Newer
Older
// Mantid Repository : https://github.com/mantidproject/mantid
//
// Copyright © 2018 ISIS Rutherford Appleton Laboratory UKRI,
// NScD Oak Ridge National Laboratory, European Spallation Source
// & Institut Laue - Langevin
// SPDX - License - Identifier: GPL - 3.0 +
Gigg, Martyn Anthony
committed
#include "MantidKernel/Quat.h"
#include "MantidKernel/Logger.h"
#include "MantidKernel/Matrix.h"
Gigg, Martyn Anthony
committed
#include "MantidKernel/Tolerance.h"
#include "MantidKernel/V3D.h"
namespace Mantid {
namespace Kernel {
namespace {
Logger g_log("Quat");
}
Gigg, Martyn Anthony
committed
Janik Zikovsky
committed
/** Null Constructor
* Initialize the quaternion with the identity q=1.0+0i+0j+0k;
*/
Quat::Quat() : w(1), a(0), b(0), c(0) {}
Janik Zikovsky
committed
Janik Zikovsky
committed
/**
* Construct a Quat between two vectors;
* The angle between them is defined differently from usual if vectors are not
*unit or the same length vectors, so quat would be not consistent
*
* v=(src+des)/(src+des)
Janik Zikovsky
committed
* @param src :: the source position
* @param des :: the destination position
Quat::Quat(const V3D &src, const V3D &des) {
const V3D v = Kernel::normalize(src + des);
Roman Tolchenov
committed
w = 1.;
a = b = c = 0.;
Roman Tolchenov
committed
w = v.scalar_prod(des);
Roman Tolchenov
committed
a = cross[0];
b = cross[1];
c = cross[2];
double norm = a * a + b * b + c * c + w * w;
if (fabs(norm - 1) > FLT_EPSILON) {
norm = sqrt(norm);
w /= norm;
a /= norm;
b /= norm;
c /= norm;
}
Roman Tolchenov
committed
}
Quat::Quat(const Kernel::DblMatrix &RotMat) { this->setQuat(RotMat); }
Quat::Quat(const double _w, const double _a, const double _b, const double _c)
: w(_w), a(_a), b(_b), c(_c) {}
Janik Zikovsky
committed
/** Constructor from an angle and axis.
* This construct a quaternion to represent a rotation
* of an angle _deg around the _axis. The _axis does not need to be a unit
*vector
Janik Zikovsky
committed
* @param _deg :: angle of rotation
* @param _axis :: axis to rotate about
Quat::Quat(const double _deg, const V3D &_axis) { setAngleAxis(_deg, _axis); }
Janik Zikovsky
committed
/**
* Construct a Quaternion that performs a reference frame rotation.
* Specify the X,Y,Z vectors of the rotated reference frame, assuming that
* the initial X,Y,Z vectors are aligned as expected: X=(1,0,0), Y=(0,1,0),
*Z=(0,0,1).
* The resuting quaternion rotates XYZ axes onto the provided rX, rY, rZ.
*
Janik Zikovsky
committed
* @param rX :: rotated X reference axis; unit vector.
* @param rY :: rotated Y reference axis; unit vector.
* @param rZ :: rotated Z reference axis; unit vector.
Quat::Quat(const V3D &rX, const V3D &rY, const V3D &rZ) {
// Call the operator to do the setting
}
/** Sets the quat values from four doubles
Janik Zikovsky
committed
* @param ww :: the value for w
* @param aa :: the value for a
* @param bb :: the value for b
* @param cc :: the value for c
void Quat::set(const double ww, const double aa, const double bb,
const double cc) {
w = ww;
a = aa;
b = bb;
c = cc;
Janik Zikovsky
committed
/** Constructor from an angle and axis.
