Newer
Older
#include "MantidAlgorithms/CalculateCountRate.h"
#include "MantidKernel/PropertyWithValue.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/MandatoryValidator.h"
#include "MantidAPI/Axis.h"
#include "MantidAPI/NumericAxis.h"
#include "MantidAPI/Run.h"
#include "MantidAPI/WorkspaceFactory.h"
#include "MantidDataObjects/Workspace2D.h"
namespace Mantid {
namespace Algorithms {
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(CalculateCountRate)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string CalculateCountRate::name() const {
return "CalculateCountRate";
}
/// Algorithm's version for identification. @see Algorithm::version
int CalculateCountRate::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string CalculateCountRate::category() const {
return "Inelastic\\Utility;Diagnostics;Events\\EventFiltering";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string CalculateCountRate::summary() const {
return "Calculates instrument count rate as the function of the "
"experiment time and adds CountRate log to the source workspace.";
}
//----------------------------------------------------------------------------------------------
/** Declare the algorithm's properties.
*/
void CalculateCountRate::init() {
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<DataObjects::EventWorkspace>>(
"Workspace", "", Kernel::Direction::InOut),
"Name of the event workspace to calculate counting rate for.");
declareProperty(Kernel::make_unique<Kernel::PropertyWithValue<double>>(
"XMin", EMPTY_DBL(), Kernel::Direction::Input),
"Minimal value of X-range for the rate calculations. If left "
"to default, Workspace X-axis minimal value is used.");
declareProperty(Kernel::make_unique<Kernel::PropertyWithValue<double>>(
"XMax", EMPTY_DBL(), Kernel::Direction::Input),
"Maximal value of X-range for the rate calculations. If left "
"to default, Workspace X-axis maximal value is used.");
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<std::string>>(
"RangeUnits", "Energy",
boost::make_shared<Kernel::StringListValidator>(
Kernel::UnitFactory::Instance().getKeys()),
Kernel::Direction::Input),
"The units from Mantid Unit factory for calculating the "
"counting rate and XMin-XMax ranges are in. If the "
"X-axis of the input workspace is not expressed"
"in these units, unit conversion will be performed, so the "
"workspace should contain all necessary information for this "
"conversion. E.g. if *RangeUnits* is *EnergyTransfer*, Ei "
"log containing incident energy value should be attached to the "
"input workspace. See ConvertUnits algorithm for the details.");
std::vector<std::string> propOptions{"Elastic", "Direct", "Indirect"};
declareProperty(
"EMode", "Elastic",
boost::make_shared<Kernel::StringListValidator>(propOptions),
"The energy mode for 'RangeUnits' conversion mode (default: elastic)");
// Used logs group
std::string used_logs_mode("Used normalization logs");
declareProperty(
"NormalizeTheRate", true,
"Usually you want to normalize counting rate to some "
"rate related to the source beam intensity. Change this to "
"'false' if appropriate time series log is broken || not attached to "
"the input workspace.");
declareProperty("UseLogDerivative", false,
"If the normalization log contains "
"cumulative counting, derivative "
"of this log is necessary to get "
"correct normalization values.");
declareProperty(
"NormalizationLogName", "proton_charge",
"The name of the log, used in the counting rate normalization. ");
setPropertyGroup("NormalizeTheRate", used_logs_mode);
setPropertyGroup("UseLogDerivative", used_logs_mode);
setPropertyGroup("NormalizationLogName", used_logs_mode);
// Results
declareProperty("CountRateLogName", "block_count_rate",
boost::make_shared<Kernel::MandatoryValidator<std::string>>(),
"The name of the processed time series log with instrument "
"count rate to be added"
" to the source workspace");
"UseNormLogGranularity", true,
"If true, the count rate log will have the normalization log "
"accuracy; If false, the 'NumTimeSteps' in the visualization "
