Skip to content
Snippets Groups Projects
Abins.py 35.2 KiB
Newer Older
from __future__ import (absolute_import, division, print_function)
try:
    import pathos.multiprocessing as mp
    PATHOS_FOUND = True
except ImportError:
    PATHOS_FOUND = False

import numpy as np
Krzysztof Dymkowski's avatar
Krzysztof Dymkowski committed
import six
Krzysztof Dymkowski's avatar
Krzysztof Dymkowski committed
from mantid.api import AlgorithmFactory, FileAction, FileProperty, PythonAlgorithm, Progress, WorkspaceProperty, mtd
from mantid.api import WorkspaceFactory, AnalysisDataService

# noinspection PyProtectedMember
from mantid.api._api import WorkspaceGroup
from mantid.simpleapi import CloneWorkspace, GroupWorkspaces, SaveAscii, Load, Scale
from mantid.kernel import logger, StringListValidator, Direction, StringArrayProperty, Atom
import AbinsModules


# noinspection PyPep8Naming,PyMethodMayBeStatic

    _dft_program = None
    _phonon_file = None
    _experimental_file = None
    _temperature = None
    _scale = None
    _sample_form = None
    _instrument_name = None
    _atoms = None
    _sum_contributions = None
    _scale_by_cross_section = None
    _calc_partial = None
    _out_ws_name = None
    _num_quantum_order_events = None
    _extracted_dft_data = None

    def category(self):
        return "Simulation"

        # ----------------------------------------------------------------------------------------

    def summary(self):
        return "Calculates inelastic neutron scattering."

        # ----------------------------------------------------------------------------------------
    def PyInit(self):

        # Declare all properties
        self.declareProperty(name="DFTprogram",
                             direction=Direction.Input,
                             defaultValue="CASTEP",
                             validator=StringListValidator(["CASTEP", "CRYSTAL", "DMOL3", "GAUSSIAN"]),
                             doc="DFT program which was used for a phonon calculation.")

        self.declareProperty(FileProperty("PhononFile", "",
                             action=FileAction.Load,
                             direction=Direction.Input,
                             extensions=["phonon", "out", "outmol", "log", "LOG"]),
                             doc="File with the data from a phonon calculation.")

        self.declareProperty(FileProperty("ExperimentalFile", "",
                             action=FileAction.OptionalLoad,
                             direction=Direction.Input,
                             extensions=["raw", "dat"]),
                             doc="File with the experimental inelastic spectrum to compare.")

        self.declareProperty(name="TemperatureInKelvin",
                             direction=Direction.Input,
                             defaultValue=10.0,
                             doc="Temperature in K for which dynamical structure factor S should be calculated.")

        self.declareProperty(name="BinWidthInWavenumber",  defaultValue=1.0, doc="Width of bins used during rebining.")
        self.declareProperty(name="Scale", defaultValue=1.0,
                             doc='Scale the intensity by the given factor. Default is no scaling.')

        self.declareProperty(name="SampleForm",
                             direction=Direction.Input,
                             defaultValue="Powder",
                             validator=StringListValidator(AbinsModules.AbinsConstants.ALL_SAMPLE_FORMS),
                             # doc="Form of the sample: SingleCrystal or Powder.")
                             doc="Form of the sample: Powder.")

        self.declareProperty(name="Instrument",
                             direction=Direction.Input,
                             defaultValue="TOSCA",
                             # validator=StringListValidator(AbinsModules.AbinsConstants.ALL_INSTRUMENTS)
                             doc="Name of an instrument for which analysis should be performed.")

        self.declareProperty(StringArrayProperty("Atoms", Direction.Input),
                             doc="List of atoms to use to calculate partial S."
                                 "If left blank, workspaces with S for all types of atoms will be calculated.")

        self.declareProperty(name="SumContributions", defaultValue=False,
                             doc="Sum the partial dynamical structure factors into a single workspace.")

        self.declareProperty(name="ScaleByCrossSection", defaultValue='Incoherent',
                             validator=StringListValidator(['Total', 'Incoherent', 'Coherent']),
                             doc="Scale the partial dynamical structure factors by the scattering cross section.")

