Newer
Older
from __future__ import (absolute_import, division, print_function)
try:
import pathos.multiprocessing as mp
PATHOS_FOUND = True
except ImportError:
PATHOS_FOUND = False
import numpy as np
from mantid.api import AlgorithmFactory, FileAction, FileProperty, PythonAlgorithm, Progress, WorkspaceProperty, mtd
# noinspection PyProtectedMember
from mantid.api._api import WorkspaceGroup
from mantid.simpleapi import CreateWorkspace, CloneWorkspace, GroupWorkspaces, Scale, SetSampleMaterial, Rebin, \
SaveAscii, Load, DeleteWorkspace
from mantid.kernel import logger, StringListValidator, Direction, StringArrayProperty
from AbinsModules import LoadCASTEP, LoadCRYSTAL, CalculateS, AbinsParameters, AbinsConstants, InstrumentProducer
# noinspection PyPep8Naming,PyMethodMayBeStatic
Krzysztof Dymkowski
committed
class Abins(PythonAlgorithm):
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
_dft_program = None
_phonon_file = None
_experimental_file = None
_temperature = None
_scale = None
_sample_form = None
_instrument_name = None
_atoms = None
_sum_contributions = None
_scale_by_cross_section = None
_calc_partial = None
_out_ws_name = None
_num_quantum_order_events = None
_extracted_dft_data = None
def category(self):
return "Simulation"
# ----------------------------------------------------------------------------------------
def summary(self):
return "Calculates inelastic neutron scattering."
# ----------------------------------------------------------------------------------------
def PyInit(self):
# Declare all properties
self.declareProperty(name="DFTprogram",
direction=Direction.Input,
defaultValue="CASTEP",
validator=StringListValidator(["CASTEP", "CRYSTAL"]),
doc="DFT program which was used for a phonon calculation.")
self.declareProperty(FileProperty("PhononFile", "",
action=FileAction.Load,
direction=Direction.Input,
extensions=["phonon", "out"]),
doc="File with the data from a phonon calculation.")
self.declareProperty(FileProperty("ExperimentalFile", "",
action=FileAction.OptionalLoad,
direction=Direction.Input,
extensions=["raw", "dat"]),
doc="File with the experimental inelastic spectrum to compare.")
self.declareProperty(name="Temperature",
direction=Direction.Input,
defaultValue=10.0,
doc="Temperature in K for which dynamical structure factor S should be calculated.")
self.declareProperty(name="Scale", defaultValue=1.0,
doc='Scale the intensity by the given factor. Default is no scaling.')
self.declareProperty(name="SampleForm",
direction=Direction.Input,
defaultValue="Powder",
validator=StringListValidator(AbinsConstants.ALL_SAMPLE_FORMS),
#doc="Form of the sample: SingleCrystal or Powder.")
doc="Form of the sample: Powder.")
self.declareProperty(name="Instrument",
direction=Direction.Input,
defaultValue="TOSCA",
Krzysztof Dymkowski
committed
# validator=StringListValidator(AbinsConstants.ALL_INSTRUMENTS)
validator=StringListValidator(["TOSCA"]),
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
doc="Name of an instrument for which analysis should be performed.")
self.declareProperty(StringArrayProperty("Atoms", Direction.Input),
doc="List of atoms to use to calculate partial S."
"If left blank, workspaces with S for all types of atoms will be calculated.")
self.declareProperty(name="SumContributions", defaultValue=False,
doc="Sum the partial dynamical structure factors into a single workspace.")
self.declareProperty(name="ScaleByCrossSection", defaultValue='Incoherent',
validator=StringListValidator(['Total', 'Incoherent', 'Coherent']),
doc="Scale the partial dynamical structure factors by the scattering cross section.")
self.declareProperty(name="QuantumOrderEventsNumber", defaultValue='1',
validator=StringListValidator(['1', '2', '3', '4']),
doc="Number of quantum order effects included in the calculation "
"(1 -> FUNDAMENTALS, 2-> first overtone + FUNDAMENTALS + "
"2nd order combinations, 3-> FUNDAMENTALS + first overtone + second overtone + 2nd "
"order combinations + 3rd order combinations etc...)")
self.declareProperty(WorkspaceProperty("OutputWorkspace", '', Direction.Output),
doc="Name to give the output workspace.")
def validateInputs(self):
"""
Performs input validation. Use to ensure the user has defined a consistent set of parameters.
