Newer
Older
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
// NScD Oak Ridge National Laboratory, European Spallation Source
// & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
#include "MantidKernel/Exception.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/V3D.h"
Gigg, Martyn Anthony
committed
#include <boost/lexical_cast.hpp>
Gigg, Martyn Anthony
committed
using Mantid::Kernel::DblMatrix;
using Mantid::Kernel::IntMatrix;
using Mantid::Kernel::Matrix;
using Mantid::Kernel::V3D;
class MatrixTest : public CxxTest::TestSuite {
void makeMatrix(Matrix<double> &A) const {
A.setMem(3, 3);
A[0][0] = 1.0;
A[1][0] = 3.0;
A[0][1] = 4.0;
A[0][2] = 6.0;
A[2][0] = 5.0;
A[1][1] = 3.0;
A[2][1] = 1.0;
A[1][2] = 6.0;
A[2][2] = -7.0;
Janik Zikovsky
committed
/**
TS_ASSERT_DELTA(A.Invert(), 105.0, 1e-5);
Matrix<double> B(1, 1);
B[0][0] = 2.;
TS_ASSERT_DELTA(B.Invert(), 2, 1e-5);
TS_ASSERT_DELTA(B[0][0], 0.5, 1e-5);
// 2x2
std::vector<double> data{1, 2, 3, 4}, expected{-2, 1, 1.5, -0.5};
DblMatrix C(data);
TS_ASSERT_DELTA(C.Invert(), -2, 1e-5);
DblMatrix expectedInverse(expected);
TS_ASSERT(C == expectedInverse);
void testIdent() {
Matrix<double> A(3, 3);
A[0][0] = 1.0;
A[1][0] = 0.0;
A[0][1] = 0.0;
A[0][2] = 0.0;
A[2][0] = 0.0;
A[1][1] = 1.0;
A[2][1] = 0.0;
A[1][2] = 0.0;
A[2][2] = 1.0;
Matrix<double> Ident(3, 3);
TS_ASSERT_DIFFERS(Ident, A);
Gigg, Martyn Anthony
committed
/** Test of equals with a user-specified tolerance */
void test_equals() {
Matrix<double> A(3, 3, true);
Matrix<double> B(3, 3, true);
Gigg, Martyn Anthony
committed
B[1][1] = 1.1;
TS_ASSERT(!A.equals(B, 0.05));
TS_ASSERT(A.equals(B, 0.15));
Gigg, Martyn Anthony
committed
}
void test_not_equal() {
Matrix<double> A(3, 3, true);
Matrix<double> B(3, 3, true);
TS_ASSERT(A != B);
TS_ASSERT(!(A == B));
Janik Zikovsky
committed
/**
void testSwapRows() {
Matrix<double> A(3, 3);
A.swapRows(1, 2);
A.swapCols(1, 2);
TS_ASSERT_EQUALS(A[0][0], B[0][0]);
TS_ASSERT_EQUALS(A[2][2], B[1][1]);
Matrix<double> A(3, 3); // NOTE: A must be symmetric
A[0][0] = 1.0;
A[1][0] = A[0][1] = 4.0;
A[0][2] = A[2][0] = 5.0;
A[1][1] = 3.0;
A[2][1] = A[1][2] = 6.0;
A[2][2] = -7.0;
TS_ASSERT(A.Diagonalise(Eval, Diag));
Matrix<double> MA = A * Eval;
Matrix<double> MV = Eval * Diag;
TS_ASSERT(Diag[0][0] < Diag[1][1]);
TS_ASSERT(Diag[1][1] < Diag[2][2]);
TS_ASSERT(MA == MV);
X[0] = Eval[0][1];
X[1] = Eval[1][1];
X[2] = Eval[2][1];
std::vector<double> out = A * X;
transform(X.begin(), X.end(), X.begin(),
std::bind2nd(std::multiplies<double>(), Diag[1][1]));
TS_ASSERT_DELTA(X[0], out[0], 0.0001);
TS_ASSERT_DELTA(X[1], out[1], 0.0001);
TS_ASSERT_DELTA(X[2], out[2], 0.0001);
Janik Zikovsky
committed
/**
Matrix<double> A(2, 2); // symmetric only
A[0][0] = 1.0;
A[1][0] = 3.0;
A[0][1] = 3.0;
A[1][1] = 4.0;
TS_ASSERT(A.Diagonalise(Eval, Diag)); // returns 1 or 2
Eval *= Diag;
Eval *= EvalT;
TS_ASSERT(Eval == A);
/// Can't diagonalise a non-square or non-symmetric matrix
void testDiagonaliseThrows() {