        self.declareProperty(name="QuantumOrderEventsNumber", defaultValue='1',
                             validator=StringListValidator(['1', '2', '3', '4']),
                             doc="Number of quantum order effects included in the calculation "
                                 "(1 -> FUNDAMENTALS, 2-> first overtone + FUNDAMENTALS + "
                                 "2nd order combinations, 3-> FUNDAMENTALS + first overtone + second overtone + 2nd "
                                 "order combinations + 3rd order combinations etc...)")

        self.declareProperty(WorkspaceProperty("OutputWorkspace", '', Direction.Output),
                             doc="Name to give the output workspace.")

    def validateInputs(self):
        """
        Performs input validation. Use to ensure the user has defined a consistent set of parameters.
        """

        input_file_validators = {"CASTEP": self._validate_castep_input_file,
                                 "CRYSTAL": self._validate_crystal_input_file,
                                 "DMOL3": self._validate_dmol3_input_file,
                                 "GAUSSIAN": self._validate_gaussian_input_file}
        temperature = self.getProperty("TemperatureInKelvin").value
        if temperature < 0:
            issues["TemperatureInKelvin"] = "Temperature must be positive."

        scale = self.getProperty("Scale").value
        if scale < 0:
            issues["Scale"] = "Scale must be positive."

        bin_width =  self.getProperty("BinWidthInWavenumber").value
        if not (isinstance(bin_width, float) and 1.0 <= bin_width <= 10.0):
            issues["BinWidthInWavenumber"] = ["Invalid bin width. Valid range is [1.0, 10.0] cm^-1"]
        dft_program = self.getProperty("DFTprogram").value
        phonon_filename = self.getProperty("PhononFile").value
        output = input_file_validators[dft_program](filename_full_path=phonon_filename)
        if output["Invalid"]:
            issues["PhononFile"] = output["Comment"]

        workspace_name = self.getPropertyValue("OutputWorkspace")
        # list of special keywords which cannot be used in the name of workspace
        forbidden_keywords = ["total"]
        if workspace_name in mtd:
            issues["OutputWorkspace"] = "Workspace with name " + workspace_name + " already in use; please give " \
                                                                                  "a different name for workspace."
        elif workspace_name == "":
            issues["OutputWorkspace"] = "Please specify name of workspace."
        for word in forbidden_keywords:

            if word in workspace_name:
                issues["OutputWorkspace"] = "Keyword: " + word + " cannot be used in the name of workspace."
                break

        self._check_advanced_parameter()

        return issues

    def PyExec(self):

        # 0) Create reporter to report progress
        steps = 9
        begin = 0
        end = 1.0
        prog_reporter = Progress(self, begin, end, steps)

        # 1) get input parameters from a user
        self._get_properties()
        prog_reporter.report("Input data from the user has been collected.")

        # 2) read DFT data
        dft_loaders = {"CASTEP": AbinsModules.LoadCASTEP, "CRYSTAL": AbinsModules.LoadCRYSTAL,
                       "DMOL3": AbinsModules.LoadDMOL3, "GAUSSIAN": AbinsModules.LoadGAUSSIAN}
        dft_reader = dft_loaders[self._dft_program](input_dft_filename=self._phonon_file)
        dft_data = dft_reader.get_formatted_data()
        prog_reporter.report("Phonon data has been read.")

        # 3) calculate S
        s_calculator = AbinsModules.CalculateS.init(filename=self._phonon_file, temperature=self._temperature,
                                                    sample_form=self._sample_form, abins_data=dft_data,
                                                    instrument=self._instrument,
                                                    quantum_order_num=self._num_quantum_order_events,
                                                    bin_width=self._bin_width)
        s_data = s_calculator.get_formatted_data()
        prog_reporter.report("Dynamical structure factors have been determined.")

