Newer
Older
#pylint: disable=no-init
"""
This is a Python algorithm, with profile
fitting for integrating peaks.
"""
# This __future__ import is for Python 2/3 compatibility
from __future__ import (absolute_import, division, print_function)
from mantid.kernel import *
from mantid.api import *
from mantid.simpleapi import *
import numpy as np
class IntegratePeaksProfileFitting(PythonAlgorithm):
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
def summary(self):
return 'Fits a series fo peaks using 3D profile fitting as an Ikeda-Carpenter function by a bivariate gaussian.'
def category(self):
# defines the category the algorithm will be put in the algorithm browser
return 'Crystal\\Integration'
def PyInit(self):
# Declare properties
# Declare a property for the output workspace
self.declareProperty(WorkspaceProperty(name='OutputPeaksWorkspace',
defaultValue='',
direction=Direction.Output),
doc='PeaksWorkspace with integrated peaks')
self.declareProperty(WorkspaceProperty(name='OutputParamsWorkspace',
defaultValue='',
direction=Direction.Output),
doc='MatrixWorkspace with fit parameters')
self.declareProperty(WorkspaceProperty(name='InputWorkspace',
defaultValue='',
direction=Direction.Input),
doc='An input Sample MDHistoWorkspace or MDEventWorkspace in HKL.')
self.declareProperty(WorkspaceProperty(name='PeaksWorkspace',
defaultValue='',
direction=Direction.Input),
doc='PeaksWorkspace with peaks to be integrated.')
self.declareProperty("RunNumber", defaultValue=0,
doc="Run Number to integrate")
self.declareProperty("DQPixel", defaultValue=0.003, validator=FloatBoundedValidator(lower=0., exclusive=True),
doc="The side length of each voxel in the non-MD histogram used for fitting (1/Angstrom)")
self.declareProperty(FileProperty(name="UBFile",defaultValue="",action=FileAction.OptionalLoad,
extensions=[".mat"]),
doc="File containing the UB Matrix in ISAW format.")
self.declareProperty(FileProperty(name="ModeratorCoefficientsFile",
defaultValue="",action=FileAction.OptionalLoad,
extensions=[".dat"]),
doc="File containing the Pade coefficients describing moderator emission versus energy.")
self.declareProperty(FileProperty("StrongPeakParamsFile",defaultValue="",action=FileAction.OptionalLoad,
extensions=[".pkl"]))
self.declareProperty("IntensityCutoff", defaultValue=0., doc="Minimum number of counts to force a profile")
edgeDocString = 'Pixels within EdgeCutoff from a detector edge will be have a profile forced. Currently for Anger cameras only.'
self.declareProperty("EdgeCutoff", defaultValue=0., doc=edgeDocString)
self.declareProperty("FracHKL", defaultValue=0.5, validator=FloatBoundedValidator(lower=0., exclusive=True),
doc="Fraction of HKL to consider for profile fitting.")
self.declareProperty("FracStop", defaultValue=0.05, validator=FloatBoundedValidator(lower=0., exclusive=True),
doc="Fraction of max counts to include in peak selection.")
self.declareProperty(FloatArrayProperty("PredPplCoefficients", values=np.array([6.12, 8.87 , -0.09]),
direction=Direction.Input),
doc="Coefficients for estimating the background. This can vary wildly between datasets.")
self.declareProperty("MinpplFrac", defaultValue=0.7, doc="Min fraction of predicted background level to check")
self.declareProperty("MaxpplFrac", defaultValue=1.5, doc="Max fraction of predicted background level to check")
mindtBinWidthDocString = "Smallest spacing (in microseconds) between data points for TOF profile fitting."
self.declareProperty("MindtBinWidth", defaultValue=15, doc=mindtBinWidthDocString)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
self.declareProperty("NTheta", defaultValue=50, doc="Number of bins for bivarite Gaussian along the scattering angle.")
self.declareProperty("NPhi", defaultValue=50, doc="Number of bins for bivariate Gaussian along the azimuthal angle.")
self.declareProperty("DQMax", defaultValue=0.15, doc="Largest total side length (in Angstrom) to consider for profile fitting.")
self.declareProperty("DtSpread", defaultValue=0.03, validator=FloatBoundedValidator(lower=0., exclusive=True),
doc="The fraction of the peak TOF to consider for TOF profile fitting.")
self.declareProperty("PeakNumber", defaultValue=-1, doc="Which Peak to Fit. Leave negative for all.")