"workspace below will be used for the target log granularity too.");
// visualization group
std::string spur_vis_mode("Spurion visualization");
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<>>(
"VisualizationWs", "", Kernel::Direction::Output,
API::PropertyMode::Optional),
"Optional name to build 2D matrix workspace for spurion visualization. "
"If name is provided, a 2D workspace with this name will be created "
"containing data to visualize counting rate as function of time in the "
"ranges XMin-XMax");
auto mustBeReasonable = boost::make_shared<Kernel::BoundedValidator<int>>();
mustBeReasonable->setLower(3);
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<int>>(
"NumTimeSteps", 200, mustBeReasonable, Kernel::Direction::Input),
"Number of time steps (time accuracy) the visualization workspace has. "
"Also number of steps in 'CountRateLogName' log if "
"'UseNormLogGranularity' is set to false. Should be bigger than 3");
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<int>>(
"XResolution", 100, mustBeReasonable, Kernel::Direction::Input),
"Number of steps (accuracy) of the visualization workspace has along "
"X-axis. ");
setPropertyGroup("VisualizationWs", spur_vis_mode);
setPropertyGroup("NumTimeSteps", spur_vis_mode);
setPropertyGroup("XResolution", spur_vis_mode);
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void CalculateCountRate::exec() {
DataObjects::EventWorkspace_sptr sourceWS = getProperty("Workspace");
API::EventType et = sourceWS->getEventType();
if (et == API::EventType::WEIGHTED_NOTIME) {
throw std::runtime_error("Event workspace " + sourceWS->name() +
" contains events without necessary frame "
"information. Can not process counting rate");
}
// Identify correct way to treat input logs and general properties of output
// log
this->setOutLogParameters(sourceWS);
// identify ranges for count rate calculations and initiate source workspace
this->setSourceWSandXRanges(sourceWS);
// check if visualization workspace is necessary and if it is, prepare
// visualization workspace to use
this->checkAndInitVisWorkspace();
// create results log and add it to the source workspace
std::string logname = getProperty("CountRateLogName");
auto newlog = new Kernel::TimeSeriesProperty<double>(logname);
sourceWS->mutableRun().addProperty(newlog, true);
// calculate averages requested and modify results log
// clear up log derivative and existing log pointer (if any)
// to avoid incorrect usage
// at subsequent calls to the same algorithm.
m_tmpLogHolder.release();
/** Process input workspace to calculate instrument counting rate as function of
*experiment time
*@param InputWorkspace :: shared pointer to the input workspace to process
*@param targLog :: pointer to time series property containing count rate
*log.
* Property should exist on input and will be modified
*with
* counting rate log on output.
*/
void CalculateCountRate::calcRateLog(
DataObjects::EventWorkspace_sptr &InputWorkspace,
Kernel::TimeSeriesProperty<double> *const targLog) {
MantidVec countRate(m_numLogSteps);
countNormalization = m_pNormalizationLog->valuesAsVector();
std::unique_ptr<std::mutex[]> pVisWS_locks;
if (this->buildVisWS()) {
pVisWS_locks.reset(new std::mutex[m_visWs->getNumberHistograms()]);
}
int64_t nHist = static_cast<int64_t>(InputWorkspace->getNumberHistograms());
// Initialize progress reporting.
API::Progress prog(this, 0.0, 1.0, nHist);
double dTRangeMin = static_cast<double>(m_TRangeMin.totalNanoseconds());
double dTRangeMax = static_cast<double>(m_TRangeMax.totalNanoseconds());
std::vector<MantidVec> Buff;
int nThreads;
#pragma omp parallel
{
#pragma omp single
{
// initialize thread's histogram buffer
nThreads = PARALLEL_NUMBER_OF_THREADS;
Buff.resize(nThreads);
auto nThread = PARALLEL_THREAD_NUMBER;
Buff[nThread].assign(m_numLogSteps, 0);
for (int64_t i = 0; i < nHist; ++i) {
auto nThread = PARALLEL_THREAD_NUMBER;
PARALLEL_START_INTERUPT_REGION
// Get a const event list reference. eventInputWS->dataY() doesn't work.