"""
input_file_validators = {"CASTEP": self._validate_castep_input_file,
"CRYSTAL": self._validate_crystal_input_file}
issues = dict()
temperature = self.getProperty("Temperature").value
if temperature < 0:
issues["Temperature"] = "Temperature must be positive."
scale = self.getProperty("Scale").value
if scale < 0:
issues["Scale"] = "Scale must be positive."
dft_program = self.getProperty("DFTprogram").value
phonon_filename = self.getProperty("PhononFile").value
output = input_file_validators[dft_program](filename=phonon_filename)
if output["Invalid"]:
issues["PhononFile"] = output["Comment"]
workspace_name = self.getPropertyValue("OutputWorkspace")
# list of special keywords which cannot be used in the name of workspace
forbidden_keywords = ["total"]
if workspace_name in mtd:
issues["OutputWorkspace"] = "Workspace with name " + workspace_name + " already in use; please give " \
"a different name for workspace."
elif workspace_name == "":
issues["OutputWorkspace"] = "Please specify name of workspace."
for word in forbidden_keywords:
if word in workspace_name:
issues["OutputWorkspace"] = "Keyword: " + word + " cannot be used in the name of workspace."
break
self._check_advanced_parameter()
return issues
def PyExec(self):
# 0) Create reporter to report progress
steps = 9
begin = 0
end = 1.0
prog_reporter = Progress(self, begin, end, steps)
# 1) get input parameters from a user
self._get_properties()
prog_reporter.report("Input data from the user has been collected.")
# 2) read DFT data
dft_loaders = {"CASTEP": LoadCASTEP, "CRYSTAL": LoadCRYSTAL}
dft_reader = dft_loaders[self._dft_program](input_dft_filename=self._phonon_file)
dft_data = dft_reader.get_formatted_data()
prog_reporter.report("Phonon data has been read.")
# 3) calculate S
s_calculator = CalculateS(filename=self._phonon_file, temperature=self._temperature,
sample_form=self._sample_form, abins_data=dft_data,
instrument=self._instrument,
quantum_order_num=self._num_quantum_order_events)
s_data = s_calculator.get_formatted_data()
prog_reporter.report("Dynamical structure factors have been determined.")
# 4) get atoms for which S should be plotted
self._extracted_dft_data = dft_data.get_atoms_data().extract()
num_atoms = len(self._extracted_dft_data)
all_atoms_symbols = set([self._extracted_dft_data["atom_%s" % atom]["symbol"] for atom in range(num_atoms)])
if len(self._atoms) == 0: # case: all atoms
atoms_symbol = all_atoms_symbols
else: # case selected atoms
if len(self._atoms) != len(set(self._atoms)): # only different types
raise ValueError("Not all user defined atoms are unique.")
for atom_symbol in self._atoms:
if atom_symbol not in all_atoms_symbols:
raise ValueError("User defined atom not present in the system.")
atoms_symbol = self._atoms
prog_reporter.report("Atoms, for which dynamical structure factors should be plotted, have been determined.")
# at the moment only types of atom, e.g, for benzene three options -> 1) C, H; 2) C; 3) H
# 5) create workspaces for atoms in interest
workspaces = []
if self._sample_form == "Powder":
workspaces.extend(self._create_partial_s_per_type_workspaces(atoms_symbols=atoms_symbol, s_data=s_data))
prog_reporter.report("Workspaces with partial dynamical structure factors have been constructed.")
# 6) Create a workspace with sum of all atoms if required
if self._sum_contributions:
total_atom_workspaces = []
for ws in workspaces:
if "total" in ws:
total_atom_workspaces.append(ws)
total_workspace = self._create_total_workspace(partial_workspaces=total_atom_workspaces)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
workspaces.insert(0, total_workspace)
prog_reporter.report("Workspace with total S has been constructed.")