* @param _deg :: angle of rotation
* @param _axis :: axis to rotate about
*
* This construct a quaternion to represent a rotation
* of an angle _deg around the _axis. The _axis does not need to be a unit
*vector
void Quat::setAngleAxis(const double _deg, const V3D &_axis) {
double deg2rad = M_PI / 180.0;
w = cos(0.5 * _deg * deg2rad);
double s = sin(0.5 * _deg * deg2rad);
const V3D temp = Kernel::normalize(_axis);
a = s * temp[0];
b = s * temp[1];
c = s * temp[2];
}
bool Quat::isNull(const double tolerance) const {
using namespace std;
double pw = fabs(w) - 1;
return (fabs(pw) < tolerance);
/// Extracts the angle of roatation and axis
Janik Zikovsky
committed
/// @param _deg :: the angle of rotation
/// @param _ax0 :: The first component of the axis
/// @param _ax1 :: The second component of the axis
/// @param _ax2 :: The third component of the axis
void Quat::getAngleAxis(double &_deg, double &_ax0, double &_ax1,
double &_ax2) const {
// If it represents a rotation of 0(2\pi), get an angle of 0 and axis (0,0,1)
if (isNull(1e-5)) {
_deg = 0;
_ax0 = 0;
_ax1 = 0;
_ax2 = 1.0;
return;
}
// Semi-angle in radians
_deg = acos(w);
// Prefactor for the axis part
double s = sin(_deg);
// Angle in degrees
_deg *= 360.0 / M_PI;
_ax0 = a / s;
_ax1 = b / s;
_ax2 = c / s;
/** Set the rotation (but don't change rotation axis).
Janik Zikovsky
committed
* @param deg :: angle of rotation
void Quat::setRotation(const double deg) {
double _deg, ax0, ax1, ax2;
this->getAngleAxis(_deg, ax0, ax1, ax2);
setAngleAxis(deg, V3D(ax0, ax1, ax2));
}
/** Sets the quat values from four doubles
Janik Zikovsky
committed
* @param ww :: the value for w
* @param aa :: the value for a
* @param bb :: the value for b
* @param cc :: the value for c
void Quat::operator()(const double ww, const double aa, const double bb,
const double cc) {
this->set(ww, aa, bb, cc);
}
/** Sets the quat values from an angle and a vector
Janik Zikovsky
committed
* @param angle :: the numbers of degrees
* @param axis :: the axis of rotation
void Quat::operator()(const double angle, const V3D &axis) {
this->setAngleAxis(angle, axis);
Janik Zikovsky
committed
* @param q :: the quat to copy
void Quat::operator()(const Quat &q) {
w = q.w;
a = q.a;
b = q.b;
c = q.c;
Janik Zikovsky
committed
/**
Janik Zikovsky
committed
* Set a Quaternion that performs a reference frame rotation.
* Specify the X,Y,Z vectors of the rotated reference frame, assuming that
* the initial X,Y,Z vectors are aligned as expected: X=(1,0,0), Y=(0,1,0),
*Z=(0,0,1).
Janik Zikovsky
committed
* The resuting quaternion rotates XYZ axes onto the provided rX, rY, rZ.
*
Janik Zikovsky
committed
* @param rX :: rotated X reference axis; unit vector.
* @param rY :: rotated Y reference axis; unit vector.
* @param rZ :: rotated Z reference axis; unit vector.
Janik Zikovsky
committed
*/
void Quat::operator()(const V3D &rX, const V3D &rY, const V3D &rZ) {
// The quaternion will combine two quaternions.
(void)rZ; // Avoid compiler warning
Janik Zikovsky
committed
constexpr V3D oX = V3D(1., 0., 0.);
constexpr V3D oY = V3D(0., 1., 0.);
Janik Zikovsky
committed
const V3D ax1 = oX.cross_prod(rX);
Quat Q1;
if (!ax1.nullVector()) {
// Rotation angle from oX to rX
const double angle1 = oX.angle(rX);
Q1.setAngleAxis(angle1 * 180.0 / M_PI, ax1);
}
// Now we rotate the original Y using Q1
Janik Zikovsky
committed
V3D roY = oY;
Q1.rotate(roY);
// Find the axis that rotates oYr onto rY
const V3D ax2 = roY.cross_prod(rY);
Quat Q2;
if (!ax2.nullVector()) {
const double angle2 = roY.angle(rY);
Q2.setAngleAxis(angle2 * 180.0 / M_PI, ax2);
}
Janik Zikovsky
committed
// Final = those two rotations in succession; Q1 is done first.
