Newer
Older
from __future__ import (absolute_import, division, print_function)
try:
import pathos.multiprocessing as mp
PATHOS_FOUND = True
except ImportError:
PATHOS_FOUND = False
import numpy as np
from mantid.api import AlgorithmFactory, FileAction, FileProperty, PythonAlgorithm, Progress, WorkspaceProperty, mtd
from mantid.api import WorkspaceFactory, AnalysisDataService
# noinspection PyProtectedMember
from mantid.api._api import WorkspaceGroup
from mantid.simpleapi import CloneWorkspace, GroupWorkspaces, SaveAscii, Load, Scale
from mantid.kernel import logger, StringListValidator, Direction, StringArrayProperty, Atom
# noinspection PyPep8Naming,PyMethodMayBeStatic
Krzysztof Dymkowski
committed
class Abins(PythonAlgorithm):
_dft_program = None
_phonon_file = None
_experimental_file = None
_temperature = None
_scale = None
_sample_form = None
_instrument_name = None
_atoms = None
_sum_contributions = None
_scale_by_cross_section = None
_calc_partial = None
_out_ws_name = None
_num_quantum_order_events = None
_extracted_dft_data = None
def category(self):
return "Simulation"
# ----------------------------------------------------------------------------------------
def summary(self):
return "Calculates inelastic neutron scattering."
# ----------------------------------------------------------------------------------------
def PyInit(self):
# Declare all properties
self.declareProperty(name="DFTprogram",
direction=Direction.Input,
defaultValue="CASTEP",
Krzysztof Dymkowski
committed
validator=StringListValidator(["CASTEP", "CRYSTAL", "DMOL3", "GAUSSIAN"]),
doc="DFT program which was used for a phonon calculation.")
self.declareProperty(FileProperty("PhononFile", "",
action=FileAction.Load,
direction=Direction.Input,
extensions=["phonon", "out", "outmol", "log", "LOG"]),
doc="File with the data from a phonon calculation.")
self.declareProperty(FileProperty("ExperimentalFile", "",
action=FileAction.OptionalLoad,
direction=Direction.Input,
extensions=["raw", "dat"]),
doc="File with the experimental inelastic spectrum to compare.")
dymkowsk
committed
self.declareProperty(name="TemperatureInKelvin",
direction=Direction.Input,
defaultValue=10.0,
doc="Temperature in K for which dynamical structure factor S should be calculated.")
dymkowsk
committed
self.declareProperty(name="BinWidthInWavenumber", defaultValue=1.0, doc="Width of bins used during rebining.")
self.declareProperty(name="Scale", defaultValue=1.0,
doc='Scale the intensity by the given factor. Default is no scaling.')
self.declareProperty(name="SampleForm",
direction=Direction.Input,
defaultValue="Powder",
validator=StringListValidator(AbinsModules.AbinsConstants.ALL_SAMPLE_FORMS),
# doc="Form of the sample: SingleCrystal or Powder.")
self.declareProperty(name="Instrument",
direction=Direction.Input,
defaultValue="TOSCA",
# validator=StringListValidator(AbinsModules.AbinsConstants.ALL_INSTRUMENTS)
Krzysztof Dymkowski
committed
validator=StringListValidator(["TOSCA"]),
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
doc="Name of an instrument for which analysis should be performed.")
self.declareProperty(StringArrayProperty("Atoms", Direction.Input),
doc="List of atoms to use to calculate partial S."