        # 4) get atoms for which S should be plotted
        self._extracted_dft_data = dft_data.get_atoms_data().extract()
        num_atoms = len(self._extracted_dft_data)
        all_atms_smbls = list(set([self._extracted_dft_data["atom_%s" % atom]["symbol"] for atom in range(num_atoms)]))
        all_atms_smbls.sort()

        if len(self._atoms) == 0:  # case: all atoms
            atoms_symbol = all_atms_smbls
        else:  # case selected atoms
            if len(self._atoms) != len(set(self._atoms)):  # only different types
                raise ValueError("Not all user defined atoms are unique.")

            for atom_symbol in self._atoms:
                if atom_symbol not in all_atms_smbls:
                    raise ValueError("User defined atom not present in the system.")
            atoms_symbol = self._atoms
        prog_reporter.report("Atoms, for which dynamical structure factors should be plotted, have been determined.")

        # at the moment only types of atom, e.g, for  benzene three options -> 1) C, H;  2) C; 3) H
        # 5) create workspaces for atoms in interest
        workspaces = []
        if self._sample_form == "Powder":
            workspaces.extend(self._create_partial_s_per_type_workspaces(atoms_symbols=atoms_symbol, s_data=s_data))
        prog_reporter.report("Workspaces with partial dynamical structure factors have been constructed.")

        # 6) Create a workspace with sum of all atoms if required
        if self._sum_contributions:
            total_atom_workspaces = []
            for ws in workspaces:
                if "total" in ws:
                    total_atom_workspaces.append(ws)
            total_workspace = self._create_total_workspace(partial_workspaces=total_atom_workspaces)
            workspaces.insert(0, total_workspace)
            prog_reporter.report("Workspace with total S  has been constructed.")

        # 7) add experimental data if available to the collection of workspaces
        if self._experimental_file != "":
            workspaces.insert(0, self._create_experimental_data_workspace().name())
            prog_reporter.report("Workspace with the experimental data has been constructed.")

        GroupWorkspaces(InputWorkspaces=workspaces, OutputWorkspace=self._out_ws_name)

        # 8) save workspaces to ascii_file
        num_workspaces = mtd[self._out_ws_name].getNumberOfEntries()
        for wrk_num in range(num_workspaces):
            wrk = mtd[self._out_ws_name].getItem(wrk_num)
            SaveAscii(InputWorkspace=Scale(wrk, 1.0/self._bin_width, "Multiply"),
                      Filename=wrk.name() + ".dat", Separator="Space", WriteSpectrumID=False)
        prog_reporter.report("All workspaces have been saved to ASCII files.")

        # 9) set  OutputWorkspace
        self.setProperty('OutputWorkspace', self._out_ws_name)
        prog_reporter.report("Group workspace with all required  dynamical structure factors has been constructed.")

    def _create_workspaces(self, atoms_symbols=None, s_data=None):
        """
        Creates workspaces for all types of atoms. Creates both partial and total workspaces for all types of atoms.

        :param atoms_symbols: list of atom types for which S should be created
        :param s_data: dynamical factor data of type SData
        :returns: workspaces for list of atoms types, S for the particular type of atom
        """
        s_data_extracted = s_data.extract()
        shape = [self._num_quantum_order_events]
        shape.extend(list(s_data_extracted["atom_0"]["s"]["order_1"].shape))
        s_atom_data = np.zeros(shape=tuple(shape), dtype=AbinsModules.AbinsConstants.FLOAT_TYPE)
        num_atoms = len([key for key in s_data_extracted.keys() if "atom" in key])
        temp_s_atom_data = np.copy(s_atom_data)

        for atom_symbol in atoms_symbols:
            # create partial workspaces for the given type of atom
            atom_workspaces = []
            s_atom_data.fill(0.0)

            for atom in range(num_atoms):
                if self._extracted_dft_data["atom_%s" % atom]["symbol"] == atom_symbol:

                    temp_s_atom_data.fill(0.0)
                    for order in range(AbinsModules.AbinsConstants.FUNDAMENTALS,
                                       self._num_quantum_order_events + AbinsModules.AbinsConstants.S_LAST_INDEX):
                        order_indx = order - AbinsModules.AbinsConstants.PYTHON_INDEX_SHIFT
                        temp_s_order = s_data_extracted["atom_%s" % atom]["s"]["order_%s" % order]
                        temp_s_atom_data[order_indx] = temp_s_order