DblMatrix notSquare(2, 3);
const std::vector<double> data{1, 2, 3, 4};
DblMatrix notSymm(data);
DblMatrix eigenVectors, eigenValues;
TS_ASSERT_EQUALS(0, notSquare.Diagonalise(eigenVectors, eigenValues));
TS_ASSERT_EQUALS(0, notSymm.Diagonalise(eigenVectors, eigenValues));
}
void testFromVectorThrows() {
std::vector<double> data(5, 0);
TSM_ASSERT_THROWS("building matrix by this construcor and data with wrong "
"number of elements should throw",
(Matrix<double>(data)), const std::invalid_argument &);
void testFromVectorAndDimensions() {
std::vector<int> data{1, 2, 3, 4, 5, 6};
TSM_ASSERT_THROWS("building matrix with worng dimension should fail",
(Matrix<int>(data, 4, 5)), const std::invalid_argument &);
Matrix<int> myMat;
TSM_ASSERT_THROWS_NOTHING("building matrix by this construcor and data "
"with correct number of elements should not "
"throw",
TS_ASSERT_EQUALS(1, myMat[0][0]);
TS_ASSERT_EQUALS(2, myMat[0][1]);
TS_ASSERT_EQUALS(3, myMat[0][2]);
TS_ASSERT_EQUALS(4, myMat[1][0]);
TS_ASSERT_EQUALS(5, myMat[1][1]);
TS_ASSERT_EQUALS(6, myMat[1][2]);
}
void test_Transpose_On_Square_Matrix_Matches_TPrime() {
Matrix<double> A(2, 2);
A[0][0] = 1.0;
A[0][1] = 2.0;
A[1][0] = 3.0;
A[1][1] = 4.0;
auto B = A.Tprime(); // new matrix
TS_ASSERT_EQUALS(1.0, B[0][0]);
TS_ASSERT_EQUALS(3.0, B[0][1]);
TS_ASSERT_EQUALS(2.0, B[1][0]);
TS_ASSERT_EQUALS(4.0, B[1][1]);
A.Transpose(); // in place
TS_ASSERT_EQUALS(1.0, A[0][0]);
TS_ASSERT_EQUALS(3.0, A[0][1]);
TS_ASSERT_EQUALS(2.0, A[1][0]);
TS_ASSERT_EQUALS(4.0, A[1][1]);
}
void test_Transpose_On_Irregular_Matrix_Matches_TPrime() {
Matrix<double> A(2, 3);
A[0][0] = 1.0;
A[0][1] = 2.0;
A[0][2] = 3.0;
A[1][0] = 4.0;
A[1][1] = 5.0;
A[1][2] = 6.0;
auto B = A.Tprime(); // new matrix
TS_ASSERT_EQUALS(2, B.numCols());
TS_ASSERT_EQUALS(3, B.numRows());
TS_ASSERT_EQUALS(1.0, B[0][0]);
TS_ASSERT_EQUALS(4.0, B[0][1]);
TS_ASSERT_EQUALS(2.0, B[1][0]);
TS_ASSERT_EQUALS(5.0, B[1][1]);
TS_ASSERT_EQUALS(3.0, B[2][0]);
TS_ASSERT_EQUALS(6.0, B[2][1]);
}
void testFromVectorBuildCorrect() {
std::vector<int> data(9, 0);
for (int i = 0; i < 9; i++) {
data[i] = i;
}
Matrix<int> myMat;
TSM_ASSERT_THROWS_NOTHING("building matrix by this constructor and data "
"with correct number of elements should not "
"throw",
myMat = Matrix<int>(data));
// and the range of the elements in the matrix is correct;
V3D rez1 = myMat * V3D(1, 0, 0);
V3D rez2 = myMat * V3D(0, 1, 0);
V3D rez3 = myMat * V3D(0, 0, 1);
TSM_ASSERT_EQUALS("The data in a matrix have to be located row-wise, so "
"multiplication by (1,0,0)^T selects 1-st column ",
true, V3D(0, 3, 6) == rez1);
TSM_ASSERT_EQUALS("The data in a matrix have to be located row-wise, so "
"multiplication by (0,1,0)^T selects 2-nd column ",
true, V3D(1, 4, 7) == rez2);
TSM_ASSERT_EQUALS("The data in a matrix have to be located row-wise, so "
"multiplication by (0,0,1)^T selects 3-rd column ",
true, V3D(2, 5, 8) == rez3);
void testIsRotation() {
Matrix<double> d(3, 3, true);
Savici, Andrei T.