Janik Zikovsky
committed
Janik Zikovsky
committed
this->operator()(final);
}
Janik Zikovsky
committed
/** Re-initialise a quaternion to identity.
void Quat::init() {
w = 1.0;
a = b = c = 0.0;
Janik Zikovsky
committed
/** Quaternion addition operator
* @param _q :: the quaternion to add
* @return *this+_q
Quat Quat::operator+(const Quat &_q) const {
return Quat(w + _q.w, a + _q.a, b + _q.b, c + _q.c);
Janik Zikovsky
committed
/** Quaternion self-addition operator
* @param _q :: the quaternion to add
* @return *this+=_q
Quat &Quat::operator+=(const Quat &_q) {
w += _q.w;
a += _q.a;
b += _q.b;
c += _q.c;
return *this;
Janik Zikovsky
committed
/** Quaternion subtraction operator
* @param _q :: the quaternion to add
* @return *this-_q
Quat Quat::operator-(const Quat &_q) const {
return Quat(w - _q.w, a - _q.a, b - _q.b, c - _q.c);
Janik Zikovsky
committed
/** Quaternion self-substraction operator
* @param _q :: the quaternion to add
* @return *this-=_q
Quat &Quat::operator-=(const Quat &_q) {
w -= _q.w;
a -= _q.a;
b -= _q.b;
c -= _q.c;
return *this;
Janik Zikovsky
committed
/** Quaternion multiplication operator
* @param _q :: the quaternion to multiply
* @return *this*_q
*
* Quaternion multiplication is non commutative
* in the same way multiplication of rotation matrices
* isn't.
*/
Quat Quat::operator*(const Quat &_q) const {
double w1, a1, b1, c1;
w1 = w * _q.w - a * _q.a - b * _q.b - c * _q.c;
a1 = w * _q.a + _q.w * a + b * _q.c - _q.b * c;
b1 = w * _q.b + _q.w * b - a * _q.c + c * _q.a;
c1 = w * _q.c + _q.w * c + a * _q.b - _q.a * b;
return Quat(w1, a1, b1, c1);
Janik Zikovsky
committed
/** Quaternion self-multiplication operator
* @param _q :: the quaternion to multiply
* @return *this*=_q
Quat &Quat::operator*=(const Quat &_q) {
double w1, a1, b1, c1;
w1 = w * _q.w - a * _q.a - b * _q.b - c * _q.c;
a1 = w * _q.a + _q.w * a + b * _q.c - _q.b * c;
b1 = w * _q.b + _q.w * b - a * _q.c + c * _q.a;
c1 = w * _q.c + _q.w * c + a * _q.b - _q.a * b;
w = w1;
a = a1;
b = b1;
c = c1;
return (*this);
Janik Zikovsky
committed
/** Quaternion equal operator
* @param q :: the quaternion to compare
*
* Compare two quaternions at 1e-6%tolerance.
* Use boost close_at_tolerance method
bool Quat::operator==(const Quat &q) const {
using namespace std;
return !(fabs(w - q.w) > Tolerance || fabs(a - q.a) > Tolerance ||
fabs(b - q.b) > Tolerance || fabs(c - q.c) > Tolerance);
Russell Taylor
committed
// return (quat_tol(w,q.w) && quat_tol(a,q.a) && quat_tol(b,q.b) &&
// quat_tol(c,q.c));
Janik Zikovsky
committed
/** Quaternion non-equal operator
* @param _q :: the quaternion to compare
*
* Compare two quaternions at 1e-6%tolerance.
* Use boost close_at_tolerance method
Janik Zikovsky
committed
* @return true if not equal
bool Quat::operator!=(const Quat &_q) const { return (!operator==(_q)); }
Janik Zikovsky
committed
/** Quaternion normalization
*
* Divide all elements by the quaternion norm
*/
void Quat::normalize() {
double overnorm;
if (len2() == 0)
overnorm = 1.0;
else
overnorm = 1.0 / len();
w *= overnorm;
a *= overnorm;
b *= overnorm;
c *= overnorm;
Janik Zikovsky
committed
/** Quaternion complex conjugate
*
* Reverse the sign of the 3 imaginary components of the
* quaternion
*/
void Quat::conjugate() {
a *= -1.0;
b *= -1.0;
c *= -1.0;
Janik Zikovsky
committed
/** Quaternion length
* @return the length
double Quat::len() const { return sqrt(len2()); }
Janik Zikovsky
committed
/** Quaternion norm (length squared)
* @return the length squared
double Quat::len2() const { return (w * w + a * a + b * b + c * c); }
Janik Zikovsky
committed
/** Inverse a quaternion
void Quat::inverse() {
conjugate();
double overnorm = len2();
if (overnorm == 0)
overnorm = 1.0;
else
overnorm = 1.0 / overnorm;
w *= overnorm;
a *= overnorm;
b *= overnorm;
c *= overnorm;
Janik Zikovsky
committed
/** Rotate a vector.