                    s_atom_data += temp_s_atom_data  # sum S over the atoms of the same type
            total_s_atom_data = np.sum(s_atom_data, axis=0)
            atom_workspaces.append(
                self._create_workspace(atom_name=atom_symbol, s_points=np.copy(total_s_atom_data),
                                       optional_name="_total"))
            atom_workspaces.append(
                self._create_workspace(atom_name=atom_symbol, s_points=np.copy(s_atom_data)))

            result.extend(atom_workspaces)

        return result

    def _create_partial_s_per_type_workspaces(self, atoms_symbols=None, s_data=None):
        """
        Creates workspaces for all types of atoms. Each workspace stores quantum order events for S for the given
        type of atom. It also stores total workspace for the given type of atom.

        :param atoms_symbols: list of atom types for which quantum order events of S  should be calculated
        :param s_data: dynamical factor data of type SData
        :returns: workspaces for list of atoms types, each workspace contains  quantum order events of
                 S for the particular atom type
        """

        return self._create_workspaces(atoms_symbols=atoms_symbols, s_data=s_data)

    def _fill_s_workspace(self, s_points=None, workspace=None, atom_name=None):
        """
        Puts S into workspace(s).
        :param s_points: dynamical factor for the given atom
        :param workspace:  workspace to be filled with S
        if self._instrument.get_name() in AbinsModules.AbinsConstants.ONE_DIMENSIONAL_INSTRUMENTS:
            # only FUNDAMENTALS
            if s_points.shape[0] == AbinsModules.AbinsConstants.FUNDAMENTALS:
                self._fill_s_1d_workspace(s_points=s_points[0], workspace=workspace, atom_name=atom_name)
            elif len(s_points.shape) == AbinsModules.AbinsConstants.ONE_DIMENSIONAL_SPECTRUM:
                self._fill_s_1d_workspace(s_points=s_points, workspace=workspace, atom_name=atom_name)
            # quantum order events (fundamentals  or  overtones + combinations for the given order)
            else:

                dim = s_points.shape[0]
                partial_wrk_names = []

                for n in range(dim):
                    seed = "quantum_event_%s" % (n + 1)
                    wrk_name = workspace + "_" + seed
                    partial_wrk_names.append(wrk_name)

                    self._fill_s_1d_workspace(s_points=s_points[n], workspace=wrk_name, atom_name=atom_name)
                GroupWorkspaces(InputWorkspaces=partial_wrk_names, OutputWorkspace=workspace)
    def _fill_s_1d_workspace(self, s_points=None, workspace=None, atom_name=None):
        """
        Puts 1D S into workspace.
        :param s_points: dynamical factor for the given atom
        :param workspace: workspace to be filled with S
        :param atom_name: name of atom (for example H for hydrogen)
        """
        if atom_name is not None:

            s_points = s_points * self._scale * self._get_cross_section(atom_name=atom_name)
        dim = 1
        length = s_points.size
        wrk = WorkspaceFactory.create("Workspace2D", NVectors=dim, XLength=length + 1, YLength=length)
        wrk.setX(0, self._bins)
        wrk.setY(0, s_points)
        AnalysisDataService.addOrReplace(workspace, wrk)
        # Set correct units on workspace
        self._set_workspace_units(wrk=workspace)
    def _get_cross_section(self, atom_name=None):
        """
        Calculates cross section for the given element.
        :param atom_name: symbol of element
        """
        atom = Atom(symbol=atom_name)
        cross_section = None
        if self._scale_by_cross_section == 'Incoherent':
            cross_section = atom.neutron()["inc_scatt_xs"]
        elif self._scale_by_cross_section == 'Coherent':
            cross_section = atom.neutron()["coh_scatt_xs"]
        elif self._scale_by_cross_section == 'Total':
            cross_section = atom.neutron()["tot_scatt_xs"]
    def _create_total_workspace(self, partial_workspaces=None):