committed
TS_ASSERT(d.isRotation());
Savici, Andrei T.
committed
TS_ASSERT(!d.isRotation());
}
Savici, Andrei T.
committed
/*
|1 0 0|
|1 2 0|
|0 0 -3|
transforms to
|-s-s 0|
|-s s 0|
|0 0 -1|
with s=sqrt(0.5) and scaling (-sqrt(2),sqrt(2),3)
*/
Matrix<double> d(3, 3, true);
d[1][0] = 1.0;
d[1][1] = 2.;
d[2][2] = -3.;
std::vector<double> v = d.toRotation();
TS_ASSERT_DELTA(d[0][0], -sqrt(0.5), 1e-7);
TS_ASSERT_DELTA(d[0][1], -sqrt(0.5), 1e-7);
TS_ASSERT_DELTA(d[1][0], -sqrt(0.5), 1e-7);
TS_ASSERT_DELTA(d[1][1], sqrt(0.5), 1e-7);
TS_ASSERT_DELTA(d[2][2], -1., 1e-7);
TS_ASSERT_DELTA(v[0], -M_SQRT2, 1e-7);
TS_ASSERT_DELTA(v[1], M_SQRT2, 1e-7);
TS_ASSERT_DELTA(v[2], 3., 1e-7);
Savici, Andrei T.
committed
}
void test_Input_Stream_Throws_On_Bad_Input() {
Gigg, Martyn Anthony
committed
DblMatrix rot;
std::istringstream is;
is.str("Matr(3,3)1,2,3,4,5,6,7,8,9");
TS_ASSERT_THROWS(is >> rot, const std::invalid_argument &);
Gigg, Martyn Anthony
committed
is.str("Matrix3,3)1,2,3,4,5,6,7,8,9");
TS_ASSERT_THROWS(is >> rot, const std::invalid_argument &);
Gigg, Martyn Anthony
committed
is.str("Matrix(3,31,2,3,4,5,6,7,8,9");
TS_ASSERT_THROWS(is >> rot, const std::invalid_argument &);
Gigg, Martyn Anthony
committed
}
void test_Input_Stream_On_Square_Matrix() {
Gigg, Martyn Anthony
committed
DblMatrix rot;
std::istringstream is;
is.str("Matrix(3,3)1,2,3,4,5,6,7,8,9");
TS_ASSERT_THROWS_NOTHING(is >> rot);
TS_ASSERT_EQUALS(rot.numRows(), 3);
TS_ASSERT_EQUALS(rot.numCols(), 3);
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
TS_ASSERT_EQUALS(rot[i][j],
static_cast<double>(i * rot.numRows() + j + 1));
Gigg, Martyn Anthony
committed
}
}
}
void test_Input_Stream_On_Non_Square_Matrix() {
Gigg, Martyn Anthony
committed
DblMatrix rot;
std::istringstream is;
is.str("Matrix(2,4)0,1,2,3,10,11,12,13");
TS_ASSERT_THROWS_NOTHING(is >> rot);
TS_ASSERT_EQUALS(rot.numRows(), 2);
TS_ASSERT_EQUALS(rot.numCols(), 4);
for (size_t i = 0; i < 2; ++i) {
for (size_t j = 0; j < 4; ++j) {
if (i < 1) {
TS_ASSERT_EQUALS(rot[i][j], static_cast<double>(i + j));
} else {
TS_ASSERT_EQUALS(rot[i][j], static_cast<double>(9 + i + j));
Gigg, Martyn Anthony
committed
}
}
}
}
void test_fillMatrix_With_Good_Input_Gives_Expected_Matrix() {
DblMatrix rot;