"If left blank, workspaces with S for all types of atoms will be calculated.")
self.declareProperty(name="SumContributions", defaultValue=False,
doc="Sum the partial dynamical structure factors into a single workspace.")
self.declareProperty(name="ScaleByCrossSection", defaultValue='Incoherent',
validator=StringListValidator(['Total', 'Incoherent', 'Coherent']),
doc="Scale the partial dynamical structure factors by the scattering cross section.")
self.declareProperty(name="QuantumOrderEventsNumber", defaultValue='1',
validator=StringListValidator(['1', '2', '3', '4']),
doc="Number of quantum order effects included in the calculation "
"(1 -> FUNDAMENTALS, 2-> first overtone + FUNDAMENTALS + "
"2nd order combinations, 3-> FUNDAMENTALS + first overtone + second overtone + 2nd "
"order combinations + 3rd order combinations etc...)")
self.declareProperty(WorkspaceProperty("OutputWorkspace", '', Direction.Output),
doc="Name to give the output workspace.")
def validateInputs(self):
"""
Performs input validation. Use to ensure the user has defined a consistent set of parameters.
"""
input_file_validators = {"CASTEP": self._validate_castep_input_file,
"CRYSTAL": self._validate_crystal_input_file,
Krzysztof Dymkowski
committed
"DMOL3": self._validate_dmol3_input_file,
"GAUSSIAN": self._validate_gaussian_input_file}
dymkowsk
committed
temperature = self.getProperty("TemperatureInKelvin").value
dymkowsk
committed
issues["TemperatureInKelvin"] = "Temperature must be positive."
scale = self.getProperty("Scale").value
if scale < 0:
issues["Scale"] = "Scale must be positive."
bin_width = self.getProperty("BinWidthInWavenumber").value
if not (isinstance(bin_width, float) and 1.0 <= bin_width <= 10.0):
dymkowsk
committed
issues["BinWidthInWavenumber"] = ["Invalid bin width. Valid range is [1.0, 10.0] cm^-1"]
dft_program = self.getProperty("DFTprogram").value
phonon_filename = self.getProperty("PhononFile").value
output = input_file_validators[dft_program](filename_full_path=phonon_filename)
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
if output["Invalid"]:
issues["PhononFile"] = output["Comment"]
workspace_name = self.getPropertyValue("OutputWorkspace")
# list of special keywords which cannot be used in the name of workspace
forbidden_keywords = ["total"]
if workspace_name in mtd:
issues["OutputWorkspace"] = "Workspace with name " + workspace_name + " already in use; please give " \
"a different name for workspace."
elif workspace_name == "":
issues["OutputWorkspace"] = "Please specify name of workspace."
for word in forbidden_keywords:
if word in workspace_name:
issues["OutputWorkspace"] = "Keyword: " + word + " cannot be used in the name of workspace."
break
self._check_advanced_parameter()
return issues
def PyExec(self):
# 0) Create reporter to report progress
steps = 9
begin = 0
end = 1.0
prog_reporter = Progress(self, begin, end, steps)
# 1) get input parameters from a user
self._get_properties()
prog_reporter.report("Input data from the user has been collected.")
# 2) read DFT data
dft_loaders = {"CASTEP": AbinsModules.LoadCASTEP, "CRYSTAL": AbinsModules.LoadCRYSTAL,
"DMOL3": AbinsModules.LoadDMOL3, "GAUSSIAN": AbinsModules.LoadGAUSSIAN}
dft_reader = dft_loaders[self._dft_program](input_dft_filename=self._phonon_file)
dft_data = dft_reader.get_formatted_data()
prog_reporter.report("Phonon data has been read.")
# 3) calculate S
s_calculator = AbinsModules.CalculateS.init(filename=self._phonon_file, temperature=self._temperature,
sample_form=self._sample_form, abins_data=dft_data,
instrument=self._instrument,
dymkowsk
committed
quantum_order_num=self._num_quantum_order_events,
bin_width=self._bin_width)
s_data = s_calculator.get_formatted_data()
prog_reporter.report("Dynamical structure factors have been determined.")