        """
        Sets workspace with total S.
        :param partial_workspaces: list of workspaces which should be summed up to obtain total workspace
        :returns: workspace with total S from partial_workspaces
        total_workspace = self._out_ws_name + "_total"

        if isinstance(mtd[partial_workspaces[0]], WorkspaceGroup):
            local_partial_workspaces = mtd[partial_workspaces[0]].names()
        else:
            local_partial_workspaces = partial_workspaces

        if len(local_partial_workspaces) > 1:

            ws = mtd[local_partial_workspaces[0]]
            s_atoms = np.zeros_like(ws.dataY(0))

            # collect all S
            for partial_ws in local_partial_workspaces:
                if self._instrument.get_name() in AbinsModules.AbinsConstants.ONE_DIMENSIONAL_INSTRUMENTS:
                    s_atoms += mtd[partial_ws].dataY(0)

            # create workspace with S
            self._fill_s_workspace(s_atoms, total_workspace)

        # # Otherwise just repackage the workspace we have as the total
            CloneWorkspace(InputWorkspace=local_partial_workspaces[0], OutputWorkspace=total_workspace)

        return total_workspace

    def _create_workspace(self, atom_name=None, s_points=None, optional_name=""):

        """
        Creates workspace for the given frequencies and s_points with S data. After workspace is created it is rebined,
        scaled by cross-section factor and optionally multiplied by the user defined scaling factor.

        :param atom_name: symbol of atom for which workspace should be created
        :param frequencies: frequencies in the form of numpy array for which S(Q, omega) can be plotted
        :param s_points: S(Q, omega)
        :param optional_name: optional part of workspace name
        :returns: workspace for the given frequency and S data
        ws_name = self._out_ws_name + "_" + atom_name + optional_name
        self._fill_s_workspace(s_points=s_points, workspace=ws_name, atom_name=atom_name)

        return ws_name

    def _create_experimental_data_workspace(self):
        """
        Loads experimental data into workspaces.
        :returns: workspace with experimental data
        """
        experimental_wrk = Load(self._experimental_file)
        self._set_workspace_units(wrk=experimental_wrk.name())

        return experimental_wrk

    def _set_workspace_units(self, wrk=None):
        """
        Sets x and y units for a workspace.
        :param wrk: workspace which units should be set
        mtd[wrk].getAxis(0).setUnit("DeltaE_inWavenumber")
        mtd[wrk].setYUnitLabel("S /Arbitrary Units")
        mtd[wrk].setYUnit("Arbitrary Units")

    def _check_advanced_parameter(self):

        """
        Checks if parameters from AbinsParameters.py are valid. If any parameter is invalid then RuntimeError is thrown
        with meaningful message.
        """

        message = " in AbinsParameters.py. "

        self._check_general_resolution(message)
        self._check_tosca_parameters(message)
        self._check_folder_names(message)
        self._check_rebining(message)
        self._check_threshold(message)
        self._check_chunk_size(message)
        self._check_threads(message)

    def _check_general_resolution(self, message_end=None):
        """
        Checks general parameters used in construction resolution functions.
        :param message_end: closing part of the error message.
        """
        # check fwhm
        fwhm = AbinsModules.AbinsParameters.fwhm
        if not (isinstance(fwhm, float) and 0.0 < fwhm < 10.0):
            raise RuntimeError("Invalid value of fwhm" + message_end)

        # check delta_width
        delta_width = AbinsModules.AbinsParameters.delta_width
        if not (isinstance(delta_width, float) and 0.0 < delta_width < 1.0):
            raise RuntimeError("Invalid value of delta_width" + message_end)

    def _check_tosca_parameters(self, message_end=None):
        """
        Checks TOSCA parameters.
        :param message_end: closing part of the error message.
        """