std::istringstream is;
is.str("Matrix(3|3)1|2|3|4|5|6|7|8|9");
TS_ASSERT_THROWS_NOTHING(Mantid::Kernel::fillFromStream(is, rot, '|'));
checkMatrixHasExpectedValuesForSquareMatrixTest(rot);
}
void test_fillMatrix_Accepts_Any_Delimiter_Between_Number_Rows_And_Columns() {
DblMatrix rot;
std::istringstream is;
is.str("Matrix(3@3)1|2|3|4|5|6|7|8|9");
TS_ASSERT_THROWS_NOTHING(Mantid::Kernel::fillFromStream(is, rot, '|'));
checkMatrixHasExpectedValuesForSquareMatrixTest(rot);
}
Gigg, Martyn Anthony
committed
void test_fillMatrix_With_Mixed_Delimiters_In_Input_Values_Throws() {
DblMatrix rot;
std::istringstream is;
is.str("Matrix(3|3)1|2,3|4|5|6|7|8|9");
TS_ASSERT_THROWS(Mantid::Kernel::fillFromStream(is, rot, '|'),
const std::invalid_argument &);
}
void test_Construction_Non_Square_Matrix_From_Output_Stream() {
DblMatrix ref(2, 3);
ref[0][0] = 5;
ref[0][1] = 10;
ref[0][2] = 15;
ref[1][0] = 105;
ref[1][1] = 110;
ref[1][2] = 115;
std::ostringstream os;
os << ref;
TS_ASSERT_EQUALS(os.str(), "Matrix(2,3)5,10,15,105,110,115");
}
void test_Construction_Square_Matrix_From_Output_Stream() {
DblMatrix square(2, 2);
square[0][0] = 2;
square[0][1] = 4;
square[1][0] = 6;
square[1][1] = 8;
std::ostringstream os;
os << square;
TS_ASSERT_EQUALS(os.str(), "Matrix(2,2)2,4,6,8");
}
void test_Dump_Matrix_To_Output_Stream_With_Custom_Delimiter() {
DblMatrix square(2, 2);
square[0][0] = 2;
square[0][1] = 4;
square[1][0] = 6;
square[1][1] = 8;
std::ostringstream os;
Mantid::Kernel::dumpToStream(os, square, '|');
TS_ASSERT_EQUALS(os.str(), "Matrix(2|2)2|4|6|8");
}
void test_lexical_cast() {
try {
DblMatrix R = boost::lexical_cast<DblMatrix>("Matrix(2,2)2,4,6,8");
TS_ASSERT_EQUALS(R.numRows(), 2);
TS_ASSERT_EQUALS(R.numCols(), 2);
TS_ASSERT_EQUALS(R[0][0], 2.0);
TS_ASSERT_EQUALS(R[0][1], 4.0);
TS_ASSERT_EQUALS(R[1][0], 6.0);
TS_ASSERT_EQUALS(R[1][1], 8.0);
} catch (boost::bad_lexical_cast &e) {
TS_FAIL(e.what());
}
}
/// Tests both V3D and std::vector
void testMultiplicationWithVector() {
DblMatrix M = boost::lexical_cast<DblMatrix>(
"Matrix(3,3)-0.23,0.55,5.22,2.96,4.2,0.1,-1.453,3.112,-2.34");
std::vector<double> stdNewVec = M * stdvec;
std::vector<double> otherStdNewVec;
M.multiplyPoint(stdvec, otherStdNewVec);
// Results from octave.