# 7) add experimental data if available to the collection of workspaces
if self._experimental_file != "":
workspaces.insert(0, self._create_experimental_data_workspace().getName())
prog_reporter.report("Workspace with the experimental data has been constructed.")
group = ','.join(workspaces)
GroupWorkspaces(group, OutputWorkspace=self._out_ws_name)
# 8) save workspaces to ascii_file
num_workspaces = mtd[self._out_ws_name].getNumberOfEntries()
for wrk_num in range(num_workspaces):
wrk = mtd[self._out_ws_name].getItem(wrk_num)
SaveAscii(InputWorkspace=wrk, Filename=wrk.getName() + ".dat", Separator="Space", WriteSpectrumID=False)
prog_reporter.report("All workspaces have been saved to ASCII files.")
# 9) set OutputWorkspace
self.setProperty('OutputWorkspace', self._out_ws_name)
prog_reporter.report("Group workspace with all required dynamical structure factors has been constructed.")
def _create_workspaces(self, atoms_symbols=None, s_data=None):
"""
Creates workspaces for all types of atoms. Creates both partial and total workspaces for all types of atoms.
@param atoms_symbols: list of atom types for which S should be created
@param s_data: dynamical factor data of type SData
@return: workspaces for list of atoms types, S for the particular type of atom
"""
s_data_extracted = s_data.extract()
freq = s_data_extracted["frequencies"]
shape = [self._num_quantum_order_events]
shape.extend(list(s_data_extracted["atom_0"]["s"]["order_1"].shape))
s_atom_data = np.zeros(shape=tuple(shape), dtype=AbinsConstants.FLOAT_TYPE)
num_atoms = len([key for key in s_data_extracted.keys() if "atom" in key])
temp_s_atom_data = np.copy(s_atom_data)
for atom_symbol in atoms_symbols:
# create partial workspaces for the given type of atom
atom_workspaces = []
s_atom_data.fill(0.0)
for atom in range(num_atoms):
if self._extracted_dft_data["atom_%s" % atom]["symbol"] == atom_symbol:
temp_s_atom_data.fill(0.0)
for order in range(AbinsConstants.FUNDAMENTALS,
self._num_quantum_order_events + AbinsConstants.S_LAST_INDEX):
order_indx = order - AbinsConstants.PYTHON_INDEX_SHIFT
temp_s_order = s_data_extracted["atom_%s" % atom]["s"]["order_%s" % order]
temp_s_atom_data[order_indx] = temp_s_order
s_atom_data += temp_s_atom_data # sum S over the atoms of the same type
total_s_atom_data = np.sum(s_atom_data, axis=0)
atom_workspaces.append(
self._create_workspace(atom_name=atom_symbol, frequencies=freq, s_points=np.copy(total_s_atom_data),
optional_name="_total"))
atom_workspaces.append(
self._create_workspace(atom_name=atom_symbol, frequencies=freq, s_points=np.copy(s_atom_data)))
result.extend(atom_workspaces)
return result
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
def _create_partial_s_per_type_workspaces(self, atoms_symbols=None, s_data=None):
"""
Creates workspaces for all types of atoms. Each workspace stores quantum order events for S for the given
type of atom. It also stores total workspace for the given type of atom.
@param atoms_symbols: list of atom types for which quantum order events of S should be calculated
@param s_data: dynamical factor data of type SData
@return: workspaces for list of atoms types, each workspace contains quantum order events of
S for the particular atom type
"""
return self._create_workspaces(atoms_symbols=atoms_symbols, s_data=s_data)
def _fill_s_workspace(self, freq=None, s_points=None, workspace=None):
"""
Puts S into workspace(s).