const DataObjects::EventList &el = InputWorkspace->getSpectrum(i);
el.generateCountsHistogramPulseTime(dTRangeMin, dTRangeMax, Buff[nThread],
m_XRangeMin, m_XRangeMax);
if (this->buildVisWS()) {
this->histogramEvents(el, pVisWS_locks.get());
// Report progress
prog.report(name());
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
// calculate final sums
#pragma omp for
for (int64_t j = 0; j < m_numLogSteps; j++) {
countRate[j] += Buff[i][j];
}
// normalize if requested
if (!countNormalization.empty()) {
countRate[j] /= countNormalization[j];
if (!countNormalization.empty() && this->buildVisWS()) {
#pragma omp for
for (int64_t j = 0; j < int64_t(m_visNorm.size()); j++) {
// generate target log timing
std::vector<Kernel::DateAndTime> times(m_numLogSteps);
double dt = (dTRangeMax - dTRangeMin) / static_cast<double>(m_numLogSteps);
auto t0 = m_TRangeMin.totalNanoseconds();
for (auto i = 0; i < m_numLogSteps; i++) {
times[i] =
Kernel::DateAndTime(t0 + static_cast<int64_t>((0.5 + double(i)) * dt));
}
// store calculated values within the target log.
targLog->replaceValues(times, countRate);
/** histogram event list into visualization workspace
* @param el :: event list to rebin into visualization workspace
* @param spectraLocks :: pointer to the array of mutexes to lock modifyed
* visualization workspace spectra for a thread
*/
void CalculateCountRate::histogramEvents(const DataObjects::EventList &el,
if (el.empty())
return;
auto events = el.getEvents();
for (const DataObjects::TofEvent &ev : events) {
double pulsetime = static_cast<double>(ev.pulseTime().totalNanoseconds());
double tof = ev.tof();
if (pulsetime < m_visT0 || pulsetime >= m_visTmax)
continue;
if (tof < m_XRangeMin || tof >= m_XRangeMax)
continue;
size_t n_spec = static_cast<size_t>((pulsetime - m_visT0) / m_visDT);
size_t n_bin = static_cast<size_t>((tof - m_XRangeMin) / m_visDX);
(spectraLocks + n_spec)->lock();
auto &Y = m_visWs->mutableY(n_spec);
Y[n_bin]++;
(spectraLocks + n_spec)->unlock();
}
}
/** Normalize single spectrum of the normalization workspace using prepared
* normzlization log
@param wsIndex -- appropriate visualization workspace index to normalize
void CalculateCountRate::normalizeVisWs(int64_t wsIndex) {
auto &Y = m_visWs->mutableY(wsIndex);
for (auto &yv : Y) {
yv /= m_visNorm[wsIndex];
}
}
/** Disable normalization using normalization log.
Helper function to avoid code duplication.
@param NormLogError -- error to print if normalization log is disabled*/
void CalculateCountRate::disableNormalization(const std::string &NormLogError) {
g_log.warning() << NormLogError << std::endl;
m_pNormalizationLog = nullptr;
m_normalizeResult = false;
/*Analyse input log parameters and logs, attached to the workspace and identify
* the parameters of the target log, including experiment time.
*
@param InputWorkspace -- input workspace to analyse logs
void CalculateCountRate::setOutLogParameters(
const DataObjects::EventWorkspace_sptr &InputWorkspace) {
std::string NormLogName = getProperty("NormalizationLogName");
std::string TargetLog = getProperty("CountRateLogName");
if (NormLogName == TargetLog) {
throw std::invalid_argument("Target log name: " + TargetLog +
" and normalization log name: " + NormLogName +
m_normalizeResult = getProperty("NormalizeTheRate");
bool useLogDerivative = getProperty("UseLogDerivative");
bool useLogAccuracy = getProperty("UseNormLogGranularity");
bool logPresent = InputWorkspace->run().hasProperty(NormLogName);
if (!logPresent) {
if (m_normalizeResult) {
"' values requested but the log is not attached to the "
"workspace. Normalization disabled");
g_log.warning() << "Normalization by log: '" << NormLogName
<< "' -- log derivative requested but the source log is "
"not attached to "
"the workspace. Log derivative will not be used.\n";
useLogDerivative = false;
}
if (useLogAccuracy) {
g_log.warning() << "Using accuracy of the log: '" << NormLogName
<< "' is requested but the log is not attached to the "
} else {
m_pNormalizationLog =
InputWorkspace->run().getTimeSeriesProperty<double>(NormLogName);
// Analyse properties interactions
// if property derivative is specified.
