Newer
Older
#ifndef MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_
#define MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_
#include <cxxtest/TestSuite.h>
#include "MantidAPI/AlgorithmManager.h"
#include "MantidAPI/FrameworkManager.h"
#include "MantidAPI/WorkspaceGroup.h"
#include "MantidAlgorithms/ReflectometryReductionOneAuto2.h"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#include "MantidGeometry/Instrument.h"
#include "MantidTestHelpers/WorkspaceCreationHelper.h"
using Mantid::Algorithms::ReflectometryReductionOneAuto2;
using namespace Mantid::API;
class ReflectometryReductionOneAuto2Test : public CxxTest::TestSuite {
private:
MatrixWorkspace_sptr m_notTOF;
MatrixWorkspace_sptr m_TOF;
MatrixWorkspace_sptr loadRun(const std::string &run) {
IAlgorithm_sptr lAlg = AlgorithmManager::Instance().create("Load");
lAlg->setChild(true);
lAlg->initialize();
lAlg->setProperty("Filename", run);
lAlg->setPropertyValue("OutputWorkspace", "demo_ws");
lAlg->execute();
Workspace_sptr temp = lAlg->getProperty("OutputWorkspace");
MatrixWorkspace_sptr matrixWS =
boost::dynamic_pointer_cast<MatrixWorkspace>(temp);
if (matrixWS)
return matrixWS;
WorkspaceGroup_sptr group =
boost::dynamic_pointer_cast<WorkspaceGroup>(temp);
if (group) {
Workspace_sptr temp = group->getItem(0);
MatrixWorkspace_sptr matrixWS =
boost::dynamic_pointer_cast<MatrixWorkspace>(temp);
if (matrixWS)
return matrixWS;
}
return MatrixWorkspace_sptr();
};
public:
// This pair of boilerplate methods prevent the suite being created statically
// This means the constructor isn't called when running other tests
static ReflectometryReductionOneAuto2Test *createSuite() {
return new ReflectometryReductionOneAuto2Test();
}
static void destroySuite(ReflectometryReductionOneAuto2Test *suite) {
delete suite;
}
ReflectometryReductionOneAuto2Test() {
FrameworkManager::Instance();
m_notTOF =
WorkspaceCreationHelper::create2DWorkspaceWithRectangularInstrument(
1, 10, 10);
m_TOF = WorkspaceCreationHelper::
create2DWorkspaceWithReflectometryInstrumentMultiDetector();
}
~ReflectometryReductionOneAuto2Test() override {}
void test_init() {
ReflectometryReductionOneAuto2 alg;
TS_ASSERT_THROWS_NOTHING(alg.initialize());
TS_ASSERT(alg.isInitialized());
}
void test_bad_input_workspace_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_notTOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_wavelength_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 15.0);
alg.setProperty("WavelengthMax", 1.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_monitor_background_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorBackgroundWavelengthMin", 3.0);
alg.setProperty("MonitorBackgroundWavelengthMax", 0.5);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_monitor_integration_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorIntegrationWavelengthMin", 15.0);
alg.setProperty("MonitorIntegrationWavelengthMax", 1.5);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_first_transmission_run_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("FirstTransmissionRun", m_notTOF);
alg.setProperty("WavelengthMin", 1.0);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "0");
alg.setProperty("MonitorIntegrationWavelengthMin", 1.0);
alg.setProperty("MonitorIntegrationWavelengthMax", 15.0);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
TS_ASSERT_THROWS_ANYTHING(alg.execute());
}
void test_bad_second_transmission_run_units() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("FirstTransmissionRun", m_TOF);