@param freq: frequencies
@param s_points: dynamical factor for the given atom
@param workspace: workspace to be filled with S
"""
if self._nspec == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
# only FUNDAMENTALS
if s_points.shape[0] == AbinsConstants.FUNDAMENTALS:
CreateWorkspace(DataX=freq,
DataY=s_points[0],
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
YUnitLabel="S",
OutputWorkspace=workspace,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=workspace)
# total workspaces
elif len(s_points.shape) == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
CreateWorkspace(DataX=freq,
DataY=s_points,
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
YUnitLabel="S",
OutputWorkspace=workspace,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=workspace)
# quantum order events (FUNDAMENTALS + overtones + combinations for the given order)
else:
dim = s_points.shape[0]
partial_wrk_names = []
for n in range(dim):
seed = "quantum_event_%s" % (n + 1)
wrk_name = workspace + "_" + seed
partial_wrk_names.append(wrk_name)
CreateWorkspace(DataX=freq,
DataY=s_points[n],
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
YUnitLabel="S",
OutputWorkspace=wrk_name,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=wrk_name)
group = ','.join(partial_wrk_names)
GroupWorkspaces(group, OutputWorkspace=workspace)
# 2D S map
else:
n_spec = self._instrument.get_nspec()
# only FUNDAMENTALS
if s_points.shape[0] == AbinsConstants.FUNDAMENTALS:
CreateWorkspace(DataX=freq,
DataY=s_points[0].flatten(),
NSpec=n_spec,
YUnitLabel="S",
VerticalAxisValues=self._instrument.get_q_length(),
VerticalAxisUnit="MomentumTransfer",
OutputWorkspace=workspace,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=workspace)
# total workspaces
elif s_points.shape[0] == self._instrument.get_nspec():
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
CreateWorkspace(DataX=freq,
DataY=s_points.flatten(),
NSpec=n_spec,
YUnitLabel="S",
VerticalAxisValues=self._instrument.get_q_length(),
VerticalAxisUnit="MomentumTransfer",
OutputWorkspace=workspace,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=workspace)
# quantum order events (FUNDAMENTALS + overtones + combinations for the given order)
else:
dim = s_points.shape[0]
partial_wrk_names = []
for n in range(dim):
seed = "quantum_event_%s" % (n + 1)
wrk_name = workspace + "_" + seed
partial_wrk_names.append(wrk_name)
CreateWorkspace(DataX=freq,
DataY=s_points[n].flatten(),
NSpec=n_spec,
YUnitLabel="S",
VerticalAxisValues=self._instrument.get_q_length(),
VerticalAxisUnit="MomentumTransfer",
OutputWorkspace=wrk_name,
EnableLogging=False)
# Set correct units on workspace
self._set_workspace_units(wrk=wrk_name)
group = ','.join(partial_wrk_names)
GroupWorkspaces(group, OutputWorkspace=workspace)
def _create_total_workspace(self, partial_workspaces=None):
"""
Sets workspace with total S.
@param partial_workspaces: list of workspaces which should be summed up to obtain total workspace
@return: workspace with total S from partial_workspaces
"""
total_workspace = self._out_ws_name + "_total"
if isinstance(mtd[partial_workspaces[0]], WorkspaceGroup):
local_partial_workspaces = mtd[partial_workspaces[0]].getNames()
else:
local_partial_workspaces = partial_workspaces
if len(local_partial_workspaces) > 1:
# get frequencies
freq = mtd[local_partial_workspaces[0]].dataX(0)
# initialize S
if self._nspec == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
s_atoms = np.copy(mtd[local_partial_workspaces[0]].dataY(0))
else:
s_atoms = np.tile(np.copy(mtd[local_partial_workspaces[0]].dataY(0)), (self._nspec, 1))
s_atoms.fill(0.0)
# collect all S
for partial_ws in local_partial_workspaces:
if self._nspec == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
s_atoms += mtd[partial_ws].dataY(0)
else:
for i in range(self._nspec):
s_atoms[i] += mtd[partial_ws].dataY(i)
# create workspace with S
self._fill_s_workspace(freq, s_atoms, total_workspace)
# rebin
if self._instrument.get_nspec() == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
Rebin(InputWorkspace=total_workspace,
Params=[AbinsParameters.min_wavenumber, AbinsParameters.bin_width,
AbinsParameters.max_wavenumber],
OutputWorkspace=total_workspace)
wrk = mtd[total_workspace]
workspace = self._out_ws_name + "_temp"
hist_num = wrk.getNumberHistograms()
for i in range(hist_num):
y_data = wrk.dataY(i)
CreateWorkspace(DataX=freq,
DataY=y_data,
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
OutputWorkspace=workspace,
EnableLogging=False)
Rebin(InputWorkspace=workspace,
Params=[AbinsParameters.min_wavenumber, AbinsParameters.bin_width,
AbinsParameters.max_wavenumber],
OutputWorkspace=workspace)
DeleteWorkspace(workspace)
# # Otherwise just repackage the workspace we have as the total
CloneWorkspace(InputWorkspace=local_partial_workspaces[0], OutputWorkspace=total_workspace)
def _create_workspace(self, atom_name=None, frequencies=None, s_points=None, optional_name=""):
"""
Creates workspace for the given frequencies and s_points with S data. After workspace is created it is rebined,
scaled by cross-section factor and optionally multiplied by the user defined scaling factor.