# 4) get atoms for which S should be plotted
self._extracted_dft_data = dft_data.get_atoms_data().extract()
num_atoms = len(self._extracted_dft_data)
all_atms_smbls = list(set([self._extracted_dft_data["atom_%s" % atom]["symbol"] for atom in range(num_atoms)]))
all_atms_smbls.sort()
if len(self._atoms) == 0: # case: all atoms
else: # case selected atoms
if len(self._atoms) != len(set(self._atoms)): # only different types
raise ValueError("Not all user defined atoms are unique.")
for atom_symbol in self._atoms:
raise ValueError("User defined atom not present in the system.")
atoms_symbol = self._atoms
prog_reporter.report("Atoms, for which dynamical structure factors should be plotted, have been determined.")
# at the moment only types of atom, e.g, for benzene three options -> 1) C, H; 2) C; 3) H
# 5) create workspaces for atoms in interest
workspaces = []
if self._sample_form == "Powder":
workspaces.extend(self._create_partial_s_per_type_workspaces(atoms_symbols=atoms_symbol, s_data=s_data))
prog_reporter.report("Workspaces with partial dynamical structure factors have been constructed.")
# 6) Create a workspace with sum of all atoms if required
if self._sum_contributions:
total_atom_workspaces = []
for ws in workspaces:
if "total" in ws:
total_atom_workspaces.append(ws)
total_workspace = self._create_total_workspace(partial_workspaces=total_atom_workspaces)
workspaces.insert(0, total_workspace)
prog_reporter.report("Workspace with total S has been constructed.")
# 7) add experimental data if available to the collection of workspaces
if self._experimental_file != "":
workspaces.insert(0, self._create_experimental_data_workspace().name())
prog_reporter.report("Workspace with the experimental data has been constructed.")
Krzysztof Dymkowski
committed
GroupWorkspaces(InputWorkspaces=workspaces, OutputWorkspace=self._out_ws_name)
# 8) save workspaces to ascii_file
num_workspaces = mtd[self._out_ws_name].getNumberOfEntries()
for wrk_num in range(num_workspaces):
wrk = mtd[self._out_ws_name].getItem(wrk_num)
SaveAscii(InputWorkspace=Scale(wrk, 1.0/self._bin_width, "Multiply"),
Filename=wrk.name() + ".dat", Separator="Space", WriteSpectrumID=False)
prog_reporter.report("All workspaces have been saved to ASCII files.")
# 9) set OutputWorkspace
self.setProperty('OutputWorkspace', self._out_ws_name)
prog_reporter.report("Group workspace with all required dynamical structure factors has been constructed.")
def _create_workspaces(self, atoms_symbols=None, s_data=None):
"""
Creates workspaces for all types of atoms. Creates both partial and total workspaces for all types of atoms.
Krzysztof Dymkowski
committed
:param atoms_symbols: list of atom types for which S should be created
:param s_data: dynamical factor data of type SData
:returns: workspaces for list of atoms types, S for the particular type of atom
"""
s_data_extracted = s_data.extract()
shape = [self._num_quantum_order_events]
shape.extend(list(s_data_extracted["atom_0"]["s"]["order_1"].shape))
s_atom_data = np.zeros(shape=tuple(shape), dtype=AbinsModules.AbinsConstants.FLOAT_TYPE)
num_atoms = len([key for key in s_data_extracted.keys() if "atom" in key])
temp_s_atom_data = np.copy(s_atom_data)
for atom_symbol in atoms_symbols:
# create partial workspaces for the given type of atom
atom_workspaces = []
s_atom_data.fill(0.0)
for atom in range(num_atoms):
if self._extracted_dft_data["atom_%s" % atom]["symbol"] == atom_symbol:
temp_s_atom_data.fill(0.0)
for order in range(AbinsModules.AbinsConstants.FUNDAMENTALS,
self._num_quantum_order_events + AbinsModules.AbinsConstants.S_LAST_INDEX):
order_indx = order - AbinsModules.AbinsConstants.PYTHON_INDEX_SHIFT
temp_s_order = s_data_extracted["atom_%s" % atom]["s"]["order_%s" % order]
temp_s_atom_data[order_indx] = temp_s_order
s_atom_data += temp_s_atom_data # sum S over the atoms of the same type
total_s_atom_data = np.sum(s_atom_data, axis=0)
atom_workspaces.append(
self._create_workspace(atom_name=atom_symbol, s_points=np.copy(total_s_atom_data),
optional_name="_total"))
atom_workspaces.append(
self._create_workspace(atom_name=atom_symbol, s_points=np.copy(s_atom_data)))
result.extend(atom_workspaces)
return result
def _create_partial_s_per_type_workspaces(self, atoms_symbols=None, s_data=None):
"""
Creates workspaces for all types of atoms. Each workspace stores quantum order events for S for the given
type of atom. It also stores total workspace for the given type of atom.