* @param v :: the vector to be rotated
*
* The quaternion needs to be normalized beforehand to
* represent a rotation. If q is thequaternion, the rotation
* is represented by q.v.q-1 where q-1 is the inverse of
* v.
*/
void Quat::rotate(V3D &v) const {
Quat qinvert(*this);
qinvert.inverse();
Quat pos(0.0, v[0], v[1], v[2]);
pos *= qinvert;
pos = (*this) * pos;
v[0] = pos[1];
v[1] = pos[2];
v[2] = pos[3];
}
Janik Zikovsky
committed
/** Convert quaternion rotation to an OpenGL matrix [4x4] matrix
* The function glRotated must be called
Janik Zikovsky
committed
* @param mat :: The output matrix
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
void Quat::GLMatrix(double *mat) const {
double aa = a * a;
double ab = a * b;
double ac = a * c;
double aw = a * w;
double bb = b * b;
double bc = b * c;
double bw = b * w;
double cc = c * c;
double cw = c * w;
*mat = 1.0 - 2.0 * (bb + cc);
++mat;
*mat = 2.0 * (ab + cw);
++mat;
*mat = 2.0 * (ac - bw);
++mat;
*mat = 0;
++mat;
*mat = 2.0 * (ab - cw);
++mat;
*mat = 1.0 - 2.0 * (aa + cc);
++mat;
*mat = 2.0 * (bc + aw);
++mat;
*mat = 0;
++mat;
*mat = 2.0 * (ac + bw);
mat++;
*mat = 2.0 * (bc - aw);
mat++;
*mat = 1.0 - 2.0 * (aa + bb);
mat++;
for (int i = 0; i < 4; ++i) {
*mat = 0;
mat++;
}
*mat = 1.0;
}
/// using convention at
/// http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
std::vector<double> Quat::getRotation(bool check_normalisation,
bool throw_on_errors) const {
double aa = a * a;
double ab = a * b;
double ac = a * c;
double aw = a * w;
double bb = b * b;
double bc = b * c;
double bw = b * w;
double cc = c * c;
double cw = c * w;
if (check_normalisation) {
double normSq = aa + bb + cc + w * w;
if (fabs(normSq - 1) > FLT_EPSILON) {
if (throw_on_errors) {
g_log.error() << " A non-unit quaternion used to obtain a rotation "
"matrix; need to notmalize it first\n";
throw(std::invalid_argument("Attempt to use non-normalized quaternion "
"to define rotation matrix; need to "
"notmalize it first"));
} else {
g_log.information() << " Warning; a non-unit quaternion used to obtain "
"the rotation matrix; using normalized quat\n";
aa /= normSq;
ab /= normSq;
ac /= normSq;
aw /= normSq;
bb /= normSq;
bc /= normSq;
bw /= normSq;
cc /= normSq;
cw /= normSq;
}
}
}
std::vector<double> out(9);
out[0] = (1.0 - 2.0 * (bb + cc));
out[1] = 2.0 * (ab - cw);
out[2] = 2.0 * (ac + bw);
out[3] = 2.0 * (ab + cw);
out[4] = (1.0 - 2.0 * (aa + cc));
out[5] = 2.0 * (bc - aw);
out[6] = 2.0 * (ac - bw);
out[7] = 2.0 * (bc + aw);
out[8] = (1.0 - 2.0 * (aa + bb));
return out;
}
Janik Zikovsky
committed
/**
* Converts the GL Matrix into Quat
*/
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
void Quat::setQuat(double mat[16]) {
double tr, s, q[4];
int nxt[3] = {1, 2, 0};
tr = mat[0] + mat[5] + mat[10];
if (tr > 0.0) {
s = sqrt(tr + 1.0);
w = s / 2.0;
s = 0.5 / s;
a = (mat[6] - mat[9]) * s;
b = (mat[8] - mat[2]) * s;
c = (mat[1] - mat[4]) * s;
} else {
int i = 0;
if (mat[5] > mat[0])
i = 1;
if (mat[10] > mat[i * 5])
i = 2;
int j = nxt[i];
int k = nxt[j];
s = sqrt(mat[i * 5] - (mat[j * 5] + mat[k * 5]) + 1.0);
q[i] = s * 0.5;
if (s != 0.0)
s = 0.5 / s;
q[3] = (mat[j * 4 + k] - mat[k * 4 + j]) * s;
q[j] = (mat[i * 4 + j] + mat[j * 4 + i]) * s;
q[k] = (mat[i * 4 + k] + mat[k * 4 + i]) * s;
a = q[0];
b = q[1];
c = q[2];
w = q[3];
}
}
/// Using the convention at
/// http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
void Quat::setQuat(const Kernel::DblMatrix &rMat) {
int i = 0, j, k;
if (rMat[1][1] > rMat[0][0])
i = 1;
if (rMat[2][2] > rMat[1][1])
i = 2;
j = (i + 1) % 3;
k = (j + 1) % 3;
double r = sqrt(1. + rMat[i][i] - rMat[j][j] - rMat[k][k]);
if (r == 0) {
a = 0.;
b = 0.;
c = 0.;
w = 1.;
} else {
double q[4], f = 0.5 / r;
q[i] = 0.5 * r;
q[j] = f * (rMat[i][j] + rMat[j][i]);
q[k] = f * (rMat[k][i] + rMat[i][k]);
q[3] = f * (rMat[k][j] - rMat[j][k]);
a = q[0];
b = q[1];
c = q[2];
w = q[3];
}
}
/** Bracket operator overload
* returns the internal representation values based on an index