TS_ASSERT_DELTA(nv.X(), -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(nv.Y(), 25.663000000000000, 1e-15);
TS_ASSERT_DELTA(nv.Z(), 11.715100000000003, 1e-15);
TS_ASSERT_DELTA(stdNewVec[0], -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(stdNewVec[1], 25.663000000000000, 1e-15);
TS_ASSERT_DELTA(stdNewVec[2], 11.715100000000003, 1e-15);
TS_ASSERT_DELTA(otherStdNewVec[0], -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(otherStdNewVec[1], 25.663000000000000, 1e-15);
TS_ASSERT_DELTA(otherStdNewVec[2], 11.715100000000003, 1e-15);
DblMatrix M4(4, 4, true);
TS_ASSERT_THROWS(M4.operator*(v),
const Mantid::Kernel::Exception::MisMatch<size_t> &);
TS_ASSERT_THROWS(M4.operator*(stdvec),
const Mantid::Kernel::Exception::MisMatch<size_t> &);
TS_ASSERT_THROWS(M4.multiplyPoint(stdvec, otherStdNewVec),
const Mantid::Kernel::Exception::MisMatch<size_t> &);
DblMatrix M23 = boost::lexical_cast<DblMatrix>(
"Matrix(2,3)-0.23,0.55,5.22,2.96,4.2,0.1");
TS_ASSERT_THROWS_NOTHING(M23.operator*(v));
TS_ASSERT_THROWS_NOTHING(M23.operator*(stdvec));
TS_ASSERT_THROWS_NOTHING(M23.multiplyPoint(stdvec, otherStdNewVec));
M23.multiplyPoint(stdvec, otherStdNewVec);
TS_ASSERT_DELTA(nv.X(), -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(nv.Y(), 25.663000000000000, 1e-15);
TS_ASSERT_EQUALS(nv.Z(), 0);
TS_ASSERT_DELTA(stdNewVec[0], -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(stdNewVec[1], 25.663000000000000, 1e-15);
TS_ASSERT_EQUALS(stdNewVec.size(), 2);
TS_ASSERT_DELTA(otherStdNewVec[0], -0.403000000000000, 1e-15);
TS_ASSERT_DELTA(otherStdNewVec[1], 25.663000000000000, 1e-15);
TS_ASSERT_EQUALS(otherStdNewVec.size(), 2);
DblMatrix M43 = boost::lexical_cast<DblMatrix>(
"Matrix(4,3)-0.23,0.55,5.22,2.96,4.2,0.1,-0.23,0.55,5.22,2.96,4.2,0.1");
TS_ASSERT_THROWS(
M43.operator*(v),
const Mantid::Kernel::Exception::MisMatch<size_t> &); // V3D only
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
}
/// Test that the constructor taking preset sizes returns a zero matrix
void testConstructorPresetSizes() {
constexpr int nRows(2), nCols(3);
IntMatrix mat(nRows, nCols);
for (int iRow = 0; iRow < nRows; iRow++) {
for (int iCol = 0; iCol < nCols; iCol++) {
TS_ASSERT_EQUALS(mat.item(iRow, iCol), 0);
}
}
}
/// Test that the 'make identity' option in the preset size constructor works
void testConstructorPresetSizes_makeIdentity() {
constexpr int nRowsCols(2);
constexpr bool makeIdentity(true);
IntMatrix mat(nRowsCols, nRowsCols, makeIdentity);
for (int iRow = 0; iRow < nRowsCols; iRow++) {
for (int iCol = 0; iCol < nRowsCols; iCol++) {
const int expected = iRow == iCol ? 1 : 0;
TS_ASSERT_EQUALS(mat.item(iRow, iCol), expected);
}
}
}
/// Constructor multiplying two vectors
void testConstructorTwoVectors() {
const std::vector<int> vecA{1, 2, 3}, vecB{4, 5, 6};
IntMatrix mat(vecA, vecB);
const int nRowsCols = static_cast<int>(vecA.size());
for (int iRow = 0; iRow < nRowsCols; iRow++) {
for (int iCol = 0; iCol < nRowsCols; iCol++) {
const int expected = vecA[iRow] * vecB[iCol];
TS_ASSERT_EQUALS(mat.item(iRow, iCol), expected);
}
}
}
/// Constructor with missing row or column
void testConstructorMissingRowColumn() {
constexpr int nRows(4), nCols(4), missingRow(3), missingCol(1);
const std::vector<double> data{1, 86, 2, 3, 4, 55, 5, 6,
