Newer
Older
#include "MantidAlgorithms/CalcCountRate.h"
#include "MantidKernel/PropertyWithValue.h"
#include "MantidKernel/BoundedValidator.h"
#include "MantidKernel/TimeSeriesProperty.h"
#include "MantidKernel/ListValidator.h"
#include "MantidKernel/UnitFactory.h"
#include "MantidKernel/MandatoryValidator.h"
#include "MantidAPI/Axis.h"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include "MantidDataObjects/Workspace2D.h"
namespace Mantid {
namespace Algorithms {
// Register the algorithm into the AlgorithmFactory
DECLARE_ALGORITHM(CalcCountRate)
//----------------------------------------------------------------------------------------------
/// Algorithms name for identification. @see Algorithm::name
const std::string CalcCountRate::name() const { return "CalcCountRate"; }
/// Algorithm's version for identification. @see Algorithm::version
int CalcCountRate::version() const { return 1; }
/// Algorithm's category for identification. @see Algorithm::category
const std::string CalcCountRate::category() const {
return "Inelastic\\Utility";
}
/// Algorithm's summary for use in the GUI and help. @see Algorithm::summary
const std::string CalcCountRate::summary() const {
return "Calculates instrument count rate as the function of the "
"experiment time and adds CountRate log to the source workspace.";
}
//----------------------------------------------------------------------------------------------
/** Declare the algorithm's properties.
*/
void CalcCountRate::init() {
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<DataObjects::EventWorkspace>>(
"Workspace", "", Kernel::Direction::InOut),
"Name of the event workspace to calculate counting rate for.");
declareProperty(Kernel::make_unique<Kernel::PropertyWithValue<double>>(
"XMin", EMPTY_DBL(), Kernel::Direction::Input),
"Minimal value of X-range for the rate calculations. If left "
"to default, Workspace X-axis minimal value is used.");
declareProperty(Kernel::make_unique<Kernel::PropertyWithValue<double>>(
"XMax", EMPTY_DBL(), Kernel::Direction::Input),
"Maximal value of X-range for the rate calculations. If left "
"to default, Workspace X-axis maximal value is used.");
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<std::string>>(
"RangeUnits", "Energy",
boost::make_shared<Kernel::StringListValidator>(
Kernel::UnitFactory::Instance().getKeys()),
Kernel::Direction::Input),
"The units from Mantid Unit factory for calculating the "
"counting rate and XMin-XMax ranges are in. If the "
"X-axis of the input workspace is not expressed"
"in this units, unit conversion will be performed, so the "
"workspace should contain all necessary information for this "
"conversion. E.g. if *RangeUnits* is *EnergyTransfer*, Ei "
"log containing incident energy value should be attached to the "
"input workspace.");
std::vector<std::string> propOptions{"Elastic", "Direct", "Indirect"};
declareProperty("EMode", "Elastic",
boost::make_shared<Kernel::StringListValidator>(propOptions),
"The range units above conversion mode (default: elastic)");
// Used logs group
std::string used_logs_mode("Used normalization logs");
declareProperty(
"NormalizeTheRate", true,
"Usually you want to normalize counting rate to some "
"rate related to the source beam intensity. Change this to "
"'false' if appropriate time series log is broken || not attached to "
"the input workspace.");
declareProperty("UseLogDerivative", false, "If the normalization log gives "
"cumulative counting, derivative "
"of this log is necessary to get "
"correct normalization values.");
declareProperty(
"NormalizationLogName", "proton_charge",
"The name of the log, used in the counting rate normalization. ");
declareProperty(
"UseNormLogGranularity", true,
"If true, the calculated log will have the normalization log "
"accuracy; If false, the 'NumTimeSteps' in the visualization "
"workspace below will be used for the target log granularity too.");
setPropertyGroup("NormalizeTheRate", used_logs_mode);
setPropertyGroup("UseLogDerivative", used_logs_mode);
setPropertyGroup("NormalizationLogName", used_logs_mode);
setPropertyGroup("UseNormLogGranularity", used_logs_mode);
declareProperty(
"CountRateLogName", "block_count_rate",
boost::make_shared<Kernel::MandatoryValidator<std::string>>(),
"The name of the processed time series log with count rate to add"
" to the source workspace");
// visualisation group
std::string spur_vis_mode("Spurion visualisation");
declareProperty(
Kernel::make_unique<API::WorkspaceProperty<DataObjects::Workspace2D>>(
"VisualizationWs", "", Kernel::Direction::Output,
API::PropertyMode::Optional),
"Optional name to build 2D matrix workspace for spurion visualization. "
"If name is provided, a 2D workspace with this name will be created "
"containing data to visualize counting rate as function of time in the "
"ranges "
auto mustBeReasonable = boost::make_shared<Kernel::BoundedValidator<int>>();
mustBeReasonable->setLower(2);
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<int>>(
"NumTimeSteps", 200, mustBeReasonable, Kernel::Direction::Input),
"Number of time steps (time accuracy) the visualization workspace has. "
"Also number of steps in 'CountRateLogName' log if "
"'UseNormLogGranularity' is set to false");
declareProperty(
Kernel::make_unique<Kernel::PropertyWithValue<int>>(
"XResolution", 100, mustBeReasonable, Kernel::Direction::Input),
"Number of steps (accuracy) of the visualization workspace has along "
"X-axis. ");
setPropertyGroup("VisualizationWs", spur_vis_mode);
setPropertyGroup("NumTimeSteps", spur_vis_mode);
setPropertyGroup("XResolution", spur_vis_mode);
}
//----------------------------------------------------------------------------------------------
/** Execute the algorithm.