Krzysztof Dymkowski
committed
:param atoms_symbols: list of atom types for which quantum order events of S should be calculated
:param s_data: dynamical factor data of type SData
:returns: workspaces for list of atoms types, each workspace contains quantum order events of
S for the particular atom type
"""
return self._create_workspaces(atoms_symbols=atoms_symbols, s_data=s_data)
def _fill_s_workspace(self, s_points=None, workspace=None, atom_name=None):
"""
Puts S into workspace(s).
Krzysztof Dymkowski
committed
:param s_points: dynamical factor for the given atom
:param workspace: workspace to be filled with S
if self._instrument.get_name() in AbinsModules.AbinsConstants.ONE_DIMENSIONAL_INSTRUMENTS:
if s_points.shape[0] == AbinsModules.AbinsConstants.FUNDAMENTALS:
self._fill_s_1d_workspace(s_points=s_points[0], workspace=workspace, atom_name=atom_name)
elif len(s_points.shape) == AbinsModules.AbinsConstants.ONE_DIMENSIONAL_SPECTRUM:
self._fill_s_1d_workspace(s_points=s_points, workspace=workspace, atom_name=atom_name)
# quantum order events (fundamentals or overtones + combinations for the given order)
else:
dim = s_points.shape[0]
partial_wrk_names = []
for n in range(dim):
seed = "quantum_event_%s" % (n + 1)
wrk_name = workspace + "_" + seed
partial_wrk_names.append(wrk_name)
self._fill_s_1d_workspace(s_points=s_points[n], workspace=wrk_name, atom_name=atom_name)
Krzysztof Dymkowski
committed
GroupWorkspaces(InputWorkspaces=partial_wrk_names, OutputWorkspace=workspace)
def _fill_s_1d_workspace(self, s_points=None, workspace=None, atom_name=None):
"""
Puts 1D S into workspace.
:param s_points: dynamical factor for the given atom
:param workspace: workspace to be filled with S
:param atom_name: name of atom (for example H for hydrogen)
"""
if atom_name is not None:
s_points = s_points * self._scale * self._get_cross_section(atom_name=atom_name)
dim = 1
length = s_points.size
wrk = WorkspaceFactory.create("Workspace2D", NVectors=dim, XLength=length + 1, YLength=length)
wrk.setY(0, s_points)
AnalysisDataService.addOrReplace(workspace, wrk)
# Set correct units on workspace
self._set_workspace_units(wrk=workspace)
def _get_cross_section(self, atom_name=None):
"""
Calculates cross section for the given element.
:param atom_name: symbol of element
Krzysztof Dymkowski
committed
:returns: cross section for that element
"""
atom = Atom(symbol=atom_name)
cross_section = None
if self._scale_by_cross_section == 'Incoherent':
cross_section = atom.neutron()["inc_scatt_xs"]
elif self._scale_by_cross_section == 'Coherent':
cross_section = atom.neutron()["coh_scatt_xs"]
elif self._scale_by_cross_section == 'Total':
cross_section = atom.neutron()["tot_scatt_xs"]
return cross_section
def _create_total_workspace(self, partial_workspaces=None):
"""
Sets workspace with total S.