TS_ASSERT_THROWS_ANYTHING(
alg.setProperty("SecondTransmissionRun", m_notTOF));
}
void test_bad_first_transmission_group_size() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr inputWSGroup = boost::make_shared<WorkspaceGroup>();
inputWSGroup->addWorkspace(first);
inputWSGroup->addWorkspace(second);
WorkspaceGroup_sptr transWSGroup = boost::make_shared<WorkspaceGroup>();
transWSGroup->addWorkspace(first);
transWSGroup->addWorkspace(second);
transWSGroup->addWorkspace(third);
transWSGroup->addWorkspace(fourth);
AnalysisDataService::Instance().addOrReplace("input", inputWSGroup);
AnalysisDataService::Instance().addOrReplace("trans", transWSGroup);
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setPropertyValue("InputWorkspace", "input");
alg.setPropertyValue("FirstTransmissionRun", "trans");
alg.setPropertyValue("PolarizationAnalysis", "None");
auto results = alg.validateInputs();
TS_ASSERT(results.count("FirstTransmissionRun"));
AnalysisDataService::Instance().remove("input");
AnalysisDataService::Instance().remove("input_1");
AnalysisDataService::Instance().remove("input_2");
AnalysisDataService::Instance().remove("trans");
AnalysisDataService::Instance().remove("trans_3");
AnalysisDataService::Instance().remove("trans_4");
}
void test_bad_second_transmission_group_size() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr inputWSGroup = boost::make_shared<WorkspaceGroup>();
inputWSGroup->addWorkspace(first);
WorkspaceGroup_sptr firstWSGroup = boost::make_shared<WorkspaceGroup>();
firstWSGroup->addWorkspace(second);
WorkspaceGroup_sptr secondWSGroup = boost::make_shared<WorkspaceGroup>();
secondWSGroup->addWorkspace(third);
secondWSGroup->addWorkspace(fourth);
AnalysisDataService::Instance().addOrReplace("input", inputWSGroup);
AnalysisDataService::Instance().addOrReplace("first_trans", firstWSGroup);
AnalysisDataService::Instance().addOrReplace("second_trans", secondWSGroup);
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setPropertyValue("InputWorkspace", "input");
alg.setPropertyValue("FirstTransmissionRun", "first_trans");
alg.setPropertyValue("SecondTransmissionRun", "second_trans");
alg.setPropertyValue("PolarizationAnalysis", "None");
const auto results = alg.validateInputs();
TS_ASSERT(!results.count("FirstTransmissionRun"));
TS_ASSERT(results.count("SecondTransmissionRun"));
AnalysisDataService::Instance().remove("input");
AnalysisDataService::Instance().remove("input_1");
AnalysisDataService::Instance().remove("first_trans");
AnalysisDataService::Instance().remove("first_trans_1");
AnalysisDataService::Instance().remove("second_trans");
AnalysisDataService::Instance().remove("second_trans_1");
AnalysisDataService::Instance().remove("second_trans_2");
}
void test_correct_detector_position_INTER() {
auto inter = loadRun("INTER00013460.nxs");
// Use the default correction type, which is a vertical shift
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", inter);
alg.setProperty("ThetaIn", 0.7);
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.setProperty("ProcessingInstructions", "3:4");
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = inter->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor3")->getPos(),
instOut->getComponentByName("monitor3")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("linear-detector")->getPos(),
instOut->getComponentByName("linear-detector")->getPos());
// Only 'point-detector' and 'point-detector2' should have been moved
// vertically (along Y)
auto point1In = instIn->getComponentByName("point-detector")->getPos();