7, -25, 8, 9, 42, -33, 15, 0};
DblMatrix original(data);
TS_ASSERT_THROWS(DblMatrix badMat(original, nRows + 1, missingCol),
const Mantid::Kernel::Exception::IndexError &);
TS_ASSERT_THROWS(DblMatrix badMat(original, missingRow, nCols + 1),
const Mantid::Kernel::Exception::IndexError &);
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
DblMatrix mat(original, missingRow, missingCol);
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
void testCopyConstructor() {
const std::vector<double> data{1, 2, 3, 4, 5, 6, 7, 8, 9};
DblMatrix original(data);
DblMatrix copy(original);
checkMatrixHasExpectedValuesForSquareMatrixTest(copy);
}
void testAssignment() {
const std::vector<double> data{1, 2, 3, 4, 5, 6, 7, 8, 9};
DblMatrix original(data);
DblMatrix copy = original;
checkMatrixHasExpectedValuesForSquareMatrixTest(copy);
}
/// Test + and +=
void testAddition() {
const std::vector<double> data{0, 2, 3, 4, 4, 6, 7, 8, 8};
DblMatrix mat(data);
DblMatrix ident(3, 3);
ident.identityMatrix();
DblMatrix plus = mat + ident;
checkMatrixHasExpectedValuesForSquareMatrixTest(plus);
mat += ident;
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
/// Test - and -=
void testSubtraction() {
const std::vector<double> data{2, 2, 3, 4, 6, 6, 7, 8, 10};
DblMatrix mat(data);
DblMatrix ident(3, 3);
ident.identityMatrix();
DblMatrix minus = mat - ident;
checkMatrixHasExpectedValuesForSquareMatrixTest(minus);
mat -= ident;
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
/// Test * and *=
void testMultiplicationByMatrix() {
const std::vector<int> dataA{1, 2, 3, 4}, dataB{5, 6, 7, 8};
IntMatrix matA(dataA), matB(dataB);
IntMatrix multiplied = matA * matB;
TS_ASSERT_EQUALS(multiplied[0][0], 19);
TS_ASSERT_EQUALS(multiplied[0][1], 22);
TS_ASSERT_EQUALS(multiplied[1][0], 43);
TS_ASSERT_EQUALS(multiplied[1][1], 50);
matA *= matB;
TS_ASSERT_EQUALS(matA[0][0], 19);
TS_ASSERT_EQUALS(matA[0][1], 22);
TS_ASSERT_EQUALS(matA[1][0], 43);
TS_ASSERT_EQUALS(matA[1][1], 50);
}
/// Test * and *=
void testMultiplicationByConstant() {
const std::vector<int> data{1, 2, 3, 4};
IntMatrix mat(data);
IntMatrix multiplied = mat * 2;
TS_ASSERT_EQUALS(multiplied[0][0], 2);
TS_ASSERT_EQUALS(multiplied[0][1], 4);
TS_ASSERT_EQUALS(multiplied[1][0], 6);
TS_ASSERT_EQUALS(multiplied[1][1], 8);
mat *= 2;
TS_ASSERT_EQUALS(mat[0][0], 2);
TS_ASSERT_EQUALS(mat[0][1], 4);
TS_ASSERT_EQUALS(mat[1][0], 6);
TS_ASSERT_EQUALS(mat[1][1], 8);
}
void testDivisionByConstant() {
const std::vector<double> data{2, 4, 6, 8, 10, 12, 14, 16, 18};
DblMatrix mat(data);
mat /= 2.0;
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
void testComparisonOperators() {
constexpr int nRowsCols(3);
DblMatrix mat(nRowsCols, nRowsCols);
makeMatrix(mat);
// self-comparison
TS_ASSERT_EQUALS(mat < mat, false);
TS_ASSERT_EQUALS(mat >= mat, true);
// wrong size
DblMatrix wrong(nRowsCols - 1, nRowsCols);
TS_ASSERT_EQUALS(mat < wrong, false);
TS_ASSERT_EQUALS(mat >= wrong, false);
// less than
DblMatrix less(mat);
for (int iRow = 0; iRow < nRowsCols; iRow++) {
for (int iCol = 0; iCol < nRowsCols; iCol++) {
less[iRow][iCol] = mat[iRow][iCol] - 1;
}
}
TS_ASSERT_EQUALS(mat < less, false);
TS_ASSERT_EQUALS(less < mat, true);
TS_ASSERT_EQUALS(mat >= less, true);
TS_ASSERT_EQUALS(less >= mat, false);
// greater than
