Newer
Older
#pylint: disable=no-init
"""
This is a Python algorithm, with profile
fitting for integrating peaks.
"""
# This __future__ import is for Python 2/3 compatibility
from __future__ import (absolute_import, division, print_function)
from mantid.kernel import *
from mantid.api import *
from mantid.simpleapi import *
import numpy as np
class IntegratePeaksProfileFitting(PythonAlgorithm):
def summary(self):
return 'Fits a series of peaks using 3D profile fitting as an Ikeda-Carpenter function by a bivariate gaussian.'
def category(self):
# defines the category the algorithm will be put in the algorithm browser
return 'Crystal\\Integration'
def PyInit(self):
# Declare a property for the output workspace
self.declareProperty(WorkspaceProperty(name='OutputPeaksWorkspace',
defaultValue='',
direction=Direction.Output),
doc='PeaksWorkspace with integrated peaks')
self.declareProperty(WorkspaceProperty(name='OutputParamsWorkspace',
defaultValue='',
direction=Direction.Output),
doc='MatrixWorkspace with fit parameters')
self.declareProperty(WorkspaceProperty(name='InputWorkspace',
defaultValue='',
direction=Direction.Input),
doc='An input Sample MDHistoWorkspace or MDEventWorkspace in HKL.')
self.declareProperty(WorkspaceProperty(name='PeaksWorkspace',
defaultValue='',
direction=Direction.Input),
doc='PeaksWorkspace with peaks to be integrated.')
self.declareProperty("RunNumber", defaultValue=0,
doc="Run Number to integrate")
self.declareProperty(FileProperty(name="UBFile",defaultValue="",action=FileAction.OptionalLoad,
extensions=[".mat"]),
doc="File containing the UB Matrix in ISAW format. Leave blank to use loaded UB Matrix.")
self.declareProperty(FileProperty(name="ModeratorCoefficientsFile",
defaultValue="",action=FileAction.OptionalLoad,
extensions=[".dat"]),
doc="File containing the Pade coefficients describing moderator emission versus energy.")
self.declareProperty(FileProperty("StrongPeakParamsFile",defaultValue="",action=FileAction.OptionalLoad,
extensions=[".pkl"]),
doc="File containing strong peaks profiles. If left blank, no profiles will be enforced.")
self.declareProperty("IntensityCutoff", defaultValue=0., doc="Minimum number of counts to force a profile")
edgeDocString = 'Pixels within EdgeCutoff from a detector edge will be have a profile forced. Currently for 256x256 cameras only.'
self.declareProperty("EdgeCutoff", defaultValue=0., doc=edgeDocString)
self.declareProperty("FracStop", defaultValue=0.05, validator=FloatBoundedValidator(lower=0., exclusive=True),
doc="Fraction of max counts to include in peak selection.")
self.declareProperty("MinpplFrac", defaultValue=0.9, doc="Min fraction of predicted background level to check")
self.declareProperty("MaxpplFrac", defaultValue=1.1, doc="Max fraction of predicted background level to check")
self.declareProperty("DQMax", defaultValue=0.15, doc="Largest total side length (in Angstrom) to consider for profile fitting.")
self.declareProperty("PeakNumber", defaultValue=-1, doc="Which Peak to fit. Leave negative for all.")
def PyExec(self):
import ICCFitTools as ICCFT
import BVGFitTools as BVGFT
from mantid.simpleapi import LoadIsawUB
import pickle
from scipy.ndimage.filters import convolve
MDdata = self.getProperty('InputWorkspace').value
peaks_ws = self.getProperty('PeaksWorkspace').value
fracStop = self.getProperty('FracStop').value
dQMax = self.getProperty('DQMax').value
UBFile = self.getProperty('UBFile').value
padeFile = self.getProperty('ModeratorCoefficientsFile').value
strongPeaksParamsFile = self.getProperty('StrongPeakParamsFile').value
forceCutoff = self.getProperty('IntensityCutoff').value
edgeCutoff = self.getProperty('EdgeCutoff').value
peakNumberToFit = self.getProperty('PeakNumber').value
if UBFile == '' and peaks_ws.sample().hasOrientedLattice():
logger.information("Using UB file already available in PeaksWorkspace")
else:
try:
LoadIsawUB(InputWorkspace=peaks_ws, FileName=UBFile)
except:
logger.error("peaks_ws does not have a UB matrix loaded. Must provide a file")
UBMatrix = peaks_ws.sample().getOrientedLattice().getUB()
dQ = np.abs(ICCFT.getDQFracHKL(UBMatrix, frac=0.5))
dQ[dQ>dQMax] = dQMax
q_frame='lab'
mtd['MDdata'] = MDdata
padeCoefficients = ICCFT.getModeratorCoefficients(padeFile)
if strongPeaksParamsFile != "":
if sys.version_info[0] == 3:
strongPeakParams = pickle.load(open(strongPeaksParamsFile, 'rb'),encoding='latin1')
else:
strongPeakParams = pickle.load(open(strongPeaksParamsFile, 'rb'))
