Newer
Older
#ifndef MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_
#define MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_
#include <cxxtest/TestSuite.h>
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/FrameworkManager.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidAlgorithms/ReflectometryReductionOneAuto2.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include "MantidGeometry/Instrument.h"
#include "MantidTestHelpers/WorkspaceCreationHelper.h"
using Mantid::Algorithms::ReflectometryReductionOneAuto2;
using namespace Mantid::API;
class ReflectometryReductionOneAuto2Test : public CxxTest::TestSuite {
private:
MatrixWorkspace_sptr m_notTOF;
MatrixWorkspace_sptr m_TOF;
MatrixWorkspace_sptr loadRun(const std::string &run) {
IAlgorithm_sptr lAlg = AlgorithmManager::Instance().create("Load");
lAlg->setChild(true);
lAlg->initialize();
lAlg->setProperty("Filename", run);
lAlg->setPropertyValue("OutputWorkspace", "demo_ws");
lAlg->execute();
Workspace_sptr temp = lAlg->getProperty("OutputWorkspace");
MatrixWorkspace_sptr matrixWS =
boost::dynamic_pointer_cast<MatrixWorkspace>(temp);
if (matrixWS)
return matrixWS;
WorkspaceGroup_sptr group =
boost::dynamic_pointer_cast<WorkspaceGroup>(temp);
if (group) {
Workspace_sptr temp = group->getItem(0);
MatrixWorkspace_sptr matrixWS =
boost::dynamic_pointer_cast<MatrixWorkspace>(temp);
if (matrixWS)
return matrixWS;
}
return MatrixWorkspace_sptr();
};
public:
// This pair of boilerplate methods prevent the suite being created statically
// This means the constructor isn't called when running other tests
static ReflectometryReductionOneAuto2Test *createSuite() {
return new ReflectometryReductionOneAuto2Test();
}
static void destroySuite(ReflectometryReductionOneAuto2Test *suite) {
delete suite;
}
ReflectometryReductionOneAuto2Test() {
FrameworkManager::Instance();
m_notTOF =
WorkspaceCreationHelper::create2DWorkspaceWithRectangularInstrument(
1, 10, 10);
m_TOF = WorkspaceCreationHelper::
create2DWorkspaceWithReflectometryInstrumentMultiDetector();
}
~ReflectometryReductionOneAuto2Test() override {}
void test_init() {
ReflectometryReductionOneAuto2 alg;
TS_ASSERT_THROWS_NOTHING(alg.initialize());
TS_ASSERT(alg.isInitialized());
}
void test_bad_input_workspace_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_notTOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_wavelength_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 15.0);
alg.setProperty("WavelengthMax", 1.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_monitor_background_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorBackgroundWavelengthMin", 3.0);
alg.setProperty("MonitorBackgroundWavelengthMax", 0.5);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_monitor_integration_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorIntegrationWavelengthMin", 15.0);
alg.setProperty("MonitorIntegrationWavelengthMax", 1.5);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_first_transmission_run_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("FirstTransmissionRun", m_notTOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorIntegrationWavelengthMin", 1.0);
alg.setProperty("MonitorIntegrationWavelengthMax", 15.0);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_second_transmission_run_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("FirstTransmissionRun", m_TOF);
TS_ASSERT_THROWS_ANYTHING(
alg.setProperty("SecondTransmissionRun", m_notTOF));
}
void test_bad_first_transmission_group_size() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr inputWSGroup = boost::make_shared<WorkspaceGroup>();
inputWSGroup->addWorkspace(first);
inputWSGroup->addWorkspace(second);
WorkspaceGroup_sptr transWSGroup = boost::make_shared<WorkspaceGroup>();
transWSGroup->addWorkspace(first);
transWSGroup->addWorkspace(second);
transWSGroup->addWorkspace(third);
transWSGroup->addWorkspace(fourth);
AnalysisDataService::Instance().addOrReplace("input", inputWSGroup);
AnalysisDataService::Instance().addOrReplace("trans", transWSGroup);
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setPropertyValue("InputWorkspace", "input");
alg.setPropertyValue("FirstTransmissionRun", "trans");
alg.setPropertyValue("PolarizationAnalysis", "None");
auto results = alg.validateInputs();
TS_ASSERT(results.count("FirstTransmissionRun"));
AnalysisDataService::Instance().remove("input");
