][j] = newRow[j];
Alex Buts
committed
}
template <typename T>
void Matrix<T>::rotate(const double tau, const double s, const int i,
const int j, const int k, const int m)
/**
Applies a rotation to a particular point of tan(theta)=tau.
Note that you need both sin(theta) and tan(theta) because of
sign preservation.
@param tau :: tan(theta)
@param s :: sin(theta)
@param i :: first index (xpos)
@param j :: first index (ypos)
@param k :: second index (xpos)
@param m :: second index (ypos)
*/
const T gg = m_rawData[i][j];
const T hh = m_rawData[k][m];
m_rawData[i][j] = static_cast<T>(gg - s * (hh + gg * tau));
m_rawData[k][m] = static_cast<T>(hh + s * (gg - hh * tau));
Matrix<T> Matrix<T>::preMultiplyByDiagonal(const std::vector<T> &Dvec) const
Creates a diagonal matrix D from the given vector Dvec and
PRE-multiplies the matrix by it (i.e. D * M).
@param Dvec :: diagonal matrix (just centre points)
@return D*this
*/
if (Dvec.size() != m_numRows) {
cx << "Matrix::preMultiplyByDiagonal Size: " << Dvec.size() << " "
<< m_numRows << " " << m_numColumns;
throw std::runtime_error(cx.str());
}
Matrix<T> X(Dvec.size(), m_numColumns);
for (size_t i = 0; i < Dvec.size(); i++) {
for (size_t j = 0; j < m_numColumns; j++) {
X.m_rawData[i][j] = Dvec[i] * m_rawData[i][j];
Gigg, Martyn Anthony
committed
}
}
Matrix<T> Matrix<T>::postMultiplyByDiagonal(const std::vector<T> &Dvec) const
Creates a diagonal matrix D from the given vector Dvec and
POST-multiplies the matrix by it (i.e. M * D).
@param Dvec :: diagonal matrix (just centre points)
@return this*D
*/
if (Dvec.size() != m_numColumns) {
cx << "Error Matrix::bDiaognal size:: " << Dvec.size() << " " << m_numRows
<< " " << m_numColumns;
throw std::runtime_error(cx.str());
}
Matrix<T> X(m_numRows, Dvec.size());
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < Dvec.size(); j++) {
X.m_rawData[i][j] = Dvec[j] * m_rawData[i][j];
Gigg, Martyn Anthony
committed
}
}
template <typename T>
Matrix<T> Matrix<T>::Tprime() const
/**
Transpose the matrix :
Has transpose for a square matrix case.
@return M^T
*/
if ((m_numRows * m_numColumns) == 0)
if (m_numRows == m_numColumns) // inplace transpose
{
Matrix<T> MT(*this);
MT.Transpose();
return MT;
}
Matrix<T> MT(m_numColumns, m_numRows);
for (size_t i = 0; i < m_numRows; i++)
for (size_t j = 0; j < m_numColumns; j++)
MT.m_rawData[j][i] = m_rawData[i][j];
template <typename T>
Matrix<T> &Matrix<T>::Transpose()
/**
Transpose the matrix :
Has a in place transpose for a square matrix case.
@return this^T
if ((m_numRows * m_numColumns) == 0)
return *this;
if (m_numRows == m_numColumns) // in place transpose
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = i + 1; j < m_numColumns; j++) {
std::swap(m_rawData[i][j], m_rawData[j][i]);
}
}
return *this;
}
// irregular matrix
// get some memory
auto allocatedMemory = Kernel::make_unique<T[]>((m_numRows * m_numColumns));
auto transposePtrs = Kernel::make_unique<T *[]>(m_numRows);
for (size_t i = 0; i < m_numColumns; i++) {
// Notice how this partitions using Rows (X) instead of Cols(Y)
transposePtrs[i] = &allocatedMemory[i * m_numRows];
}
for (size_t i = 0; i < m_numRows; i++) {
for (size_t j = 0; j < m_numColumns; j++) {
transposePtrs[j][i] = m_rawData[i][j];
}
}
// remove old memory
std::swap(m_numRows, m_numColumns);
m_rawDataAlloc = std::move(allocatedMemory);
m_rawData = std::move(transposePtrs);
return *this;
void Matrix<int>::GaussJordan(Kernel::Matrix<int> &)
throw std::invalid_argument(
"Gauss-Jordan inversion not valid for integer matrix");
void Matrix<T>::GaussJordan(Matrix<T> &B)
Invert this matrix in place using Gauss-Jordan elimination.