DblMatrix greater(mat);
for (int iRow = 0; iRow < nRowsCols; iRow++) {
for (int iCol = 0; iCol < nRowsCols; iCol++) {
greater[iRow][iCol] = mat[iRow][iCol] + 1;
}
}
TS_ASSERT_EQUALS(mat < greater, true);
TS_ASSERT_EQUALS(greater < mat, false);
TS_ASSERT_EQUALS(mat >= greater, false);
TS_ASSERT_EQUALS(greater >= mat, true);
}
void testWrite() {
std::ostringstream os;
DblMatrix mat(3, 3);
makeMatrix(mat);
mat.write(os, 10);
std::string output = os.str();
std::string expected = "1.000000e+00 4.000000e+00 6.000000e+00 "
"\n3.000000e+00 3.000000e+00 6.000000e+00 "
"\n5.000000e+00 1.000000e+00 -7.000000e+00 \n";
TS_ASSERT_EQUALS(output, expected);
}
void testToString() {
DblMatrix mat(3, 3);
makeMatrix(mat);
std::string output = mat.str();
std::string expected = "1 4 6 3 3 6 5 1 -7 ";
TS_ASSERT_EQUALS(output, expected);
}
void testToVector() {
constexpr int nRowsCols(3);
DblMatrix mat(nRowsCols, nRowsCols);
makeMatrix(mat);
std::vector<double> converted = mat.getVector();
std::vector<double> implicit(mat);
int iVectorIndex(0);
for (int iRow = 0; iRow < nRowsCols; iRow++) {
for (int iCol = 0; iCol < nRowsCols; iCol++) {
TS_ASSERT_EQUALS(converted[iVectorIndex], mat[iRow][iCol]);
TS_ASSERT_EQUALS(implicit[iVectorIndex], mat[iRow][iCol]);
iVectorIndex++;
}
}
}
void testSetColumn() {
const std::vector<double> data{1, -2, 3, 4, -5, 6, 7, -8, 9};
const std::vector<double> newCol{2, 5, 8};
DblMatrix mat(data);
size_t badCol(3), goodCol(1);
TS_ASSERT_THROWS(mat.setColumn(badCol, newCol),
const std::invalid_argument &);
mat.setColumn(goodCol, newCol);
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
void testSetRow() {
const std::vector<double> data{1, 2, 3, 4, 5, 6, -7, -8, -9};
const std::vector<double> newRow{7, 8, 9};
DblMatrix mat(data);
size_t badRow(3), goodRow(2);
TS_ASSERT_THROWS(mat.setRow(badRow, newRow), const std::invalid_argument &);
mat.setRow(goodRow, newRow);
checkMatrixHasExpectedValuesForSquareMatrixTest(mat);
}
void testZeroMatrix() {
constexpr int nRowCol(3);
DblMatrix mat(nRowCol, nRowCol);
makeMatrix(mat);
TS_ASSERT_DIFFERS(mat[0][0], 0);
mat.zeroMatrix();
for (int iRow = 0; iRow < nRowCol; iRow++) {
for (int iCol = 0; iCol < nRowCol; iCol++) {
TS_ASSERT_EQUALS(mat[iRow][iCol], 0);
}
}
}
void testNormVert() {
constexpr int nRowCol(3);
DblMatrix mat(nRowCol, nRowCol);
makeMatrix(mat);
mat.normVert();
const std::string expected("0.137361 0.549442 0.824163 0.408248 0.408248 "
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
TS_ASSERT_EQUALS(mat.str(), expected);
TS_ASSERT_DELTA(std::sqrt(mat[0][0] * mat[0][0] + mat[0][1] * mat[0][1] +
mat[0][2] * mat[0][2]),
1.0, 0.001);
TS_ASSERT_DELTA(std::sqrt(mat[1][0] * mat[1][0] + mat[1][1] * mat[1][1] +
mat[1][2] * mat[1][2]),
1.0, 0.001);
TS_ASSERT_DELTA(std::sqrt(mat[2][0] * mat[2][0] + mat[2][1] * mat[2][1] +
mat[2][2] * mat[2][2]),
1.0, 0.001);
}
void testTrace() {
constexpr int nRowCol(3);
DblMatrix mat(nRowCol, nRowCol);
makeMatrix(mat);
double trace = mat.Trace();
double expected = 0;
for (int i = 0; i < nRowCol; i++) {
expected += mat[i][i];
}
TS_ASSERT_EQUALS(trace, expected);
}
void testDiagonal() {
constexpr int nRowCol(3);
DblMatrix mat(nRowCol, nRowCol);
makeMatrix(mat);
std::vector<double> diag = mat.Diagonal();
TS_ASSERT_EQUALS(diag.size(), nRowCol);