if (useLogDerivative) {
m_tmpLogHolder = m_pNormalizationLog->getDerivative();
m_pNormalizationLog = m_tmpLogHolder.get();
m_useLogDerivative = true;
if (m_normalizeResult) {
if (!useLogAccuracy) {
g_log.warning() << "Change of the counting log accuracy while "
"normalizing by log values is not implemented. Will "
useLogAccuracy = true;
}
} //---------------------------------------------------------------------
// find target log ranges and identify what normalization should be used
Kernel::DateAndTime runTMin, runTMax;
InputWorkspace->getPulseTimeMinMax(runTMin, runTMax);
//
if (useLogAccuracy) { // extract log times located inside the run time
Kernel::DateAndTime tLogMin, tLogMax;
if (m_useLogDerivative) { // derivative moves events to the bin centre,
// but we need initial range
auto pSource =
InputWorkspace->run().getTimeSeriesProperty<double>(NormLogName);
tLogMin = pSource->firstTime();
tLogMax = pSource->lastTime();
} else {
tLogMin = m_pNormalizationLog->firstTime();
tLogMax = m_pNormalizationLog->lastTime();
}
//
if (tLogMin < runTMin || tLogMax > runTMax) {
if (tLogMin > runTMax ||
tLogMax < runTMin) { // log time is outside of the experiment time.
// Log normalization is impossible
this->disableNormalization(
"Normalization log " + m_pNormalizationLog->name() +
" time lies outside of the the whole experiment time. "
"Log normalization impossible.");
useLogAccuracy = false;
} else {
if (!m_tmpLogHolder) {
m_tmpLogHolder =
Kernel::make_unique<Kernel::TimeSeriesProperty<double>>(
*m_pNormalizationLog->clone());
}
m_tmpLogHolder->filterByTime(runTMin, runTMax);
m_pNormalizationLog = m_tmpLogHolder.get();
m_numLogSteps = m_pNormalizationLog->realSize();
}
} else {
if (tLogMin > runTMin || tLogMax < runTMax) {
this->disableNormalization(
"Normalization log " + m_pNormalizationLog->name() +
" time does not cover the whole experiment time. "
"Log normalization impossible.");
useLogAccuracy = false;
}
}
}
if (useLogAccuracy) {
if (m_numLogSteps < 2) { // should not ever happen but...
this->disableNormalization(
"Number of points in the Normalization log " +
m_pNormalizationLog->name() +
" smaller then 2. Can not normalize using this log.");
m_numLogSteps = getProperty("NumTimeSteps"); // Always > 2
useLogAccuracy = false;
}
// identify epsilon to use with current time
double t_epsilon = double(runTMax.totalNanoseconds()) *
(1 + std::numeric_limits<double>::epsilon());
int64_t eps_increment =
static_cast<int64_t>(t_epsilon - double(runTMax.totalNanoseconds()));
m_TRangeMin = runTMin - eps_increment;
// Let's try to establish log step (it should be constant in real
// applications) and define
// binning in such a way, that each historgam bin accomodates
// single log value.