:param partial_workspaces: list of workspaces which should be summed up to obtain total workspace
Krzysztof Dymkowski
committed
:returns: workspace with total S from partial_workspaces
total_workspace = self._out_ws_name + "_total"
if isinstance(mtd[partial_workspaces[0]], WorkspaceGroup):
local_partial_workspaces = mtd[partial_workspaces[0]].names()
else:
local_partial_workspaces = partial_workspaces
if len(local_partial_workspaces) > 1:
ws = mtd[local_partial_workspaces[0]]
s_atoms = np.zeros_like(ws.dataY(0))
# collect all S
for partial_ws in local_partial_workspaces:
if self._instrument.get_name() in AbinsModules.AbinsConstants.ONE_DIMENSIONAL_INSTRUMENTS:
s_atoms += mtd[partial_ws].dataY(0)
# create workspace with S
self._fill_s_workspace(s_atoms, total_workspace)
# # Otherwise just repackage the workspace we have as the total
CloneWorkspace(InputWorkspace=local_partial_workspaces[0], OutputWorkspace=total_workspace)
def _create_workspace(self, atom_name=None, s_points=None, optional_name=""):
"""
Creates workspace for the given frequencies and s_points with S data. After workspace is created it is rebined,
scaled by cross-section factor and optionally multiplied by the user defined scaling factor.
Krzysztof Dymkowski
committed
:param atom_name: symbol of atom for which workspace should be created
:param frequencies: frequencies in the form of numpy array for which S(Q, omega) can be plotted
:param s_points: S(Q, omega)
:param optional_name: optional part of workspace name
:returns: workspace for the given frequency and S data
ws_name = self._out_ws_name + "_" + atom_name + optional_name
self._fill_s_workspace(s_points=s_points, workspace=ws_name, atom_name=atom_name)
return ws_name
def _create_experimental_data_workspace(self):
"""
Loads experimental data into workspaces.
Krzysztof Dymkowski
committed
:returns: workspace with experimental data
"""
experimental_wrk = Load(self._experimental_file)
self._set_workspace_units(wrk=experimental_wrk.name())
return experimental_wrk
def _set_workspace_units(self, wrk=None):
"""
Sets x and y units for a workspace.
:param wrk: workspace which units should be set
mtd[wrk].getAxis(0).setUnit("DeltaE_inWavenumber")
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
mtd[wrk].setYUnitLabel("S /Arbitrary Units")
mtd[wrk].setYUnit("Arbitrary Units")
def _check_advanced_parameter(self):
"""
Checks if parameters from AbinsParameters.py are valid. If any parameter is invalid then RuntimeError is thrown
with meaningful message.
"""
message = " in AbinsParameters.py. "
self._check_general_resolution(message)
self._check_tosca_parameters(message)
self._check_folder_names(message)
self._check_rebining(message)
self._check_threshold(message)
self._check_chunk_size(message)
self._check_threads(message)
def _check_general_resolution(self, message_end=None):
"""
Checks general parameters used in construction resolution functions.
:param message_end: closing part of the error message.
"""
# check fwhm
fwhm = AbinsModules.AbinsParameters.fwhm
if not (isinstance(fwhm, float) and 0.0 < fwhm < 10.0):
raise RuntimeError("Invalid value of fwhm" + message_end)
# check delta_width
delta_width = AbinsModules.AbinsParameters.delta_width
if not (isinstance(delta_width, float) and 0.0 < delta_width < 1.0):
raise RuntimeError("Invalid value of delta_width" + message_end)
def _check_tosca_parameters(self, message_end=None):
"""
Checks TOSCA parameters.
:param message_end: closing part of the error message.