def PyExec(self):
import ICCFitTools as ICCFT
import BVGFitTools as BVGFT
from mantid.simpleapi import LoadIsawUB
import pickle
from scipy.ndimage.filters import convolve
MDdata = self.getProperty('InputWorkspace').value
peaks_ws = self.getProperty('PeaksWorkspace').value
fracHKL = self.getProperty('FracHKL').value
fracStop = self.getProperty('FracStop').value
dQMax = self.getProperty('DQMax').value
UBFile = self.getProperty('UBFile').value
padeFile = self.getProperty('ModeratorCoefficientsFile').value
strongPeaksParamsFile = self.getProperty('StrongPeakParamsFile').value
forceCutoff = self.getProperty('IntensityCutoff').value
edgeCutoff = self.getProperty('EdgeCutoff').value
peakNumberToFit = self.getProperty('PeakNumber').value
LoadIsawUB(InputWorkspace=peaks_ws, FileName=UBFile)
UBMatrix = peaks_ws.sample().getOrientedLattice().getUB()
dQ = np.abs(ICCFT.getDQFracHKL(UBMatrix, frac=0.5))
dQ[dQ>dQMax] = dQMax
dQPixel = self.getProperty('DQPixel').value
q_frame='lab'
mtd['MDdata'] = MDdata
padeCoefficients = ICCFT.getModeratorCoefficients(padeFile)
strongPeakParams = pickle.load(open(strongPeaksParamsFile, 'rb'))
predpplCoefficients = self.getProperty('PredPplCoefficients').value
nTheta = self.getProperty('NTheta').value
nPhi = self.getProperty('NPhi').value
zBG = 1.96
mindtBinWidth = self.getProperty('MindtBinWidth').value
pplmin_frac = self.getProperty('MinpplFrac').value
pplmax_frac = self.getProperty('MaxpplFrac').value
sampleRun = self.getProperty('RunNumber').value
neigh_length_m=3
qMask = ICCFT.getHKLMask(UBMatrix, frac=fracHKL, dQPixel=dQPixel,dQ=dQ)
numgood = 0
numerrors = 0
# Create the parameters workspace
keys = ['peakNumber','Alpha', 'Beta', 'R', 'T0', 'bgBVG', 'chiSq3d', 'dQ', 'k_conv', 'muPH',
'muTH', 'newQ', 'scale', 'scale3d', 'sigP', 'sigX', 'sigY', 'Intens3d', 'SigInt3d']
datatypes = ['float']*len(keys)
datatypes[np.where(np.array(keys)=='newQ')[0][0]] = 'V3D'
params_ws = CreateEmptyTableWorkspace()
for key, datatype in zip(keys,datatypes):
params_ws.addColumn(datatype, key)
# Set the peak numbers we're fitting
if peakNumberToFit < 0:
peaksToFit = range(peaks_ws.getNumberPeaks())
else:
peaksToFit = [peakNumberToFit]
# And we're off!
peaks_ws_out = peaks_ws.clone()
for peakNumber in peaksToFit:#range(peaks_ws.getNumberPeaks()):
peak = peaks_ws_out.getPeak(peakNumber)
try:
if peak.getRunNumber() == sampleRun:
box = ICCFT.getBoxFracHKL(peak, peaks_ws, MDdata, UBMatrix, peakNumber,
dQ, fracHKL=0.5, dQPixel=dQPixel, q_frame=q_frame)
# Will force weak peaks to be fit using a neighboring peak profile
Y3D, goodIDX, pp_lambda, params = BVGFT.get3DPeak(peak, box, padeCoefficients,qMask,
nTheta=nTheta, nPhi=nPhi, plotResults=False,
zBG=zBG,fracBoxToHistogram=1.0,bgPolyOrder=1,
strongPeakParams=strongPeakParams,
predCoefficients=predpplCoefficients,
q_frame=q_frame, mindtBinWidth=mindtBinWidth,
pplmin_frac=pplmin_frac, pplmax_frac=pplmax_frac,
forceCutoff=forceCutoff, edgeCutoff=edgeCutoff)
# First we get the peak intensity
peakIDX = Y3D/Y3D.max() > fracStop
intensity = np.sum(Y3D[peakIDX])
# Now the number of background counts under the peak assuming a constant bg across the box
n_events = box.getNumEventsArray()
convBox = 1.0*np.ones([neigh_length_m, neigh_length_m,neigh_length_m]) / neigh_length_m**3
conv_n_events = convolve(n_events,convBox)
bgIDX = reduce(np.logical_and,[~goodIDX, qMask, conv_n_events>0])
bgEvents = np.mean(n_events[bgIDX])*np.sum(peakIDX)
# Now we consider the variation of the fit. These are done as three independent fits. So we need to consider
# the variance within our fit sig^2 = sum(N*(yFit-yData)) / sum(N) and scale by the number of parameters that go into
# the fit. In total: 10 (removing scale variables)
# TODO: It's not clear to me if we should be normalizing by #params - so we'll leave it for now.
w_events = n_events.copy()
w_events[w_events==0] = 1
varFit = np.average((n_events[peakIDX]-Y3D[peakIDX])*(n_events[peakIDX]-Y3D[peakIDX]), weights=(w_events[peakIDX]))
sigma = np.sqrt(intensity + bgEvents + varFit)
#print('peak %i; original: %4.2f +- %4.2f; new: %4.2f +- %4.2f'%(peakNumber, peak.getIntensity(),
# peak.getSigmaIntensity(),
# intensity, sigma))
# Save the results
params['peakNumber'] = peakNumber
params['Intens3d'] = intensity
params['SigInt3d'] = sigma
params['newQ'] = V3D(params['newQ'][0],params['newQ'][1],params['newQ'][2])
params_ws.addRow(params)
peak.setIntensity(intensity)
peak.setSigmaIntensity(sigma)
numgood += 1
except KeyboardInterrupt:
raise
except:
peak.setIntensity(0.0)
peak.setSigmaIntensity(1.0)
# Cleanup
for wsName in mtd.getObjectNames():
if 'fit_' in wsName or 'bvgWS' in wsName or 'tofWS' in wsName or 'scaleWS' in wsName:
mtd.remove(wsName)
# Set the output
self.setProperty('OutputPeaksWorkspace', peaks_ws_out)
self.setProperty('OutputParamsWorkspace', params_ws)
# Register algorith with Mantid
AlgorithmFactory.subscribe(IntegratePeaksProfileFitting)