        # TOSCA final energy in cm^-1
        final_energy = AbinsModules.AbinsParameters.tosca_final_neutron_energy
        if not (isinstance(final_energy, float) and final_energy > 0.0):
            raise RuntimeError("Invalid value of final_neutron_energy for TOSCA" + message_end)

        angle = AbinsModules.AbinsParameters.tosca_cos_scattering_angle
        if not isinstance(angle, float):
            raise RuntimeError("Invalid value of cosines scattering angle for TOSCA" + message_end)

        resolution_const_a = AbinsModules.AbinsParameters.tosca_a
        if not isinstance(resolution_const_a, float):
            raise RuntimeError("Invalid value of constant A for TOSCA (used by the resolution TOSCA function)" +
                               message_end)

        resolution_const_b = AbinsModules.AbinsParameters.tosca_b
        if not isinstance(resolution_const_b, float):
            raise RuntimeError("Invalid value of constant B for TOSCA (used by the resolution TOSCA function)" +
                               message_end)

        resolution_const_c = AbinsModules.AbinsParameters.tosca_c
        if not isinstance(resolution_const_c, float):
            raise RuntimeError("Invalid value of constant C for TOSCA (used by the resolution TOSCA function)" +
                               message_end)

    def _check_folder_names(self, message_end=None):
        """
        Checks folders names.
        :param message_end: closing part of the error message.
        """
        folder_names = []
        dft_group = AbinsModules.AbinsParameters.dft_group
        if not isinstance(dft_group, str) or dft_group == "":
            raise RuntimeError("Invalid name for folder in which the DFT data should be stored.")
        folder_names.append(dft_group)

        powder_data_group = AbinsModules.AbinsParameters.powder_data_group
        if not isinstance(powder_data_group, str) or powder_data_group == "":
            raise RuntimeError("Invalid value of powder_data_group" + message_end)
        elif powder_data_group in folder_names:
            raise RuntimeError("Name for powder_data_group  already used by as name of another folder.")
        folder_names.append(powder_data_group)

        crystal_data_group = AbinsModules.AbinsParameters.crystal_data_group
        if not isinstance(crystal_data_group, str) or crystal_data_group == "":
            raise RuntimeError("Invalid value of crystal_data_group" + message_end)
        elif crystal_data_group in folder_names:
            raise RuntimeError("Name for crystal_data_group already used as a name of another folder.")

        s_data_group = AbinsModules.AbinsParameters.s_data_group
        if not isinstance(s_data_group, str) or s_data_group == "":
            raise RuntimeError("Invalid value of s_data_group" + message_end)
        elif s_data_group in folder_names:
            raise RuntimeError("Name for s_data_group already used as a name of another folder.")

    def _check_rebining(self, message_end=None):
        """
        Checks rebinning parameters.
        :param message_end: closing part of the error message.
        """
        pkt_per_peak = AbinsModules.AbinsParameters.pkt_per_peak
Krzysztof Dymkowski's avatar
Krzysztof Dymkowski committed
        if not (isinstance(pkt_per_peak, six.integer_types) and 1 <= pkt_per_peak <= 1000):
            raise RuntimeError("Invalid value of pkt_per_peak" + message_end)

        min_wavenumber = AbinsModules.AbinsParameters.min_wavenumber
        if not (isinstance(min_wavenumber, float) and min_wavenumber >= 0.0):
            raise RuntimeError("Invalid value of min_wavenumber" + message_end)

        max_wavenumber = AbinsModules.AbinsParameters.max_wavenumber
        if not (isinstance(max_wavenumber, float) and max_wavenumber > 0.0):
            raise RuntimeError("Invalid number of max_wavenumber" + message_end)

        if min_wavenumber > max_wavenumber:
            raise RuntimeError("Invalid energy window for rebinning.")

    def _check_threshold(self, message_end=None):
        """
        Checks acoustic phonon threshold.
        :param message_end: closing part of the error message.
        """
        acoustic_threshold = AbinsModules.AbinsParameters.acoustic_phonon_threshold
        if not (isinstance(acoustic_threshold, float) and acoustic_threshold >= 0.0):
            raise RuntimeError("Invalid value of acoustic_phonon_threshold" + message_end)