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
auto iTMax = runTMax.totalNanoseconds();
auto iTMin = m_TRangeMin.totalNanoseconds();
int64_t provDT = (iTMax - iTMin) / (m_numLogSteps - 1);
if (provDT < 1) { // something is fundamentally wrong. This can only happen
// if the log is very short and the distance between log
// boundaries is smaller than dt
this->disableNormalization("Time step of the log " +
m_pNormalizationLog->name() +
" is not consistent with number of log steps. "
"Can not use this log normalization");
useLogAccuracy = false;
} else {
auto iTMax1 = iTMin + provDT * m_numLogSteps;
if (iTMax1 <= iTMax) { // == is possible
m_numLogSteps++;
iTMax1 = iTMin + provDT * m_numLogSteps;
}
m_TRangeMax = Kernel::DateAndTime(iTMax1);
}
}
if (!useLogAccuracy) {
// histogramming excludes rightmost events. Modify max limit to keep them
m_TRangeMax = runTMax + eps_increment; // Should be
// *(1+std::numeric_limits<double>::epsilon())
// but DateTime does not have multiplication
// operator
}
}
/* Retrieve and define data search ranges from input workspace parameters and
*@param InputWorkspace -- event workspace to process. Also retrieves algorithm
*@return -- the input workspace cropped according to XMin-XMax ranges in units,
void CalculateCountRate::setSourceWSandXRanges(
DataObjects::EventWorkspace_sptr &InputWorkspace) {
std::string RangeUnits = getProperty("RangeUnits");
const auto unit = axis->unit();
API::MatrixWorkspace_sptr wst;
if (unit->unitID() != RangeUnits) {
auto conv = createChildAlgorithm("ConvertUnits", 0, 1);
std::string wsName = InputWorkspace->name();
if (wsName.empty()) {
wsName = "_CountRate_UnitsConverted";
} else {
wsName = "_" + wsName + "_converted";
}
conv->setProperty("InputWorkspace", InputWorkspace);
conv->setPropertyValue("OutputWorkspace", wsName);
std::string Emode = getProperty("Emode");
conv->setProperty("Emode", Emode);
conv->execute();
wst = conv->getProperty("OutputWorkspace");
} else {
wst = InputWorkspace;
m_workingWS = boost::dynamic_pointer_cast<DataObjects::EventWorkspace>(wst);
if (!m_workingWS) {
throw std::runtime_error("SetWSDataRanges:Can not retrieve EventWorkspace "
"after converting units");
}
// data ranges
m_XRangeMin = getProperty("XMin");
m_XRangeMax = getProperty("XMax");
if (m_XRangeMin == EMPTY_DBL() && m_XRangeMax == EMPTY_DBL()) {
m_rangeExplicit = false;
} else {
m_rangeExplicit = true;
}
m_workingWS->getEventXMinMax(realMin, realMax);
if (!m_rangeExplicit) { // The range is the whole workspace range
m_XRangeMin = realMin;
// include rightmost limit into the histogramming
m_XRangeMax = realMax * (1. + std::numeric_limits<double>::epsilon());
if (m_XRangeMin == EMPTY_DBL()) {
}
if (m_XRangeMax == EMPTY_DBL()) {
// include rightmost limit into the histogramming
m_XRangeMax = realMax * (1. + std::numeric_limits<double>::epsilon());
g_log.debug() << "Workspace constrain min range changed from: "
<< m_XRangeMin << " To: " << realMin << std::endl;
m_XRangeMin = realMin;
g_log.debug() << "Workspace constrain max range changed from: "
<< m_XRangeMax << " To: " << realMax << std::endl;
m_XRangeMax = realMax * (1. + std::numeric_limits<double>::epsilon());
// check final ranges valid
if (m_XRangeMax < realMin || m_XRangeMin > realMax) {
throw std::invalid_argument(
" Spurion data search range: [" + std::to_string(m_XRangeMin) + "," +
std::to_string(m_XRangeMin) +
"] lies outside of the workspace's real data range: [" +
std::to_string(realMin) + "," + std::to_string(realMax) + "]");
}
if (m_XRangeMin > m_XRangeMax) {
throw std::invalid_argument(" Minimal spurion search data limit is bigger "
"than the maximal limit. ( Min: " +
std::to_string(m_XRangeMin) + "> Max: " +
std::to_string(m_XRangeMax) + ")");
/**Check if visualization workspace is necessary and initiate it if requested.
* Sets or clears up internal m_visWS pointer and "do-visualization workspace"
* option.