AnalysisDataService::Instance().remove("input_1");
AnalysisDataService::Instance().remove("input_2");
AnalysisDataService::Instance().remove("trans");
AnalysisDataService::Instance().remove("trans_3");
AnalysisDataService::Instance().remove("trans_4");
}
void test_bad_second_transmission_group_size() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr inputWSGroup = boost::make_shared<WorkspaceGroup>();
inputWSGroup->addWorkspace(first);
WorkspaceGroup_sptr firstWSGroup = boost::make_shared<WorkspaceGroup>();
firstWSGroup->addWorkspace(second);
WorkspaceGroup_sptr secondWSGroup = boost::make_shared<WorkspaceGroup>();
secondWSGroup->addWorkspace(third);
secondWSGroup->addWorkspace(fourth);
AnalysisDataService::Instance().addOrReplace("input", inputWSGroup);
AnalysisDataService::Instance().addOrReplace("first_trans", firstWSGroup);
AnalysisDataService::Instance().addOrReplace("second_trans", secondWSGroup);
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setPropertyValue("InputWorkspace", "input");
alg.setPropertyValue("FirstTransmissionRun", "first_trans");
alg.setPropertyValue("SecondTransmissionRun", "second_trans");
alg.setPropertyValue("PolarizationAnalysis", "None");
const auto results = alg.validateInputs();
TS_ASSERT(!results.count("FirstTransmissionRun"));
TS_ASSERT(results.count("SecondTransmissionRun"));
AnalysisDataService::Instance().remove("input");
AnalysisDataService::Instance().remove("input_1");
AnalysisDataService::Instance().remove("first_trans");
AnalysisDataService::Instance().remove("first_trans_1");
AnalysisDataService::Instance().remove("second_trans");
AnalysisDataService::Instance().remove("second_trans_1");
AnalysisDataService::Instance().remove("second_trans_2");
}
void test_correct_detector_position_INTER() {
auto inter = loadRun("INTER00013460.nxs");
// Use the default correction type, which is a vertical shift
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", inter);
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.setProperty("ProcessingInstructions", "3");
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Check default rebin params
const double qStep = alg.getProperty("MomentumTransferStep");
const double qMin = alg.getProperty("MomentumTransferMin");
const double qMax = alg.getProperty("MomentumTransferMax");
TS_ASSERT_DELTA(qStep, 0.034028, 1e-6);
TS_ASSERT_DELTA(qMin, out->x(0).front(), 1e-6);
TS_ASSERT_DELTA(qMax, out->x(0).back(), 1e-6);
// Compare instrument components before and after
auto instIn = inter->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor3")->getPos(),
instOut->getComponentByName("monitor3")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("linear-detector")->getPos(),
instOut->getComponentByName("linear-detector")->getPos());
// Only 'point-detector' should have been moved vertically (along Y)
auto point1In = instIn->getComponentByName("point-detector")->getPos();
auto point1Out = instOut->getComponentByName("point-detector")->getPos();
TS_ASSERT_EQUALS(point1In.X(), point1Out.X());
TS_ASSERT_EQUALS(point1In.Z(), point1Out.Z());
TS_ASSERT_DIFFERS(point1In.Y(), point1Out.Y());
TS_ASSERT_DELTA(point1Out.Y() /
(point1Out.Z() - instOut->getSample()->getPos().Z()),
std::tan(theta * 2 * M_PI / 180), 1e-4);
void test_correct_detector_position_rotation_POLREF() {
// Histograms in this run correspond to 'OSMOND' component
auto polref = loadRun("POLREF00014966.raw");
// Correct by rotating detectors around the sample
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", polref);
alg.setProperty("ThetaIn", 1.5);
alg.setProperty("DetectorCorrectionType", "RotateAroundSample");
alg.setProperty("AnalysisMode", "MultiDetectorAnalysis");
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("MomentumTransferStep", 0.01);
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = polref->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor3")->getPos(),
instOut->getComponentByName("monitor3")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("point-detector")->getPos(),
instOut->getComponentByName("point-detector")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("lineardetector")->getPos(),
instOut->getComponentByName("lineardetector")->getPos());
// Only 'OSMOND' should have been moved both vertically and in the beam
// direction (along X and Z)
auto detectorIn = instIn->getComponentByName("OSMOND")->getPos();
auto detectorOut = instOut->getComponentByName("OSMOND")->getPos();