*/
void CalcCountRate::exec() {
DataObjects::EventWorkspace_sptr sourceWS = getProperty("Workspace");
// Identity correct way to treat input logs and general properties of output
// log
this->setOutLogParameters(sourceWS);
//
std::string SourceWSName = sourceWS->name();
if (SourceWSName.size() == 0) {
SourceWSName = "CalcCountRateInputWS";
}
auto summator = createChildAlgorithm("SumSpectra", 0, 1);
summator->setProperty("InputWorkspace", sourceWS);
summator->setProperty("OutputWorkspace", "__" + SourceWSName + "_Sum");
summator->setProperty("IncludeMonitors", false);
summator->execute();
API::MatrixWorkspace_sptr source = summator->getProperty("OutputWorkspace");
m_workingWS =
boost::dynamic_pointer_cast<DataObjects::EventWorkspace>(source);
if (!m_workingWS) {
throw std::invalid_argument(
"Can not sum spectra of input event workspace: " + sourceWS->name());
}
//-------------------------------------
this->setWSDataRanges(m_workingWS);
// create results log and add it to the source workspace
std::string logname = getProperty("CountRateLogName");
auto newlog = new Kernel::TimeSeriesProperty<double>(logname);
sourceWS->mutableRun().addProperty(newlog, true);
// calculate averages requested and modify results log
this->calcRateLog(m_workingWS,newlog);
// clear up log derivative and existing log pointer (if any)
// to avoid incorrect usage
// at subsequent calls to the same algorithm.
m_logDerivHolder.release();
m_pNormalizationLog = nullptr;
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
auto newlog = new TimeSeriesProperty<double>(logname);
newlog->setUnits(oldlog->units());
int size = oldlog->realSize();
vector<double> values = oldlog->valuesAsVector();
vector<DateAndTime> times = oldlog->timesAsVector();
for (int i = 0; i < size; i++) {
newlog->addValue(times[i] + offset, values[i]);
}
// Just overwrite if the change is in place
MatrixWorkspace_sptr outputWS = getProperty("OutputWorkspace");
if (outputWS != inputWS) {
IAlgorithm_sptr duplicate = createChildAlgorithm("CloneWorkspace");
duplicate->initialize();
duplicate->setProperty<Workspace_sptr>(
"InputWorkspace", boost::dynamic_pointer_cast<Workspace>(inputWS));
duplicate->execute();
Workspace_sptr temp = duplicate->getProperty("OutputWorkspace");
outputWS = boost::dynamic_pointer_cast<MatrixWorkspace>(temp);
setProperty("OutputWorkspace", outputWS);
}
outputWS->mutableRun().addProperty(newlog, true);
*/
}
void CalcCountRate::calcRateLog(DataObjects::EventWorkspace_sptr &InputWorkspace,
Kernel::TimeSeriesProperty<double> *const targLog) {
}
/*Analyse input log parameters and logs, attached to the workspace and identify
@param InputWorkspace -- input workspace to analyse logs
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
void CalcCountRate::setOutLogParameters(
const DataObjects::EventWorkspace_sptr &InputWorkspace) {
std::string NormLogName = getProperty("NormalizationLogName");
bool normalizeResult = getProperty("NormalizeTheRate");
bool useLogDerivative = getProperty("UseLogDerivative");
bool useLogAccuracy = getProperty("UseNormLogGranularity");
bool logPresent = InputWorkspace->run().hasProperty(NormLogName);
if (!logPresent) {
if (normalizeResult) {
g_log.warning() << "Normalization by log " << NormLogName
<< " values requested but the log is not attached to the "
"workspace. Normalization disabled\n";
normalizeResult = false;
}
if (useLogDerivative) {
g_log.warning() << "Normalization by log " << NormLogName
<< " derivative requested but the log is not attached to "
"the workspace. Normalization disabled\n";
useLogDerivative = false;
}
if (useLogAccuracy) {
g_log.warning() << "Using accuracy of the log " << NormLogName
<< " is requested but the log is not attached to the "
"'NumTimeSteps' property value\n";
useLogAccuracy = false;
}
} else {
m_pNormalizationLog =
InputWorkspace->run().getTimeSeriesProperty<double>(NormLogName);
// Analyse properties interactions
// if property derivative is specified.