"""
# TOSCA final energy in cm^-1
final_energy = AbinsModules.AbinsParameters.tosca_final_neutron_energy
if not (isinstance(final_energy, float) and final_energy > 0.0):
raise RuntimeError("Invalid value of final_neutron_energy for TOSCA" + message_end)
angle = AbinsModules.AbinsParameters.tosca_cos_scattering_angle
if not isinstance(angle, float):
raise RuntimeError("Invalid value of cosines scattering angle for TOSCA" + message_end)
resolution_const_a = AbinsModules.AbinsParameters.tosca_a
if not isinstance(resolution_const_a, float):
raise RuntimeError("Invalid value of constant A for TOSCA (used by the resolution TOSCA function)" +
message_end)
resolution_const_b = AbinsModules.AbinsParameters.tosca_b
if not isinstance(resolution_const_b, float):
raise RuntimeError("Invalid value of constant B for TOSCA (used by the resolution TOSCA function)" +
message_end)
resolution_const_c = AbinsModules.AbinsParameters.tosca_c
if not isinstance(resolution_const_c, float):
raise RuntimeError("Invalid value of constant C for TOSCA (used by the resolution TOSCA function)" +
message_end)
def _check_folder_names(self, message_end=None):
"""
Checks folders names.
:param message_end: closing part of the error message.
"""
folder_names = []
dft_group = AbinsModules.AbinsParameters.dft_group
if not isinstance(dft_group, str) or dft_group == "":
raise RuntimeError("Invalid name for folder in which the DFT data should be stored.")
folder_names.append(dft_group)
powder_data_group = AbinsModules.AbinsParameters.powder_data_group
if not isinstance(powder_data_group, str) or powder_data_group == "":
raise RuntimeError("Invalid value of powder_data_group" + message_end)
elif powder_data_group in folder_names:
raise RuntimeError("Name for powder_data_group already used by as name of another folder.")
folder_names.append(powder_data_group)
crystal_data_group = AbinsModules.AbinsParameters.crystal_data_group
if not isinstance(crystal_data_group, str) or crystal_data_group == "":
raise RuntimeError("Invalid value of crystal_data_group" + message_end)
elif crystal_data_group in folder_names:
raise RuntimeError("Name for crystal_data_group already used as a name of another folder.")
s_data_group = AbinsModules.AbinsParameters.s_data_group
if not isinstance(s_data_group, str) or s_data_group == "":
raise RuntimeError("Invalid value of s_data_group" + message_end)
elif s_data_group in folder_names:
raise RuntimeError("Name for s_data_group already used as a name of another folder.")
def _check_rebining(self, message_end=None):
"""
Checks rebinning parameters.
:param message_end: closing part of the error message.
"""
pkt_per_peak = AbinsModules.AbinsParameters.pkt_per_peak
if not (isinstance(pkt_per_peak, six.integer_types) and 1 <= pkt_per_peak <= 1000):
raise RuntimeError("Invalid value of pkt_per_peak" + message_end)
min_wavenumber = AbinsModules.AbinsParameters.min_wavenumber
if not (isinstance(min_wavenumber, float) and min_wavenumber >= 0.0):
raise RuntimeError("Invalid value of min_wavenumber" + message_end)
max_wavenumber = AbinsModules.AbinsParameters.max_wavenumber
if not (isinstance(max_wavenumber, float) and max_wavenumber > 0.0):
raise RuntimeError("Invalid number of max_wavenumber" + message_end)
if min_wavenumber > max_wavenumber:
raise RuntimeError("Invalid energy window for rebinning.")
def _check_threshold(self, message_end=None):
"""
Checks acoustic phonon threshold.
:param message_end: closing part of the error message.
"""
acoustic_threshold = AbinsModules.AbinsParameters.acoustic_phonon_threshold
if not (isinstance(acoustic_threshold, float) and acoustic_threshold >= 0.0):
raise RuntimeError("Invalid value of acoustic_phonon_threshold" + message_end)
# check s threshold
s_absolute_threshold = AbinsModules.AbinsParameters.s_absolute_threshold
if not (isinstance(s_absolute_threshold, float) and s_absolute_threshold > 0.0):
raise RuntimeError("Invalid value of s_absolute_threshold" + message_end)
s_relative_threshold = AbinsModules.AbinsParameters.s_relative_threshold
if not (isinstance(s_relative_threshold, float) and s_relative_threshold > 0.0):
raise RuntimeError("Invalid value of s_relative_threshold" + message_end)
def _check_chunk_size(self, message_end=None):
"""
Check optimal size of chunk
:param message_end: closing part of the error message.