strongPeakParams = None #This will not force any profiles
zBG = 1.96
pplmin_frac = self.getProperty('MinpplFrac').value
pplmax_frac = self.getProperty('MaxpplFrac').value
sampleRun = self.getProperty('RunNumber').value
# There are a few instrument specific parameters that we define here. In some cases,
# it may improve fitting to set tweak these parameters, but for simplicity we define these here
# The default values are good for MaNDi - new instruments can be added by adding a different elif
# statement.
# If you change these values or add an instrument, documentation should also be changed.
instrumentName = peaks_ws.getInstrument().getFullName()
mindtBinWidth = 15
maxdtBinWidth = 50
nTheta = 50
nPhi = 50
fracHKL = 0.4
if instrumentName == 'MANDI':
pass
elif instrumentName == 'TOPAZ':
mindtBinWidth = 2
maxdtBinWidth = 15
nTheta=50
nPhi = 50
fracHKL = 0.4
elif instrumentName == 'CORELLI':
mindtBinWidth = 2
maxdtBinWidth = 60
nTheta=50
nPhi = 50
fracHKL = 0.4
else:
logger.warning("Instrument name {} not found! Falling back on default parameters!".format(instrumentName))
neigh_length_m=3
qMask = ICCFT.getHKLMask(UBMatrix, frac=fracHKL, dQPixel=dQPixel,dQ=dQ)
numgood = 0
numerrors = 0
# Create the parameters workspace
keys = ['peakNumber','Alpha', 'Beta', 'R', 'T0', 'bgBVG', 'chiSq3d', 'chiSq', 'dQ', 'KConv', 'MuPH',
'MuTH', 'newQ', 'Scale', 'scale3d', 'SigP', 'SigX', 'SigY', 'Intens3d', 'SigInt3d']
datatypes = ['float']*len(keys)
datatypes[np.where(np.array(keys)=='newQ')[0][0]] = 'V3D'
params_ws = CreateEmptyTableWorkspace()
for key, datatype in zip(keys,datatypes):
params_ws.addColumn(datatype, key)
# Set the peak numbers we're fitting
if peakNumberToFit < 0:
peaksToFit = range(peaks_ws.getNumberPeaks())
else:
peaksToFit = [peakNumberToFit]
# And we're off!
peaks_ws_out = peaks_ws.clone()
np.warnings.filterwarnings('ignore') # There can be a lot of warnings for bad solutions that get rejected.
progress = Progress(self, 0.0, 1.0, len(peaksToFit))
for peakNumber in peaksToFit:#range(peaks_ws.getNumberPeaks()):
peak = peaks_ws_out.getPeak(peakNumber)
progress.report(' ')
try:
if peak.getRunNumber() == sampleRun:
box = ICCFT.getBoxFracHKL(peak, peaks_ws, MDdata, UBMatrix, peakNumber,
dQ, fracHKL=0.5, dQPixel=dQPixel, q_frame=q_frame)
# Will force weak peaks to be fit using a neighboring peak profile
Y3D, goodIDX, pp_lambda, params = BVGFT.get3DPeak(peak, box, padeCoefficients,qMask,
nTheta=nTheta, nPhi=nPhi, plotResults=False,
zBG=zBG,fracBoxToHistogram=1.0,bgPolyOrder=1,
strongPeakParams=strongPeakParams,
q_frame=q_frame, mindtBinWidth=mindtBinWidth,
pplmin_frac=pplmin_frac, pplmax_frac=pplmax_frac,
forceCutoff=forceCutoff, edgeCutoff=edgeCutoff,
instrumentName=instrumentName)
# First we get the peak intensity
peakIDX = Y3D/Y3D.max() > fracStop
intensity = np.sum(Y3D[peakIDX])
# Now the number of background counts under the peak assuming a constant bg across the box
n_events = box.getNumEventsArray()
convBox = 1.0*np.ones([neigh_length_m, neigh_length_m,neigh_length_m]) / neigh_length_m**3
conv_n_events = convolve(n_events,convBox)
bgIDX = reduce(np.logical_and,[~goodIDX, qMask, conv_n_events>0])
bgEvents = np.mean(n_events[bgIDX])*np.sum(peakIDX)
# Now we consider the variation of the fit. These are done as three independent fits. So we need to consider
# the variance within our fit sig^2 = sum(N*(yFit-yData)) / sum(N) and scale by the number of parameters that go into
# the fit. In total: 10 (removing scale variables)
# TODO: It's not clear to me if we should be normalizing by #params - so we'll leave it for now.
w_events = n_events.copy()
w_events[w_events==0] = 1
varFit = np.average((n_events[peakIDX]-Y3D[peakIDX])*(n_events[peakIDX]-Y3D[peakIDX]), weights=(w_events[peakIDX]))
sigma = np.sqrt(intensity + bgEvents + varFit)
compStr = 'peak {:d}; original: {:4.2f} +- {:4.2f}; new: {:4.2f} +- {:4.2f}'.format(peakNumber,
peak.getIntensity(),
peak.getSigmaIntensity(),
intensity, sigma)
logger.information(compStr)
# Save the results
params['peakNumber'] = peakNumber
params['Intens3d'] = intensity
params['SigInt3d'] = sigma
params['newQ'] = V3D(params['newQ'][0],params['newQ'][1],params['newQ'][2])
params_ws.addRow(params)
peak.setIntensity(intensity)
peak.setSigmaIntensity(sigma)
numgood += 1
except KeyboardInterrupt:
np.warnings.filterwarnings('default') # Re-enable on exit
raise
except:
peak.setIntensity(0.0)
peak.setSigmaIntensity(1.0)
# Cleanup
#for wsName in mtd.getObjectNames():
# if 'fit_' in wsName or 'bvgWS' in wsName or 'tofWS' in wsName or 'scaleWS' in wsName:
# mtd.remove(wsName)
np.warnings.filterwarnings('default') # Re-enable on exit
# Set the output
self.setProperty('OutputPeaksWorkspace', peaks_ws_out)
self.setProperty('OutputParamsWorkspace', params_ws)
# Register algorith with Mantid
AlgorithmFactory.subscribe(IntegratePeaksProfileFitting)