Janik Zikovsky
committed
* @param Index :: the index of the value required 0=w, 1=a, 2=b, 3=c
* @returns a double of the value requested
*/
double Quat::operator[](const int Index) const {
switch (Index) {
case 0:
return w;
case 1:
return a;
case 2:
return b;
case 3:
return c;
default:
throw std::runtime_error("Quat::operator[] range error");
}
}
/** Bracket operator overload
* returns the internal representation values based on an index
Janik Zikovsky
committed
* @param Index :: the index of the value required 0=w, 1=a, 2=b, 3=c
* @returns a double of the value requested
*/
double &Quat::operator[](const int Index) {
switch (Index) {
case 0:
return w;
case 1:
return a;
case 2:
return b;
case 3:
return c;
default:
throw std::runtime_error("Quat::operator[] range error");
}
}
/** Prints a string representation of itself
Janik Zikovsky
committed
* @param os :: the stream to output to
void Quat::printSelf(std::ostream &os) const {
os << "[" << w << "," << a << "," << b << "," << c << "]";
Roman Tolchenov
committed
/** Read data from a stream in the format returned by printSelf ("[w,a,b,c]").
* @param IX :: Input Stream
* @throw std::runtime_error if the input is of wrong format
void Quat::readPrinted(std::istream &IX) {
std::string in;
std::getline(IX, in);
size_t i = in.find_first_of('[');
if (i == std::string::npos)
throw std::runtime_error("Wrong format for Quat input: " + in);
size_t j = in.find_last_of(']');
if (j == std::string::npos || j < i + 8)
throw std::runtime_error("Wrong format for Quat input: " + in);
size_t c1 = in.find_first_of(',');
size_t c2 = in.find_first_of(',', c1 + 1);
size_t c3 = in.find_first_of(',', c2 + 1);
if (c1 == std::string::npos || c2 == std::string::npos ||
c3 == std::string::npos)
throw std::runtime_error("Wrong format for Quat input: [" + in + "]");
w = std::stod(in.substr(i + 1, c1 - i - 1));
a = std::stod(in.substr(c1 + 1, c2 - c1 - 1));
b = std::stod(in.substr(c2 + 1, c3 - c2 - 1));
c = std::stod(in.substr(c3 + 1, j - c3 - 1));
Roman Tolchenov
committed
}
Janik Zikovsky
committed
* @param os :: the stream to output to
* @param q :: the quat to output
std::ostream &operator<<(std::ostream &os, const Quat &q) {
q.printSelf(os);
return os;
}
/** Reads in a quat from an input stream
Janik Zikovsky
committed
* @param ins :: The input stream
* @param q :: The quat
std::istream &operator>>(std::istream &ins, Quat &q) {
q.readPrinted(ins);
return ins;
/** @return the quat as a string "[w,a,b,c]" */
std::string Quat::toString() const {
std::ostringstream mess;
this->printSelf(mess);
return mess.str();
}
/** Sets the Quat using a string
* @param str :: the Quat as a string "[w,a,b,c]" */
void Quat::fromString(const std::string &str) {
std::istringstream mess(str);
this->readPrinted(mess);
}
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
void Quat::rotateBB(double &xmin, double &ymin, double &zmin, double &xmax,
double &ymax, double &zmax) const {
// Defensive
if (xmin > xmax)
std::swap(xmin, xmax);
if (ymin > ymax)
std::swap(ymin, ymax);
if (zmin > zmax)
std::swap(zmin, zmax);
// Get the min and max of the cube, and remove centring offset
Mantid::Kernel::V3D minT(xmin, ymin, zmin), maxT(xmax, ymax, zmax);
// Get the rotation matrix
double rotMatr[16];
GLMatrix(&rotMatr[0]);
// Now calculate new min and max depending on the sign of matrix components
// Much faster than creating 8 points and rotate them. The new min (max)
// can only be obtained by summing the smallest (largest) components
//
Mantid::Kernel::V3D minV, maxV;
// Looping on rows of matrix
int index;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
index = j + i * 4; // The OpenGL matrix is linear and represent a 4x4
// matrix but only the 3x3 upper-left inner part
// contains the rotation
minV[j] += (rotMatr[index] > 0) ? rotMatr[index] * minT[i]
: rotMatr[index] * maxT[i];
maxV[j] += (rotMatr[index] > 0) ? rotMatr[index] * maxT[i]
: rotMatr[index] * minT[i];
}
}
// Adjust value.