@param atom_name: symbol of atom for which workspace should be created
@param frequencies: frequencies in the form of numpy array for which S(Q, omega) can be plotted
@param s_points: S(Q, omega)
@param optional_name: optional part of workspace name
@return: workspace for the given frequency and S data
"""
ws_name = self._out_ws_name + "_" + atom_name + optional_name
self._fill_s_workspace(freq=frequencies, s_points=s_points, workspace=ws_name)
# 1D S
if self._instrument.get_nspec() == AbinsConstants.ONE_DIMENTIONAL_SPECTRUM:
Rebin(InputWorkspace=ws_name,
Params=[AbinsParameters.min_wavenumber, AbinsParameters.bin_width, AbinsParameters.max_wavenumber],
OutputWorkspace=ws_name)
wrk = mtd[ws_name]
if isinstance(wrk, WorkspaceGroup):
num_wrk = wrk.getNumberOfEntries()
for n in range(num_wrk):
self._scale_workspace(atom_name=atom_name, ws_name=wrk.getItem(n).getName())
else:
self._scale_workspace(atom_name=atom_name, ws_name=ws_name)
# 2D S
else:
wrk = mtd[ws_name]
workspace = self._out_ws_name + "_temp"
if isinstance(wrk, WorkspaceGroup):
num_wrk = wrk.getNumberOfEntries()
x_data = wrk.getItem(0).dataX(0) # all histograms have the same x-axis
hist_num = wrk.getItem(n).getNumberHistograms()
for i in range(hist_num):
y_data = wrk.getItem(n).dataY(i)
CreateWorkspace(DataX=x_data,
DataY=y_data,
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
OutputWorkspace=workspace,
EnableLogging=False)
Rebin(InputWorkspace=workspace,
Params=[AbinsParameters.min_wavenumber, AbinsParameters.bin_width,
AbinsParameters.max_wavenumber],
OutputWorkspace=workspace)
self._scale_workspace(atom_name=atom_name, ws_name=wrk.getItem(n).getName())
DeleteWorkspace(workspace)
hist_num = wrk.getNumberHistograms()
x_data = wrk.dataX(0)
for i in range(hist_num):
y_data = wrk.dataY(i)
CreateWorkspace(DataX=x_data,
DataY=y_data,
NSpec=AbinsConstants.ONE_DIMENTIONAL_SPECTRUM,
OutputWorkspace=workspace,
EnableLogging=False)
Rebin(InputWorkspace=workspace,
Params=[AbinsParameters.min_wavenumber, AbinsParameters.bin_width,
AbinsParameters.max_wavenumber],
OutputWorkspace=workspace)
self._scale_workspace(atom_name=atom_name, ws_name=ws_name)
DeleteWorkspace(workspace)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
return ws_name
def _scale_workspace(self, atom_name=None, ws_name=None):
"""
Performs scaling workspace by scattering factor and user defined scaling factor.
"""
# Add the sample material to the workspace
SetSampleMaterial(InputWorkspace=ws_name, ChemicalFormula=atom_name)
# Multiply intensity by scattering cross section
scattering_x_section = None
if self._scale_by_cross_section == 'Incoherent':
scattering_x_section = mtd[ws_name].mutableSample().getMaterial().incohScatterXSection()
elif self._scale_by_cross_section == 'Coherent':
scattering_x_section = mtd[ws_name].mutableSample().getMaterial().cohScatterXSection()
elif self._scale_by_cross_section == 'Total':
scattering_x_section = mtd[ws_name].mutableSample().getMaterial().totalScatterXSection()
Scale(InputWorkspace=ws_name,
OutputWorkspace=ws_name,
Operation='Multiply',
Factor=scattering_x_section)
# additional scaling the workspace if user wants it
if self._scale != 1:
Scale(InputWorkspace=ws_name,
OutputWorkspace=ws_name,
Operation='Multiply',
Factor=self._scale)
def _create_experimental_data_workspace(self):
"""
Loads experimental data into workspaces.