TS_ASSERT_DELTA(detectorOut.X(), 25.99589, 1e-5);
TS_ASSERT_EQUALS(detectorIn.Y(), detectorOut.Y());
TS_ASSERT_DELTA(detectorOut.Z(), 0.1570, 1e-5);
void test_correct_detector_position_vertical_CRISP() {
// Histogram in this run corresponds to 'point-detector' component
auto polref = loadRun("CSP79590.raw");
// Correct by shifting detectors vertically
// Also explicitly pass CorrectDetectors=1
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", polref);
alg.setProperty("ThetaIn", 0.25);
alg.setProperty("CorrectDetectors", "1");
alg.setProperty("DetectorCorrectionType", "VerticalShift");
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("MomentumTransferStep", 0.01);
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = polref->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("linear-detector")->getPos(),
instOut->getComponentByName("linear-detector")->getPos());
// Only 'point-detector' should have been moved vertically (along Y)
auto detectorIn = instIn->getComponentByName("point-detector")->getPos();
auto detectorOut = instOut->getComponentByName("point-detector")->getPos();
TS_ASSERT_EQUALS(detectorIn.X(), detectorOut.X());
TS_ASSERT_EQUALS(detectorIn.Z(), detectorOut.Z());
TS_ASSERT_DELTA(detectorOut.Y() /
(detectorOut.Z() - instOut->getSample()->getPos().Z()),
std::tan(0.25 * 2 * M_PI / 180), 1e-4);
}
void test_correct_detector_position_from_logs() {
auto inter = loadRun("INTER00013460.nxs");
double theta = 0.7;
// Use theta from the logs to correct detector positions
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", inter);
alg.setProperty("ThetaLogName", "theta");
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.setProperty("ProcessingInstructions", "3");
alg.execute();
MatrixWorkspace_sptr corrected = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = inter->getInstrument();
auto instOut = corrected->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor3")->getPos(),
instOut->getComponentByName("monitor3")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("linear-detector")->getPos(),
instOut->getComponentByName("linear-detector")->getPos());
// Only 'point-detector' should have been moved
// vertically (along Y)
auto point1In = instIn->getComponentByName("point-detector")->getPos();
auto point1Out = instOut->getComponentByName("point-detector")->getPos();
TS_ASSERT_EQUALS(point1In.X(), point1Out.X());
TS_ASSERT_EQUALS(point1In.Z(), point1Out.Z());
TS_ASSERT_DIFFERS(point1In.Y(), point1Out.Y());
TS_ASSERT_DELTA(point1Out.Y() /
(point1Out.Z() - instOut->getSample()->getPos().Z()),
std::tan(theta * 2 * M_PI / 180), 1e-4);
}
void test_override_ThetaIn_without_correcting_detectors() {
auto inter = loadRun("INTER00013460.nxs");
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", inter);
alg.setProperty("ThetaIn", 10.0);
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.setProperty("ProcessingInstructions", "3");
alg.execute();
MatrixWorkspace_sptr corrected = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = inter->getInstrument();
auto instOut = corrected->getInstrument();
// the detectors should not have been moved
auto point1In = instIn->getComponentByName("point-detector")->getPos();
auto point1Out = instOut->getComponentByName("point-detector")->getPos();
TS_ASSERT_EQUALS(point1In, point1Out);
}
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
void test_sum_transmission_workspaces() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr group = boost::make_shared<WorkspaceGroup>();
group->addWorkspace(first);
group->addWorkspace(second);
group->addWorkspace(third);
group->addWorkspace(fourth);
ReflectometryReductionOneAuto2 alg;
auto sum = alg.sumTransmissionWorkspaces(group);
// Input workspaces remain the same
TS_ASSERT_EQUALS(first->blocksize(), 20);
TS_ASSERT_EQUALS(second->blocksize(), 20);
TS_ASSERT_EQUALS(third->blocksize(), 20);
TS_ASSERT_EQUALS(fourth->blocksize(), 20);
TS_ASSERT_EQUALS(first->y(0)[0], 2);
TS_ASSERT_EQUALS(second->y(0)[0], 2);
TS_ASSERT_EQUALS(third->y(0)[0], 2);
TS_ASSERT_EQUALS(fourth->y(0)[0], 2);
// Output workspace
TS_ASSERT_EQUALS(sum->blocksize(), 20);
TS_ASSERT_DELTA(sum->y(0)[0], 4 * 2, 1e-6);
}
void test_IvsQ_linear_binning() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "1");
alg.setProperty("MomentumTransferMin", 1.0);
alg.setProperty("MomentumTransferMax", 10.0);
alg.setProperty("MomentumTransferStep", -0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQbinned = alg.getProperty("OutputWorkspaceBinned");