if (useLogDerivative) {
m_logDerivHolder = m_pNormalizationLog->getDerivative();
m_pNormalizationLog = m_logDerivHolder.get();
}
///
if (useLogAccuracy) {
m_numLogSteps = m_pNormalizationLog->realSize();
} else {
m_numLogSteps = getProperty("NumTimeSteps");
}
}
/* Retrieve and define data search ranges from input workspace parameters and
*@param InputWorkspace -- event workspace to process. Also retrieves algorithm
*@return -- the input workspace cropped according to XMin-XMax ranges in units,
void CalcCountRate::setWSDataRanges(
DataObjects::EventWorkspace_sptr &InputWorkspace) {
m_XRangeMin = getProperty("XMin");
m_XRangeMax = getProperty("XMax");
if (m_XRangeMin == EMPTY_DBL() && m_XRangeMax == EMPTY_DBL()) {
m_rangeExplicit = true;
}
if (!m_rangeExplicit) {
InputWorkspace->getEventXMinMax(m_XRangeMin, m_XRangeMax);
std::string RangeUnits = getProperty("RangeUnits");
const auto unit = axis->unit();
API::MatrixWorkspace_sptr wst;
std::string wsName = InputWorkspace->name();
if (wsName.size() == 0) {
}
if (unit->unitID() != RangeUnits) {
auto conv = createChildAlgorithm("ConvertUnits", 0, 1);
conv->setProperty("InputWorkspace", InputWorkspace);
conv->setPropertyValue("OutputWorkspace", wsName);
std::string Emode = getProperty("Emode");
conv->setProperty("Emode", Emode);
conv->execute();
wst = conv->getProperty("OutputWorkspace");
} else {
wst = InputWorkspace;
auto wste = boost::dynamic_pointer_cast<DataObjects::EventWorkspace>(wst);
if (!wste) {
throw std::runtime_error("SetWSDataRanges:Can not retrieve EventWorkspace "
"after converting units");
}
// here the ranges have been changed so both will newer remain defaults
double realMin, realMax;
wste->getEventXMinMax(realMin, realMax);
if (m_XRangeMin == EMPTY_DBL()) {
}
if (m_XRangeMax == EMPTY_DBL()) {
m_XRangeMax = realMax;
}
if (m_XRangeMin < realMin) {
g_log.debug() << "Workspace constrain min range changed from: "
<< m_XRangeMin << " To: " << realMin << std::endl;
m_XRangeMin = realMin;
g_log.debug() << "Workspace constrain max range changed from: "
<< m_XRangeMax << " To: " << realMax << std::endl;
m_XRangeMax = realMax;
}
//
auto crop = createChildAlgorithm("CropWorkspace", 0, 1);
crop->setProperty("InputWorkspace", wste);
crop->setProperty("OutputWorkspace", wsName);
crop->setProperty("XMin", m_XRangeMin);
crop->setProperty("XMax", m_XRangeMax);
crop->execute();
wst = crop->getProperty("OutputWorkspace");
InputWorkspace =
boost::dynamic_pointer_cast<DataObjects::EventWorkspace>(wst);
throw std::runtime_error(
"Can not crop input workspace within the XMin-XMax ranges requested");
/** Helper function, mainly for testing
* @return true if count rate should be normalized and false
* otherwise */
bool CalcCountRate::notmalizeCountRate() const {
return (m_pNormalizationLog != nullptr);
}
/** Helper function, mainly for testing
* @return true if log derivative is used instead of log itself */
bool CalcCountRate::useLogDerivative() const { return bool(m_logDerivHolder); }
} // namespace Algorithms
} // namespace Mantid