"""
optimal_size = AbinsModules.AbinsParameters.optimal_size
if not (isinstance(optimal_size, six.integer_types) and optimal_size > 0):
raise RuntimeError("Invalid value of optimal_size" + message_end)
def _check_threads(self, message_end=None):
"""
Checks number of threads
:param message_end: closing part of the error message.
"""
if PATHOS_FOUND:
Krzysztof Dymkowski
committed
threads = AbinsModules.AbinsParameters.threads
if not (isinstance(threads, six.integer_types) and 1 <= threads <= mp.cpu_count()):
raise RuntimeError("Invalid number of threads for parallelisation over atoms" + message_end)
Krzysztof Dymkowski
committed
def _validate_dft_file_extension(self, filename_full_path=None, expected_file_extension=None):
Krzysztof Dymkowski
committed
Checks consistency between name of DFT program and extension.
:param dft_program: name of DFT program in the form of string
:param expected_file_extension: file extension
:returns: dictionary with error message
Krzysztof Dymkowski
committed
dft_program = self.getProperty("DFTprogram").value
msg_err = "Invalid %s file. " % filename_full_path
msg_rename = "Please rename your file and try again."
# check extension of a file
Krzysztof Dymkowski
committed
found_filename_ext = os.path.splitext(filename_full_path)[1]
if found_filename_ext.lower() != expected_file_extension:
Comment=msg_err + "Output from DFT program " + dft_program + " is expected." +
Krzysztof Dymkowski
committed
" The expected extension of file is ." + expected_file_extension +
". Found: " + found_filename_ext + ". " + msg_rename)
else:
return dict(Invalid=False, Comment="")
def _validate_dmol3_input_file(self, filename_full_path=None):
"""
Method to validate input file for DMOL3 DFT program.
:param filename_full_path: full path of a file to check.
:returns: True if file is valid otherwise false.
"""
logger.information("Validate DMOL3 phonon file: ")
return self._validate_dft_file_extension(filename_full_path=filename_full_path,
expected_file_extension=".outmol")
def _validate_gaussian_input_file(self, filename_full_path=None):
"""
Method to validate input file for GAUSSIAN DFT program.
:param filename_full_path: full path of a file to check.
:returns: True if file is valid otherwise false.
"""
Krzysztof Dymkowski
committed
logger.information("Validate GAUSSIAN file with vibration data: ")
Krzysztof Dymkowski
committed
return self._validate_dft_file_extension(filename_full_path=filename_full_path,
expected_file_extension=".log")
def _validate_crystal_input_file(self, filename_full_path=None):
"""
Method to validate input file for CRYSTAL DFT program.
Krzysztof Dymkowski
committed
:param filename_full_path: full path of a file to check.
:returns: True if file is valid otherwise false.
"""
logger.information("Validate CRYSTAL phonon file: ")
Krzysztof Dymkowski
committed
return self._validate_dft_file_extension(filename_full_path=filename_full_path,
expected_file_extension=".out")
def _validate_castep_input_file(self, filename_full_path=None):
"""
Check if input DFT phonon file has been produced by CASTEP. Currently the crucial keywords in the first few
lines are checked (to be modified if a better validation is found...)
:param filename_full_path: full path of a file to check
Krzysztof Dymkowski
committed
:returns: Dictionary with two entries "Invalid", "Comment". Valid key can have two values: True/ False. As it
comes to "Comment" it is an empty string if Valid:True, otherwise stores description of the problem.