@return: workspace with experimental data
"""
experimental_wrk = Load(self._experimental_file)
self._set_workspace_units(wrk=experimental_wrk.getName())
return experimental_wrk
def _set_workspace_units(self, wrk=None):
"""
Sets x and y units for a workspace.
@param wrk: workspace which units should be set
"""
unitx = mtd[wrk].getAxis(0).setUnit("Label")
unitx.setLabel("Energy Loss", 'cm^-1')
mtd[wrk].setYUnitLabel("S /Arbitrary Units")
mtd[wrk].setYUnit("Arbitrary Units")
def _check_advanced_parameter(self):
"""
Checks if parameters from AbinsParameters.py are valid. If any parameter is invalid then RuntimeError is thrown
with meaningful message.
"""
message = " in AbinsParameters.py. "
self._check_general_resolution(message)
self._check_tosca_parameters(message)
self._check_folder_names(message)
self._check_rebining(message)
self._check_threshold(message)
self._check_chunk_size(message)
self._check_threads(message)
def _check_general_resolution(self, message_end=None):
"""
Checks general parameters used in construction resolution functions.
:param message_end: closing part of the error message.
"""
# check fwhm
fwhm = AbinsParameters.fwhm
if not (isinstance(fwhm, float) and 0.0 < fwhm < 10.0):
raise RuntimeError("Invalid value of fwhm" + message_end)
# check delta_width
delta_width = AbinsParameters.delta_width
if not (isinstance(delta_width, float) and 0.0 < delta_width < 1.0):
raise RuntimeError("Invalid value of delta_width" + message_end)
def _check_tosca_parameters(self, message_end=None):
"""
Checks TOSCA parameters.
:param message_end: closing part of the error message.
"""
# TOSCA final energy in cm^-1
final_energy = AbinsParameters.tosca_final_neutron_energy
if not (isinstance(final_energy, float) and final_energy > 0.0):
raise RuntimeError("Invalid value of final_neutron_energy for TOSCA" + message_end)
angle = AbinsParameters.tosca_cos_scattering_angle
if not isinstance(angle, float):
raise RuntimeError("Invalid value of cosines scattering angle for TOSCA" + message_end)
resolution_const_a = AbinsParameters.tosca_a
if not isinstance(resolution_const_a, float):
raise RuntimeError("Invalid value of constant A for TOSCA (used by the resolution TOSCA function)" +
message_end)
resolution_const_b = AbinsParameters.tosca_b
if not isinstance(resolution_const_b, float):
raise RuntimeError("Invalid value of constant B for TOSCA (used by the resolution TOSCA function)" +
message_end)
resolution_const_c = AbinsParameters.tosca_c
if not isinstance(resolution_const_c, float):
raise RuntimeError("Invalid value of constant C for TOSCA (used by the resolution TOSCA function)" +
message_end)
def _check_folder_names(self, message_end=None):
"""
Checks folders names.
:param message_end: closing part of the error message.
"""
folder_names = []
dft_group = AbinsParameters.dft_group
if not isinstance(dft_group, str) or dft_group == "":
raise RuntimeError("Invalid name for folder in which the DFT data should be stored.")
folder_names.append(dft_group)
powder_data_group = AbinsParameters.powder_data_group
if not isinstance(powder_data_group, str) or powder_data_group == "":
raise RuntimeError("Invalid value of powder_data_group" + message_end)
elif powder_data_group in folder_names:
raise RuntimeError("Name for powder_data_group already used by as name of another folder.")
folder_names.append(powder_data_group)
crystal_data_group = AbinsParameters.crystal_data_group
if not isinstance(crystal_data_group, str) or crystal_data_group == "":
raise RuntimeError("Invalid value of crystal_data_group" + message_end)
elif crystal_data_group in folder_names:
raise RuntimeError("Name for crystal_data_group already used as a name of another folder.")
s_data_group = AbinsParameters.s_data_group
if not isinstance(s_data_group, str) or s_data_group == "":
raise RuntimeError("Invalid value of s_data_group" + message_end)
elif s_data_group in folder_names:
raise RuntimeError("Name for s_data_group already used as a name of another folder.")
def _check_rebining(self, message_end=None):
"""
Checks rebinning parameters.