        # check s threshold
        s_absolute_threshold = AbinsModules.AbinsParameters.s_absolute_threshold
        if not (isinstance(s_absolute_threshold, float) and s_absolute_threshold > 0.0):
            raise RuntimeError("Invalid value of s_absolute_threshold" + message_end)

        s_relative_threshold = AbinsModules.AbinsParameters.s_relative_threshold
        if not (isinstance(s_relative_threshold, float) and s_relative_threshold > 0.0):
            raise RuntimeError("Invalid value of s_relative_threshold" + message_end)

    def _check_chunk_size(self, message_end=None):
        """
        Check optimal size of chunk
        :param message_end: closing part of the error message.
        """
        optimal_size = AbinsModules.AbinsParameters.optimal_size
Krzysztof Dymkowski's avatar
Krzysztof Dymkowski committed
        if not (isinstance(optimal_size, six.integer_types) and optimal_size > 0):
            raise RuntimeError("Invalid value of optimal_size" + message_end)

    def _check_threads(self, message_end=None):
        """
        Checks number of threads
        :param message_end: closing part of the error message.
        """
        if PATHOS_FOUND:
            threads = AbinsModules.AbinsParameters.threads
            if not (isinstance(threads, six.integer_types) and 1 <= threads <= mp.cpu_count()):
                raise RuntimeError("Invalid number of threads for parallelisation over atoms" + message_end)

    def _validate_dft_file_extension(self, filename_full_path=None, expected_file_extension=None):
        Checks consistency between name of DFT program and extension.
        :param dft_program: name of DFT program in the form of string
        :param expected_file_extension: file extension
        :returns: dictionary with error message
        dft_program = self.getProperty("DFTprogram").value
        msg_err = "Invalid %s file. " % filename_full_path
        msg_rename = "Please rename your file and try again."

        # check  extension of a file
        found_filename_ext = os.path.splitext(filename_full_path)[1]
        if found_filename_ext.lower() != expected_file_extension:
            return dict(Invalid=True,
Krzysztof Dymkowski's avatar
Krzysztof Dymkowski committed
                        Comment=msg_err + "Output from DFT program " + dft_program + " is expected." +
                                          " The expected extension of file is ." + expected_file_extension +
                                          ".  Found: " + found_filename_ext + ". " + msg_rename)
        else:
            return dict(Invalid=False, Comment="")

    def _validate_dmol3_input_file(self, filename_full_path=None):
        """
        Method to validate input file for DMOL3 DFT program.
        :param filename_full_path: full path of a file to check.
        :returns: True if file is valid otherwise false.
        """
        logger.information("Validate DMOL3 phonon file: ")
        return self._validate_dft_file_extension(filename_full_path=filename_full_path,
                                                 expected_file_extension=".outmol")

    def _validate_gaussian_input_file(self, filename_full_path=None):
        """
        Method to validate input file for GAUSSIAN DFT program.
        :param filename_full_path: full path of a file to check.
        :returns: True if file is valid otherwise false.
        """
        logger.information("Validate GAUSSIAN file with vibration data: ")
        return self._validate_dft_file_extension(filename_full_path=filename_full_path,
                                                 expected_file_extension=".log")
    def _validate_crystal_input_file(self, filename_full_path=None):
        """
        Method to validate input file for CRYSTAL DFT program.
        :param filename_full_path: full path of a file to check.
        :returns: True if file is valid otherwise false.
        """
        logger.information("Validate CRYSTAL phonon file: ")
        return self._validate_dft_file_extension(filename_full_path=filename_full_path,
                                                 expected_file_extension=".out")
    def _validate_castep_input_file(self, filename_full_path=None):
        """
        Check if input DFT phonon file has been produced by CASTEP. Currently the crucial keywords in the first few
        lines are checked (to be modified if a better validation is found...)