Matrix will be replaced by its inverse.
@param B :: [input, output] Must have same dimensions as A. Returned as
identity matrix. (?)
@throw std::invalid_argument on input error
@throw std::runtime_error if singular
if (m_numRows != m_numColumns || B.m_numRows != m_numRows) {
throw std::invalid_argument("Matrix not square, or sizes do not match");
}
std::vector<int> pivoted(m_numRows);
fill(pivoted.begin(), pivoted.end(), 0);
std::vector<int> indxcol(m_numRows); // Column index
std::vector<int> indxrow(m_numRows); // row index
for (size_t i = 0; i < m_numRows; i++) {
Gigg, Martyn Anthony
committed
// Get Biggest non-pivoted item
double bigItem = 0.0; // get point to pivot over
for (size_t j = 0; j < m_numRows; j++) {
if (pivoted[j] != 1) // check only non-pivots
Gigg, Martyn Anthony
committed
{
for (size_t k = 0; k < m_numRows; k++) {
if (fabs(m_rawData[j][k]) >= bigItem) {
bigItem = fabs(m_rawData[j][k]);
irow = j;
icol = k;
}
}
}
} else if (pivoted[j] > 1) {
throw std::runtime_error("Error doing G-J elem on a singular matrix");
Gigg, Martyn Anthony
committed
}
}
pivoted[icol]++;
// Swap in row/col to make a diagonal item
if (irow != icol) {
swapRows(irow, icol);
B.swapRows(irow, icol);
Gigg, Martyn Anthony
committed
}
indxrow[i] = static_cast<int>(irow);
indxcol[i] = static_cast<int>(icol);
if (m_rawData[icol][icol] == 0.0) {
throw std::runtime_error("Error doing G-J elem on a singular matrix");
const T pivDiv = T(1.0) / m_rawData[icol][icol];
m_rawData[icol][icol] = 1;
for (size_t l = 0; l < m_numRows; l++) {
m_rawData[icol][l] *= pivDiv;
Gigg, Martyn Anthony
committed
}
for (size_t l = 0; l < B.m_numColumns; l++) {
B.m_rawData[icol][l] *= pivDiv;
for (size_t ll = 0; ll < m_numRows; ll++) {
const T div_num = m_rawData[ll][icol];
m_rawData[ll][icol] = 0.0;
for (size_t l = 0; l < m_numRows; l++) {
m_rawData[ll][l] -= m_rawData[icol][l] * div_num;
Gigg, Martyn Anthony
committed
}
for (size_t l = 0; l < B.m_numColumns; l++) {
B.m_rawData[ll][l] -= B.m_rawData[icol][l] * div_num;
Gigg, Martyn Anthony
committed
}
}
}
}
if (m_numRows > 0) {
for (int l = static_cast<int>(m_numRows) - 1; l >= 0; l--) {
if (indxrow[l] != indxcol[l]) {
swapCols(indxrow[l], indxcol[l]);
Gigg, Martyn Anthony
committed
}
}
}
template <typename T>
T Matrix<T>::Invert()
/**
If the Matrix is square then invert the matrix
using LU decomposition
@return Determinant (0 if the matrix is singular)
*/
if (m_numRows != m_numColumns && m_numRows < 1)
T det = m_rawData[0][0];
if (m_rawData[0][0] != static_cast<T>(0.))
m_rawData[0][0] = static_cast<T>(1.) / m_rawData[0][0];
std::vector<int> indx(m_numRows); // Set in lubcmp
std::vector<double> col(m_numRows);
Lcomp.lubcmp(indx.data(), determinant);
double det = static_cast<double>(determinant);
for (size_t j = 0; j < m_numRows; j++)
det *= Lcomp.m_rawData[j][j];
for (size_t j = 0; j < m_numRows; j++) {
for (size_t i = 0; i < m_numRows; i++)
Lcomp.lubksb(indx.data(), col.data());
for (size_t i = 0; i < m_numRows; i++)
m_rawData[i][j] = static_cast<T>(col[i]);