:param message_end: closing part of the error message.
"""
pkt_per_peak = AbinsParameters.pkt_per_peak
if not (isinstance(pkt_per_peak, (int, long)) and 1 <= pkt_per_peak <= 1000):
raise RuntimeError("Invalid value of pkt_per_peak" + message_end)
# bin width is expressed in cm^-1
bin_width = AbinsParameters.bin_width
if not (isinstance(bin_width, float) and 0.0 < bin_width <= 10.0):
raise RuntimeError("Invalid value of bin_width" + message_end)
min_wavenumber = AbinsParameters.min_wavenumber
if not (isinstance(min_wavenumber, float) and min_wavenumber >= 0.0):
raise RuntimeError("Invalid value of min_wavenumber" + message_end)
max_wavenumber = AbinsParameters.max_wavenumber
if not (isinstance(max_wavenumber, float) and max_wavenumber > 0.0):
raise RuntimeError("Invalid number of max_wavenumber" + message_end)
if min_wavenumber > max_wavenumber:
raise RuntimeError("Invalid energy window for rebinning.")
def _check_threshold(self, message_end=None):
"""
Checks acoustic phonon threshold.
:param message_end: closing part of the error message.
"""
acoustic_threshold = AbinsParameters.acoustic_phonon_threshold
if not (isinstance(acoustic_threshold, float) and acoustic_threshold >= 0.0):
raise RuntimeError("Invalid value of acoustic_phonon_threshold" + message_end)
# check s threshold
s_absolute_threshold = AbinsParameters.s_absolute_threshold
if not (isinstance(s_absolute_threshold, float) and s_absolute_threshold > 0.0):
raise RuntimeError("Invalid value of s_absolute_threshold" + message_end)
s_relative_threshold = AbinsParameters.s_relative_threshold
if not (isinstance(s_relative_threshold, float) and s_relative_threshold > 0.0):
raise RuntimeError("Invalid value of s_relative_threshold" + message_end)
def _check_chunk_size(self, message_end=None):
"""
Check optimal size of chunk
:param message_end: closing part of the error message.
"""
optimal_size = AbinsParameters.optimal_size
if not (isinstance(optimal_size, (int, long)) and optimal_size > 0):
raise RuntimeError("Invalid value of optimal_size" + message_end)
def _check_threads(self, message_end=None):
"""
Checks number of threads
:param message_end: closing part of the error message.
"""
if PATHOS_FOUND:
atoms_threads = AbinsParameters.atoms_threads
if not (isinstance(atoms_threads, (int, long)) and 1 <= atoms_threads <= mp.cpu_count()):
raise RuntimeError("Invalid number of threads for parallelisation over atoms" + message_end)
q_threads = AbinsParameters.q_threads
if not (isinstance(q_threads, (int, long)) and 1 <= q_threads <= mp.cpu_count()):
raise RuntimeError("Invalid number of threads for parallelisation over q" + message_end)
if atoms_threads * q_threads > mp.cpu_count():
raise RuntimeError("User asked for more threads than available.")
def _validate_crystal_input_file(self, filename=None):
"""
Method to validate input file for CRYSTAL DFT program.
@param filename: name of file.
@return: True if file is valid otherwise false.
"""
logger.information("Validate CRYSTAL phonon file: ")
output = {"Invalid": False, "Comment": ""}
msg_err = "Invalid %s file. " % filename
msg_rename = "Please rename your file and try again."
# check name of file
if "." not in filename:
return dict(Invalid=True, Comment=msg_err + " One dot '.' is expected in the name of file! " + msg_rename)
if filename.count(".") != 1:
return dict(Invalid=True, Comment=msg_err + " Only one dot should be in the name of file! " + msg_rename)
if filename[filename.find(".") + 1:].lower() != "out":
return dict(Invalid=True, Comment=msg_err + " The expected extension of file is out "
"(case of letter does not matter)! " + msg_rename)
return output
def _validate_castep_input_file(self, filename=None):
"""
Check if input DFT phonon file has been produced by CASTEP. Currently the crucial keywords in the first few
lines are checked (to be modified if a better validation is found...)