xmin = minV[0];
ymin = minV[1];
zmin = minV[2];
xmax = maxV[0];
ymax = maxV[1];
zmax = maxV[2];
/** Calculate the Euler angles that are equivalent to this Quaternion.
* Euler angles are calculated intrinsically, i.e. the first rotation modifies
*the axis used for
* the second rotation, and the second rotation modifies the axis used for the
*third rotation.
* You can specify which axis the rotations should be applied around and the
*order in which they
* are to be applied with the convention parameter. For instance, for a rotation
*of Y and then
* the new Z axis, and then the new Y axis: pass "YZY" as the convention. Or for
*a rotation
* such as X, and then the new Y axis, and then the new Z axis: pass "XYZ" as
*the convention.
* @param convention :: The axes to apply the rotations to and the order in
*which to do so. Defaults to "XYZ".
* @returns A vector of the Euler angles in degrees. The order of the angles is
*the same as in the convention parameter.
std::vector<double>
Quat::getEulerAngles(const std::string &convention = "XYZ") const {
throw std::invalid_argument("Wrong convention name (string length not 3)");
boost::to_upper(conv);
// Check it's only XYZ in the string
if (conv.find_first_not_of("XYZ") != std::string::npos)
throw std::invalid_argument(
"Wrong convention name (characters other than XYZ)");
// Cannot be XXY, XYY, or similar. Only first and last may be the same: YXY
if ((conv[0] == conv[1]) || (conv[2] == conv[1]))
throw std::invalid_argument("Wrong convention name (repeated indices)");
boost::replace_all(conv, "X", "0");
boost::replace_all(conv, "Y", "1");
boost::replace_all(conv, "Z", "2");
std::stringstream s;
s << conv[0] << " " << conv[1] << " " << conv[2];
int first, second, last;
s >> first >> second >> last;
// Do we want Tait-Bryan angles, as opposed to 'classic' Euler angles?
const int TB =
(first * second * last == 0 && first + second + last == 3) ? 1 : 0;
const int par01 = ((second - first + 9) % 3 == 1) ? 1 : -1;
const int par12 = ((last - second + 9) % 3 == 1) ? 1 : -1;
std::vector<double> angles(3);
const DblMatrix R = DblMatrix(this->getRotation());
const int i = (last + TB * par12 + 9) % 3;
const int j1 = (last - par12 + 9) % 3;
const int j2 = (last + par12 + 9) % 3;
const double s3 = (1.0 - TB - TB * par12) * R[i][j1];
const double c3 = (TB - (1.0 - TB) * par12) * R[i][j2];
constexpr double rad2deg = 180.0 / M_PI;
angles[2] = atan2(s3, c3) * rad2deg;
DblMatrix Rm3(Quat(-angles[2], axis3).getRotation());
DblMatrix Rp = R * Rm3;
const double s1 =
par01 * Rp[(first - par01 + 9) % 3][(first + par01 + 9) % 3];
const double s2 = par01 * Rp[first][3 - first - second];
angles[0] = atan2(s1, c1) * rad2deg;
angles[1] = atan2(s2, c2) * rad2deg;
Gigg, Martyn Anthony
committed
} // Namespace Kernel