"""
logger.information("Validate CASTEP phonon file: ")
msg_err = "Invalid %s file. " % filename_full_path
Krzysztof Dymkowski
committed
output = self._validate_dft_file_extension(filename_full_path=filename_full_path,
expected_file_extension=".phonon")
if output["Invalid"]:
return output
# check a structure of the header part of file.
# Here fortran convention is followed: case of letter does not matter
with open(filename_full_path) as castep_file:
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
line = self._get_one_line(castep_file)
if not self._compare_one_line(line, "beginheader"): # first line is BEGIN header
return dict(Invalid=True, Comment=msg_err + "The first line should be 'BEGIN header'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofions"):
return dict(Invalid=True, Comment=msg_err + "The second line should include 'Number of ions'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofbranches"):
return dict(Invalid=True, Comment=msg_err + "The third line should include 'Number of branches'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofwavevectors"):
return dict(Invalid=True, Comment=msg_err + "The fourth line should include 'Number of wavevectors'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line,
pattern="frequenciesin"):
return dict(Invalid=True, Comment=msg_err + "The fifth line should be 'Frequencies in'.")
return output
def _get_one_line(self, file_obj=None):
"""
:param file_obj: file object from which reading is done
Krzysztof Dymkowski
committed
:returns: string containing one non empty line
"""
line = file_obj.readline().replace(" ", "").lower()
while line and line == "":
line = file_obj.readline().replace(" ", "").lower()
return line
def _compare_one_line(self, one_line, pattern):
"""
compares line in the the form of string with a pattern.
:param one_line: line in the for mof string to be compared
:param pattern: string which should be present in the line after removing white spaces and setting all
letters to lower case
Krzysztof Dymkowski
committed
:returns: True is pattern present in the line, otherwise False
"""
return one_line and pattern in one_line.replace(" ", "")
def _get_properties(self):
"""
Loads all properties to object's attributes.
"""
self._dft_program = self.getProperty("DFTprogram").value
self._phonon_file = self.getProperty("PhononFile").value
self._experimental_file = self.getProperty("ExperimentalFile").value
dymkowsk
committed
self._temperature = self.getProperty("TemperatureInKelvin").value
self._bin_width = self.getProperty("BinWidthInWavenumber").value
self._scale = self.getProperty("Scale").value
self._sample_form = self.getProperty("SampleForm").value
instrument_name = self.getProperty("Instrument").value
if instrument_name in AbinsModules.AbinsConstants.ALL_INSTRUMENTS:
self._instrument_name = instrument_name
instrument_producer = AbinsModules.InstrumentProducer()
self._instrument = instrument_producer.produce_instrument(name=self._instrument_name)
else:
raise ValueError("Unknown instrument %s" % instrument_name)
self._atoms = self.getProperty("Atoms").value
self._sum_contributions = self.getProperty("SumContributions").value
# conversion from str to int
self._num_quantum_order_events = int(self.getProperty("QuantumOrderEventsNumber").value)
self._scale_by_cross_section = self.getPropertyValue('ScaleByCrossSection')
self._out_ws_name = self.getPropertyValue('OutputWorkspace')
self._calc_partial = (len(self._atoms) > 0)
# user defined interval is exclusive with respect to
# AbinsModules.AbinsParameters.min_wavenumber
# AbinsModules.AbinsParameters.max_wavenumber
# with bin width AbinsModules.AbinsParameters.bin_width
start = AbinsModules.AbinsParameters.min_wavenumber + step / 2.0
stop = AbinsModules.AbinsParameters.max_wavenumber + step / 2.0
self._bins = np.arange(start=start, stop=stop, step=step, dtype=AbinsModules.AbinsConstants.FLOAT_TYPE)
Krzysztof Dymkowski
committed
AlgorithmFactory.subscribe(Abins)
except ImportError:
logger.debug('Failed to subscribe algorithm SimulatedDensityOfStates; The python package may be missing.')