auto point2In = instIn->getComponentByName("point-detector2")->getPos();
auto point1Out = instOut->getComponentByName("point-detector")->getPos();
auto point2Out = instOut->getComponentByName("point-detector2")->getPos();
TS_ASSERT_EQUALS(point1In.X(), point1Out.X());
TS_ASSERT_EQUALS(point1In.Z(), point1Out.Z());
TS_ASSERT_EQUALS(point2In.X(), point2Out.X());
TS_ASSERT_EQUALS(point2In.Z(), point2Out.Z());
TS_ASSERT_DIFFERS(point1In.Y(), point1Out.Y());
TS_ASSERT_DIFFERS(point2In.Y(), point2Out.Y());
TS_ASSERT_DELTA(point1Out.Y() /
(point1Out.Z() - instOut->getSample()->getPos().Z()),
std::tan(0.7 * 2 * M_PI / 180), 1e-4);
TS_ASSERT_DELTA(point2Out.Y() /
(point2Out.Z() - instOut->getSample()->getPos().Z()),
std::tan(0.7 * 2 * M_PI / 180), 1e-4);
}
void test_correct_detector_position_rotation_POLREF() {
// Histograms in this run correspond to 'OSMOND' component
auto polref = loadRun("POLREF00014966.raw");
// Correct by rotating detectors around the sample
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", polref);
alg.setProperty("ThetaIn", 1.5);
alg.setProperty("DetectorCorrectionType", "RotateAroundSample");
alg.setProperty("AnalysisMode", "MultiDetectorAnalysis");
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("MomentumTransferStep", 0.01);
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = polref->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor3")->getPos(),
instOut->getComponentByName("monitor3")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("point-detector")->getPos(),
instOut->getComponentByName("point-detector")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("lineardetector")->getPos(),
instOut->getComponentByName("lineardetector")->getPos());
// Only 'OSMOND' should have been moved both vertically and in the beam
// direction (along X and Z)
auto detectorIn = instIn->getComponentByName("OSMOND")->getPos();
auto detectorOut = instOut->getComponentByName("OSMOND")->getPos();
TS_ASSERT_DELTA(detectorOut.X(), 25.99589, 1e-5);
TS_ASSERT_EQUALS(detectorIn.Y(), detectorOut.Y());
TS_ASSERT_DELTA(detectorOut.Z(), 0.1570, 1e-5);
void test_correct_detector_position_vertical_CRISP() {
// Histogram in this run corresponds to 'point-detector' component
auto polref = loadRun("CSP79590.raw");
// Correct by shifting detectors vertically
ReflectometryReductionOneAuto2 alg;
alg.initialize();
alg.setChild(true);
alg.setProperty("InputWorkspace", polref);
alg.setProperty("ThetaIn", 0.25);
alg.setProperty("DetectorCorrectionType", "VerticalShift");
alg.setProperty("CorrectionAlgorithm", "None");
alg.setProperty("MomentumTransferStep", 0.01);
alg.setProperty("OutputWorkspace", "IvsQ");
alg.setProperty("OutputWorkspaceBinned", "IvsQ_binned");
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
alg.setProperty("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr out = alg.getProperty("OutputWorkspace");
// Compare instrument components before and after
auto instIn = polref->getInstrument();
auto instOut = out->getInstrument();
// The following components should not have been moved
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor1")->getPos(),
instOut->getComponentByName("monitor1")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("monitor2")->getPos(),
instOut->getComponentByName("monitor2")->getPos());
TS_ASSERT_EQUALS(instIn->getComponentByName("linear-detector")->getPos(),
instOut->getComponentByName("linear-detector")->getPos());
// Only 'point-detector' should have been moved vertically (along Y)