*/
void CalculateCountRate::checkAndInitVisWorkspace() {
std::string visWSName = getProperty("VisualizationWs");
if (visWSName.empty()) {
m_visWs.reset();
m_doVis = false;
m_doVis = true;
int numTBins = getProperty("NumTimeSteps");
if (numTBins > m_numLogSteps) {
g_log.information() << "Number of time step in normalized visualization "
"workspace exceeds the number of points in the "
"normalization log. This mode is not supported so "
"number of time steps decreased to be equal to "
"the number of normalization log points\n";
numTBins = m_numLogSteps;
}
}
int numXBins = getProperty("XResolution");
std::string RangeUnits = getProperty("RangeUnits");
m_visWs = boost::dynamic_pointer_cast<DataObjects::Workspace2D>(
API::WorkspaceFactory::Instance().create("Workspace2D", numTBins,
numXBins + 1, numXBins));
m_visWs->setTitle(visWSName);
double Xmax = m_XRangeMax;
// a bit dodgy code. It can be generalized
if (std::isinf(Xmax)) {
const auto &Xbin = m_workingWS->x(0);
for (int64_t i = Xbin.size() - 1; i >= 0; --i) {
if (!std::isinf(Xbin[i])) {
Xmax = Xbin[i];
break;
}
}
if (std::isinf(Xmax)) {
g_log.warning() << "All X-range for visualization workspace is infinity. "
"Can not build visualization workspace in the units "
"requested\n";
m_visWs.reset();
m_doVis = false;
return;
}
}
// define X-axis in target units
double dX = (Xmax - m_XRangeMin) / numXBins;
std::vector<double> xx(numXBins);
xx[i] = m_XRangeMin + (0.5 + static_cast<double>(i)) * dX;
auto ax0 = Kernel::make_unique<API::NumericAxis>(xx);
ax0->setUnit(RangeUnits);
m_visWs->replaceAxis(0, ax0.release());
// define Y axis (in seconds);
double dt = (static_cast<double>(m_TRangeMax.totalNanoseconds() -
m_TRangeMin.totalNanoseconds()) /
static_cast<double>(numTBins)) *
1.e-9;
xx.resize(numTBins);
xx[i] = (0.5 + static_cast<double>(i)) * dt;
auto ax1 = Kernel::make_unique<API::NumericAxis>(xx);
auto labelY = boost::dynamic_pointer_cast<Kernel::Units::Label>(
Kernel::UnitFactory::Instance().create("Label"));
labelY->setLabel("sec");
ax1->unit() = labelY;
m_visWs->replaceAxis(1, ax1.release());
setProperty("VisualizationWs", m_visWs);
// define binning parameters used while calculating visualization
m_visX0 = m_XRangeMin;
m_visDX = dX;
m_visT0 = static_cast<double>(m_TRangeMin.totalNanoseconds());
m_visTmax = static_cast<double>(m_TRangeMax.totalNanoseconds());
m_visDT = (m_visTmax - m_visT0) / static_cast<double>(numTBins);
m_visNorm.resize(numTBins);
this->buildVisWSNormalization(m_visNorm);
}
/** Helper function to check if visualization workspace should be used*/
bool CalculateCountRate::buildVisWS() const { return m_doVis; }
/** Helper function, mainly for testing
* @return true if count rate should be normalized and false
* otherwise */
bool CalculateCountRate::normalizeCountRate() const {
return m_normalizeResult;
}
/** Helper function, mainly for testing
* @return true if log derivative is used instead of log itself */
bool CalculateCountRate::useLogDerivative() const { return m_useLogDerivative; }
/** method to prepare normalization vector for the visualisation workspace using
* data from normalization log with, usually, different number of time steps
* Here we assume that the number of time points in the visualization workspace
* is smaller or equal to the number of points in the normalization log.
*
@param normalization -- on output, the vector containing normalization
* coefficients for the visualization workspace spectra
void CalculateCountRate::buildVisWSNormalization(
std::vector<double> &normalization) {
if (!m_pNormalizationLog) {
m_normalizeResult = false;
g_log.warning() << "CalculateCountRate::buildVisWSNormalization: No source "
"normalization log is found. Will not normalize "
"visualization workspace\n";
return;
}
// visualization workspace should be present and initialized at this stage:
auto ax = dynamic_cast<API::NumericAxis *>(m_visWs->getAxis(1));
if (!ax)
throw std::runtime_error(
"Can not retrieve Y-axis from visualization workspace");
normalization.assign(ax->length(), 0.);
// For more accurate logging (in a future, if necessary:)
// auto t_bins = ax->createBinBoundaries();
// double dt = t_bins[2] - t_bins[1]; // equal bins, first bin may be weird.
//
m_pNormalizationLog->histogramData(m_TRangeMin, m_TRangeMax, normalization);
} // namespace Algorithms
} // namespace Mantid