for (int i = 0; i < nRowCol; i++) {
TS_ASSERT_EQUALS(diag[i], mat[i][i]);
}
}
void testPreMultiplyDiagonal() {
const std::vector<double> dataA{1, 2, 3, 4}, dataDiag{5, 6},
dataBad{5, 6, 7};
DblMatrix mat(dataA);
TS_ASSERT_THROWS(mat.preMultiplyByDiagonal(dataBad),
const std::runtime_error &);
DblMatrix result = mat.preMultiplyByDiagonal(dataDiag);
TS_ASSERT_EQUALS(result[0][0], 5);
TS_ASSERT_EQUALS(result[0][1], 10);
TS_ASSERT_EQUALS(result[1][0], 18);
TS_ASSERT_EQUALS(result[1][1], 24);
}
void testPostMultiplyDiagonal() {
const std::vector<double> dataA{1, 2, 3, 4}, dataDiag{5, 6},
dataBad{5, 6, 7};
DblMatrix mat(dataA);
TS_ASSERT_THROWS(mat.postMultiplyByDiagonal(dataBad),
const std::runtime_error &);
DblMatrix result = mat.postMultiplyByDiagonal(dataDiag);
TS_ASSERT_EQUALS(result[0][0], 5);
TS_ASSERT_EQUALS(result[0][1], 12);
TS_ASSERT_EQUALS(result[1][0], 15);
TS_ASSERT_EQUALS(result[1][1], 24);
}
void testSetMem() {
DblMatrix mat(3, 3);
mat.setMem(5, 5);
double x = 0;
TS_ASSERT_THROWS_NOTHING(x = mat[4][4]);
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
}
void testSize() {
constexpr size_t nRows(5), nCols(4);
DblMatrix mat(nRows, nCols);
auto size = mat.size();
TS_ASSERT_EQUALS(nRows, size.first);
TS_ASSERT_EQUALS(nCols, size.second);
TS_ASSERT_EQUALS(std::min(nRows, nCols), mat.Ssize());
}
void testAverageSymmetric() {
const std::vector<double> data{1, 2, 3, 4}, expected{1, 2.5, 2.5, 4};
DblMatrix mat(data), expectedResult(expected);
mat.averSymmetric();
TS_ASSERT(mat == expectedResult);
}
void testDeterminant() {
DblMatrix mat(3, 3);
makeMatrix(mat);
double det = mat.determinant();
TS_ASSERT_EQUALS(det, 105);
}
/// Test Gauss-Jordan factorisation
void testFactor() {
DblMatrix mat(3, 3);
makeMatrix(mat);
TS_ASSERT_EQUALS(mat.factor(), 105);
const std::vector<double> expectedData{6, 1, 4, 0, 2, -1, 0, 0, 8.75};
DblMatrix expected(expectedData);
TS_ASSERT(mat == expected);
}
// Test inverting a matrix using Gauss-Jordan method
void testGaussJordan() {
constexpr size_t nRowsCols(3);
DblMatrix mat(nRowsCols, nRowsCols);
makeMatrix(mat);
DblMatrix B(nRowsCols, nRowsCols);
makeMatrix(B);
DblMatrix expected(mat);
expected.Invert();
mat.GaussJordan(B);
// test the two inverses agree
TS_ASSERT(mat == expected);
// B should be an identity matrix
for (size_t iRow = 0; iRow < nRowsCols; iRow++) {
for (size_t iCol = 0; iCol < nRowsCols; iCol++) {
TS_ASSERT_EQUALS(B[iRow][iCol], iRow == iCol ? 1 : 0);
}
}
}
// sum of squares of all elements
void testCompSum() {
DblMatrix mat(3, 3);
makeMatrix(mat);
double result = mat.compSum();
TS_ASSERT_EQUALS(result, 182);
}
// test orthogonality - rotations and non-rotational matrices
void testIsOrthogonal() {
const std::vector<double> rotationData{0, -1, 1, 0},
nonRotationData{0, 1, 1, 0};
DblMatrix rotation(rotationData), reflection(nonRotationData);
TS_ASSERT(rotation.isRotation());
TS_ASSERT(rotation.isOrthogonal());
TS_ASSERT(!reflection.isRotation());
TS_ASSERT(reflection.isOrthogonal());
}
private:
void checkMatrixHasExpectedValuesForSquareMatrixTest(const DblMatrix &mat) {
TS_ASSERT_EQUALS(mat.numRows(), 3);
TS_ASSERT_EQUALS(mat.numCols(), 3);
for (size_t i = 0; i < 3; ++i) {
for (size_t j = 0; j < 3; ++j) {
TS_ASSERT_EQUALS(mat[i][j],
static_cast<double>(i * mat.numRows() + j + 1));
}
}
}