        :param filename_full_path: full path of a file to check
        :returns: Dictionary with two entries "Invalid", "Comment". Valid key can have two values: True/ False. As it
                 comes to "Comment" it is an empty string if Valid:True, otherwise stores description of the problem.
        """
        logger.information("Validate CASTEP phonon file: ")
        msg_err = "Invalid %s file. " % filename_full_path
        output = self._validate_dft_file_extension(filename_full_path=filename_full_path,
                                                   expected_file_extension=".phonon")
        if output["Invalid"]:
            return output

        # check a structure of the header part of file.
        # Here fortran convention is followed: case of letter does not matter
        with open(filename_full_path) as castep_file:

            line = self._get_one_line(castep_file)
            if not self._compare_one_line(line, "beginheader"):  # first line is BEGIN header
                return dict(Invalid=True, Comment=msg_err + "The first line should be 'BEGIN header'.")

            line = self._get_one_line(castep_file)
            if not self._compare_one_line(one_line=line, pattern="numberofions"):
                return dict(Invalid=True, Comment=msg_err + "The second line should include 'Number of ions'.")

            line = self._get_one_line(castep_file)
            if not self._compare_one_line(one_line=line, pattern="numberofbranches"):
                return dict(Invalid=True, Comment=msg_err + "The third line should include 'Number of branches'.")

            line = self._get_one_line(castep_file)
            if not self._compare_one_line(one_line=line, pattern="numberofwavevectors"):
                return dict(Invalid=True, Comment=msg_err + "The fourth line should include 'Number of wavevectors'.")

            line = self._get_one_line(castep_file)
            if not self._compare_one_line(one_line=line,
                                          pattern="frequenciesin"):
                return dict(Invalid=True, Comment=msg_err + "The fifth line should be 'Frequencies in'.")

        return output

    def _get_one_line(self, file_obj=None):
        """

        :param file_obj:  file object from which reading is done
        :returns: string containing one non empty line
        """
        line = file_obj.readline().replace(" ", "").lower()

        while line and line == "":
            line = file_obj.readline().replace(" ", "").lower()

        return line

    def _compare_one_line(self, one_line, pattern):
        """
        compares line in the the form of string with a pattern.
        :param one_line:  line in the for mof string to be compared
        :param pattern: string which should be present in the line after removing white spaces and setting all
                        letters to lower case
        :returns:  True is pattern present in the line, otherwise False
        """
        return one_line and pattern in one_line.replace(" ", "")

    def _get_properties(self):
        """
        Loads all properties to object's attributes.
        """

        self._dft_program = self.getProperty("DFTprogram").value
        self._phonon_file = self.getProperty("PhononFile").value
        self._experimental_file = self.getProperty("ExperimentalFile").value
        self._temperature = self.getProperty("TemperatureInKelvin").value
        self._bin_width = self.getProperty("BinWidthInWavenumber").value
        self._scale = self.getProperty("Scale").value
        self._sample_form = self.getProperty("SampleForm").value

        instrument_name = self.getProperty("Instrument").value
        if instrument_name in AbinsModules.AbinsConstants.ALL_INSTRUMENTS:
            self._instrument_name = instrument_name
            instrument_producer = AbinsModules.InstrumentProducer()
            self._instrument = instrument_producer.produce_instrument(name=self._instrument_name)
        else:
            raise ValueError("Unknown instrument %s" % instrument_name)

        self._atoms = self.getProperty("Atoms").value
        self._sum_contributions = self.getProperty("SumContributions").value

        # conversion from str to int
        self._num_quantum_order_events = int(self.getProperty("QuantumOrderEventsNumber").value)

        self._scale_by_cross_section = self.getPropertyValue('ScaleByCrossSection')
        self._out_ws_name = self.getPropertyValue('OutputWorkspace')
        self._calc_partial = (len(self._atoms) > 0)

        # user defined interval is exclusive with respect to
        # AbinsModules.AbinsParameters.min_wavenumber
        # AbinsModules.AbinsParameters.max_wavenumber
        # with bin width AbinsModules.AbinsParameters.bin_width
        step = self._bin_width
        start = AbinsModules.AbinsParameters.min_wavenumber + step / 2.0
        stop = AbinsModules.AbinsParameters.max_wavenumber + step / 2.0
        self._bins = np.arange(start=start, stop=stop, step=step, dtype=AbinsModules.AbinsConstants.FLOAT_TYPE)

except ImportError:
    logger.debug('Failed to subscribe algorithm SimulatedDensityOfStates; The python package may be missing.')