:param filename: name of the file to check
:return: Dictionary with two entries "Invalid", "Comment". Valid key can have two values: True/ False. As it
comes to "Comment" it is an empty string if Valid:True, otherwise stores description of the problem.
"""
logger.information("Validate CASTEP phonon file: ")
output = {"Invalid": False, "Comment": ""}
msg_err = "Invalid %s file. " % filename
msg_rename = "Please rename your file and try again."
# check name of file
if "." not in filename:
return dict(Invalid=True, Comment=msg_err + " One dot '.' is expected in the name of file! " + msg_rename)
if filename.count(".") != 1:
return dict(Invalid=True, Comment=msg_err + " Only one dot should be in the name of file! " + msg_rename)
if filename[filename.find(".") + 1:].lower() != "phonon":
return dict(Invalid=True, Comment=msg_err + " The expected extension of file is phonon "
"(case of letter does not matter)! " + msg_rename)
# check a structure of the header part of file.
# Here fortran convention is followed: case of letter does not matter
with open(filename) as castep_file:
line = self._get_one_line(castep_file)
if not self._compare_one_line(line, "beginheader"): # first line is BEGIN header
return dict(Invalid=True, Comment=msg_err + "The first line should be 'BEGIN header'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofions"):
return dict(Invalid=True, Comment=msg_err + "The second line should include 'Number of ions'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofbranches"):
return dict(Invalid=True, Comment=msg_err + "The third line should include 'Number of branches'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line, pattern="numberofwavevectors"):
return dict(Invalid=True, Comment=msg_err + "The fourth line should include 'Number of wavevectors'.")
line = self._get_one_line(castep_file)
if not self._compare_one_line(one_line=line,
pattern="frequenciesin"):
return dict(Invalid=True, Comment=msg_err + "The fifth line should be 'Frequencies in'.")
return output
def _get_one_line(self, file_obj=None):
"""
:param file_obj: file object from which reading is done
:return: string containing one non empty line
"""
line = file_obj.readline().replace(" ", "").lower()
while line and line == "":
line = file_obj.readline().replace(" ", "").lower()
return line
def _compare_one_line(self, one_line, pattern):
"""
compares line in the the form of string with a pattern.
:param one_line: line in the for mof string to be compared
:param pattern: string which should be present in the line after removing white spaces and setting all
letters to lower case
:return: True is pattern present in the line, otherwise False
"""
return one_line and pattern in one_line.replace(" ", "")
def _get_properties(self):
"""
Loads all properties to object's attributes.
"""
self._dft_program = self.getProperty("DFTprogram").value
self._phonon_file = self.getProperty("PhononFile").value
self._experimental_file = self.getProperty("ExperimentalFile").value
self._temperature = self.getProperty("Temperature").value
self._scale = self.getProperty("Scale").value
self._sample_form = self.getProperty("SampleForm").value
instrument_name = self.getProperty("Instrument").value
if instrument_name in AbinsConstants.ALL_INSTRUMENTS:
self._instrument_name = instrument_name
instrument_producer = InstrumentProducer()
self._instrument = instrument_producer.produce_instrument(name=self._instrument_name)
else:
raise ValueError("Unknown instrument %s" % instrument_name)
self._nspec = self._instrument.get_nspec()
self._atoms = self.getProperty("Atoms").value
self._sum_contributions = self.getProperty("SumContributions").value
# conversion from str to int
self._num_quantum_order_events = int(self.getProperty("QuantumOrderEventsNumber").value)
self._scale_by_cross_section = self.getPropertyValue('ScaleByCrossSection')
self._out_ws_name = self.getPropertyValue('OutputWorkspace')
self._calc_partial = (len(self._atoms) > 0)
try:
Krzysztof Dymkowski
committed
AlgorithmFactory.subscribe(Abins)
except ImportError:
logger.debug('Failed to subscribe algorithm SimulatedDensityOfStates; The python package may be missing.')