// Check the rebin params have not changed
const double qStep = alg.getProperty("MomentumTransferStep");
const double qMin = alg.getProperty("MomentumTransferMin");
const double qMax = alg.getProperty("MomentumTransferMax");
TS_ASSERT_EQUALS(qStep, -0.04);
TS_ASSERT_EQUALS(qMin, 1.0);
TS_ASSERT_EQUALS(qMax, 10.0);
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
TS_ASSERT_EQUALS(outQbinned->getNumberHistograms(), 1);
// blocksize = (10.0 - 1.0) / 0.04
TS_ASSERT_EQUALS(outQbinned->blocksize(), 225);
TS_ASSERT_DELTA(outQbinned->x(0)[1] - outQbinned->x(0)[0], 0.04, 1e-6);
TS_ASSERT_DELTA(outQbinned->x(0)[2] - outQbinned->x(0)[1], 0.04, 1e-6);
}
void test_IvsQ_logarithmic_binning() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "1");
alg.setProperty("MomentumTransferMin", 1.0);
alg.setProperty("MomentumTransferMax", 10.0);
alg.setProperty("MomentumTransferStep", 0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQbinned = alg.getProperty("OutputWorkspaceBinned");
TS_ASSERT_EQUALS(outQbinned->getNumberHistograms(), 1);
TS_ASSERT_DIFFERS(outQbinned->blocksize(), 8);
TS_ASSERT_DELTA(outQbinned->x(0)[1] - outQbinned->x(0)[0], 0.04, 1e-6);
TS_ASSERT(outQbinned->x(0)[7] - outQbinned->x(0)[6] > 0.05);
}
void test_IvsQ_q_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "2");
alg.setProperty("MomentumTransferStep", 0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQ = alg.getProperty("OutputWorkspace");
MatrixWorkspace_sptr outLam = alg.getProperty("OutputWorkspaceWavelength");
TS_ASSERT_EQUALS(outQ->getNumberHistograms(), 1);
// X range in outLam
TS_ASSERT_DELTA(outLam->x(0)[0], 1.7924, 0.0001);
TS_ASSERT_DELTA(outLam->x(0)[7], 8.0658, 0.0001);
// X range in outQ
TS_ASSERT_DELTA(outQ->x(0)[0], 0.3353, 0.0001);
TS_ASSERT_DELTA(outQ->x(0)[7], 0.5962, 0.0001);
}
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
void test_polarization_correction() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr inputWSGroup = boost::make_shared<WorkspaceGroup>();
inputWSGroup->addWorkspace(first);
inputWSGroup->addWorkspace(second);
inputWSGroup->addWorkspace(third);
inputWSGroup->addWorkspace(fourth);
WorkspaceGroup_sptr transWSGroup = boost::make_shared<WorkspaceGroup>();
transWSGroup->addWorkspace(first);
transWSGroup->addWorkspace(second);
transWSGroup->addWorkspace(third);
transWSGroup->addWorkspace(fourth);
AnalysisDataService::Instance().addOrReplace("input", inputWSGroup);
AnalysisDataService::Instance().addOrReplace("trans", transWSGroup);
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setPropertyValue("InputWorkspace", "input");
alg.setPropertyValue("FirstTransmissionRun", "trans");
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "2");
alg.setProperty("MomentumTransferStep", 0.04);
alg.setProperty("PolarizationAnalysis", "PA");
alg.setProperty("Pp", "1,1,2");
alg.setProperty("Ap", "1,1,2");
alg.setProperty("Rho", "1,1");
alg.setProperty("Alpha", "1");
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
auto outQGroup =
AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>("IvsQ");
auto outLamGroup =
AnalysisDataService::Instance().retrieveWS<WorkspaceGroup>("IvsLam");
TS_ASSERT(outQGroup);
TS_ASSERT(outLamGroup);
TS_ASSERT_EQUALS(outQGroup->size(), 4);
TS_ASSERT_EQUALS(outLamGroup->size(), 4);
{
auto outQ =
boost::dynamic_pointer_cast<MatrixWorkspace>(outQGroup->getItem(0));
TS_ASSERT_EQUALS(outQ->getNumberHistograms(), 1);
TS_ASSERT_EQUALS(outQ->blocksize(), 14);
// X range in outQ
TS_ASSERT_DELTA(outQ->x(0)[0], 0.3353, 0.0001);
TS_ASSERT_DELTA(outQ->x(0)[7], 0.5962, 0.0001);
auto outLam =
boost::dynamic_pointer_cast<MatrixWorkspace>(outLamGroup->getItem(0));
// X range in outLam
TS_ASSERT_DELTA(outLam->x(0)[0], 1.7924, 0.0001);
TS_ASSERT_DELTA(outLam->x(0)[7], 8.0658, 0.0001);
}
{
auto outQ =
boost::dynamic_pointer_cast<MatrixWorkspace>(outQGroup->getItem(1));
TS_ASSERT_EQUALS(outQ->getNumberHistograms(), 1);
TS_ASSERT_EQUALS(outQ->blocksize(), 14);
// X range in outQ
TS_ASSERT_DELTA(outQ->x(0)[0], 0.3353, 0.0001);
TS_ASSERT_DELTA(outQ->x(0)[7], 0.5962, 0.0001);
auto outLam =
boost::dynamic_pointer_cast<MatrixWorkspace>(outLamGroup->getItem(1));
// X range in outLam
TS_ASSERT_DELTA(outLam->x(0)[0], 1.7924, 0.0001);
TS_ASSERT_DELTA(outLam->x(0)[7], 8.0658, 0.0001);
}
}
};
#endif /* MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_ */