auto detectorIn = instIn->getComponentByName("point-detector")->getPos();
auto detectorOut = instOut->getComponentByName("point-detector")->getPos();
TS_ASSERT_EQUALS(detectorIn.X(), detectorOut.X());
TS_ASSERT_EQUALS(detectorIn.Z(), detectorOut.Z());
TS_ASSERT_DELTA(detectorOut.Y() /
(detectorOut.Z() - instOut->getSample()->getPos().Z()),
std::tan(0.25 * 2 * M_PI / 180), 1e-4);
}
void test_sum_transmission_workspaces() {
MatrixWorkspace_sptr first = m_TOF->clone();
MatrixWorkspace_sptr second = m_TOF->clone();
MatrixWorkspace_sptr third = m_TOF->clone();
MatrixWorkspace_sptr fourth = m_TOF->clone();
WorkspaceGroup_sptr group = boost::make_shared<WorkspaceGroup>();
group->addWorkspace(first);
group->addWorkspace(second);
group->addWorkspace(third);
group->addWorkspace(fourth);
ReflectometryReductionOneAuto2 alg;
auto sum = alg.sumTransmissionWorkspaces(group);
// Input workspaces remain the same
TS_ASSERT_EQUALS(first->blocksize(), 20);
TS_ASSERT_EQUALS(second->blocksize(), 20);
TS_ASSERT_EQUALS(third->blocksize(), 20);
TS_ASSERT_EQUALS(fourth->blocksize(), 20);
TS_ASSERT_EQUALS(first->y(0)[0], 2);
TS_ASSERT_EQUALS(second->y(0)[0], 2);
TS_ASSERT_EQUALS(third->y(0)[0], 2);
TS_ASSERT_EQUALS(fourth->y(0)[0], 2);
// Output workspace
TS_ASSERT_EQUALS(sum->blocksize(), 20);
TS_ASSERT_DELTA(sum->y(0)[0], 4 * 2, 1e-6);
}
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
void test_IvsQ_linear_binning() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "1");
alg.setProperty("MomentumTransferMin", 1.0);
alg.setProperty("MomentumTransferMax", 10.0);
alg.setProperty("MomentumTransferStep", -0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQbinned = alg.getProperty("OutputWorkspaceBinned");
TS_ASSERT_EQUALS(outQbinned->getNumberHistograms(), 1);
// blocksize = (10.0 - 1.0) / 0.04
TS_ASSERT_EQUALS(outQbinned->blocksize(), 225);
TS_ASSERT_DELTA(outQbinned->x(0)[1] - outQbinned->x(0)[0], 0.04, 1e-6);
TS_ASSERT_DELTA(outQbinned->x(0)[2] - outQbinned->x(0)[1], 0.04, 1e-6);
}
void test_IvsQ_logarithmic_binning() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "1");
alg.setProperty("MomentumTransferMin", 1.0);
alg.setProperty("MomentumTransferMax", 10.0);
alg.setProperty("MomentumTransferStep", 0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQbinned = alg.getProperty("OutputWorkspaceBinned");
TS_ASSERT_EQUALS(outQbinned->getNumberHistograms(), 1);
TS_ASSERT_DIFFERS(outQbinned->blocksize(), 8);
TS_ASSERT_DELTA(outQbinned->x(0)[1] - outQbinned->x(0)[0], 0.04, 1e-6);
TS_ASSERT(outQbinned->x(0)[7] - outQbinned->x(0)[6] > 0.05);
}
void test_IvsQ_q_range() {
ReflectometryReductionOneAuto2 alg;
alg.setChild(true);
alg.initialize();
alg.setProperty("InputWorkspace", m_TOF);
alg.setProperty("WavelengthMin", 1.5);
alg.setProperty("WavelengthMax", 15.0);
alg.setProperty("ProcessingInstructions", "2");
alg.setProperty("MomentumTransferStep", 0.04);
alg.setPropertyValue("OutputWorkspace", "IvsQ");
alg.setPropertyValue("OutputWorkspaceBinned", "IvsQ_binned");
alg.setPropertyValue("OutputWorkspaceWavelength", "IvsLam");
alg.execute();
MatrixWorkspace_sptr outQ = alg.getProperty("OutputWorkspace");
MatrixWorkspace_sptr outLam = alg.getProperty("OutputWorkspaceWavelength");
TS_ASSERT_EQUALS(outQ->getNumberHistograms(), 1);
// X range in outLam
TS_ASSERT_DELTA(outLam->x(0)[0], 1.7924, 0.0001);
TS_ASSERT_DELTA(outLam->x(0)[7], 8.0658, 0.0001);
// X range in outQ
TS_ASSERT_DELTA(outQ->x(0)[0], 0.3353, 0.0001);
TS_ASSERT_DELTA(outQ->x(0)[7], 0.5962, 0.0001);
}
};
#endif /* MANTID_ALGORITHMS_REFLECTOMETRYREDUCTIONONEAUTO2TEST_H_ */